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The continuous fermentation process where ethanol is selectively removed from the 

broth is an efficient technique for optimising the bioethanol productivity and limiting 

the inhibitory effect of both end product and substrate. However, the application of 

this approach may increase the concentration of minor secondary products to the 

point where they become toxic to the yeast. Despite that several studies have reported 

the significant inhibitory effect of byproducts, there is currently no fermentation 

model that considers the inhibitory effect of these byproducts.  

 

 

In this study, an integrated model of a fermentation-pervaporation system was 

developed considering the effect of the interaction between both processes with 

special attention has been devoted to the inhibitory effect of byproducts. Firstly, a 

modified Monod model for the alcoholic fermentation process was developed. Then, 

the optimization and modelling of the pervaporation process for ethanol recovery 

were conducted. Finally, the integrated model of alcoholic fermentation coupled with 

a pervaporation system for ethanol recovery was developed and validated.  

 

 

The findings showed that glycerol, acetic acid and succinic acid were the main 

byproducts during the fermentation process. It was also noted that the concentration 

of these byproducts linearly increased with the increase of glucose concentration in 

the range of 25-250 g/L. A modified Monod model concerning the inhibitory effect 

of these byproducts was suggested where the specific growth coefficient 

exponentially decreased with the increase of byproducts concentration in the 

fermentation broth. The suggested model showed a good agreement with the 

experimental data and higher accuracy compared to the conventional Monod model.  

 

 

© C
OPYRIG

HT U
PM



 

ii 

In optimization of the pervaporation process, the ethanol feed concentration and the 

permeate pressure positively affected the selectivity, while the feed temperature and 

the feed flow rate showed a negative effect. The results also revealed that all the four 

studied factors had a positive effect on the total flux in the selected range. In addition, 

A solution-diffusion model has been developed and validated using the fermentation 

broth as a feed solution where it showed high accuracy with R2 higher than 0.96 for 

predicting the permeate total flux. 

 

 

A full model was developed by the integration of the modified Monod model and the 

solution-diffusion model of the pervaporation process considering the interactions 

between both processes. The suggested model could accurately predict the biomass 

concentration, glucose concentration, and ethanol concentration in the fermentation 

broth simultaneously with predicting the total permeate flux, ethanol flux, and water 

flux in the collected permeate during a long-term continuous fermentation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© C
OPYRIG

HT U
PM



 

iii 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

 

 

PEMODELAN SISTEM PENAPAIAN ALKOHOL BERSEPADU DENGAN 

PEMISAHAN PENYEJATAN UNTUK MENAPIS BIOETANOL 

 

 

Oleh 

 

 

ZENTOU HAMID 

 

 

Januari 2021 

 

 

Pengerusi :   Profesor Zurina binti Zainal Abidin, PhD  

Fakulti :   Kejuruteraan 

 

 

Penapaian secara berterusan di mana etanol dikeluarkan secara selektif dari kaldu 

adalah ideal untuk mengoptimumkan produktiviti bioetanol dan menghadkan kesan 

perencatan daripada produk akhir dan juga daripada substrat. Namun, proses ini 

boleh menyebabkan produk sampingan sekunder bertambah sehingga menjadi toksik 

kepada ragi. Namun begitu, walaupun kesan perencatan dari produk sampingan telah 

dilaporkan dalam beberapa kajian yang lepas, tiada lagi model penapaian yang 

melibatkan kesan perencatan daripada produk sampingan. 

 

 

Dalam kajian ini, model sistem penapaian-penyejatan yang lengkap telah dihasilkan 

dengan mengambilkira interaksi antara proses penapaian dan penyejatan dengan 

perhatian istimewa telah diberikan kepada kesan perencatan daripada produk 

sampingan. Pertama, model baharu Monod yang telah diubahsuai untuk proses 

penapaian alkohol telah dihasilkan. Kemudian, pengoptimuman dan pemodelan 

proses penyejatan untuk menapis etanol telah dilakukan. Akhirnya, model lengkap 

penapaian alkohol yang digabungkan dengan sistem penyejatan untuk menapis 

ethanol telah dihasilkan dan disahkan. 

 

 

Hasil kajian telah menunjukkan bahawa gliserol, asid asetik dan asid sukina adalah 

produk sampingan utama semasa proses penapaian. Terdapat juga pemerhatian 

bahawa kepekatan produk sampingan ini turut meningkat secara linear mengikut 

peningkatan kepekatan glukosa dalam julat 25-250 g/L. Model baharu Monod yang 

telah diubahsuai dengan mengambilkira kesan perencatan produk sampingan adalah 

disarankan, di mana pekali pertumbuhan spesifik menurun secara eksponen dengan 

peningkatan kepekatan produk sampingan dalam penapaian kaldu. Model baharu ini 

telah menunjukkan persamaan yang baik dengan data eksperimen dan ketepatan 

yang lebih tinggi berbanding dengan model Monod konvensional. 
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Kajian pengoptimuman mengenai kesan keadaan operasi dalam proses penyejatan 

menunjukkan bahawa kepekatan suapan ethanol dan tekanan telapan mempunyai 

kesan positif yang ketara pada pemilihan. Sebaliknya, kesan negatif suhu suapan dan 

kadar aliran suapan pada pemilihan telah direkodkan. Selain itu, keempat-empat 

faktor telah menunjukkan kesan positif pada jumlah fluks dalam julat yang dipilih. 

Di samping itu, model larutan-resapan telah dihasilkan dan disahkan menggunakan 

penapaian kaldu dan menunjukkan ketepatan tinggi dengan R2 lebih tinggi daripada 

0.96 untuk meramalkan jumlah fluks telapan. 

 

 

Model lengkap telah dihasilkan dengan persepaduan model Monod yang telah 

diubah suai dan model larutan-resapan untuk proses penyejatan dengan 

mempertimbangkan interaksi antara kedua-dua proses tersebut. Model yang 

dicadangkan mempunyai kemampuan untuk meramal kepekatan biomas, kepekatan 

glukosa, dan kepekatan ethanol dalam penapaian kaldu secara serentak dengan 

meramalkan jumlah fluks telapan, fluks ethanol, dan fluks air dalam telapan yang 

terkumpul semasa penapaian secara berterusan dalam jangka panjang. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

In the past decades, the industrial revolution has remarkably increased the demand 

for energy that is derived from conventional fossil fuel resources such as coal, oil 

and natural gas. Growing concerns over the consequences of climate change may 

severely limit future access to fossil fuels. A forced choice between energy and 

environment could precipitate a major economic crisis, an environmental crisis, or 

both. Averting such a crisis will be difficult because fossil energy resources are an 

essential part of the world’s energy supply and climate change is mainly driven by 

the build-up of carbon dioxide in the atmosphere (Hester et al., 2010). Nevertheless, 

fossil fuels will be substituted partially by new energy sources that can fulfil the 

energy needs of humanity and overcome the environmental challenges resulting from 

the extensive use of fossil fuels. In this regard, biofuels provide an excellent 

alternative to traditional fossil fuel-derived energy sources, as they can be produced 

from abundant supplies of renewable biomass (Davis et al., 2000).  

Biofuels are produced directly or indirectly from natural feedstocks, which include 

vegetables, raw materials, and animal waste. There are two main industrial sectors 

in biofuel production, namely bioethanol and biodiesel (Correa et al., 2017). 

Bioethanol can be produced by the fermentation of sugars, whereas biodiesel is 

derived from vegetable or animal fat through the process of transesterification. Brazil 

and the USA are the two largest biofuel producers in the world (Alonso-Pippo et al., 

2013). 

The biofuel industry is facing several challenges to substitute totally and limit the 

use of fossil fuels and meet the market demand. The availability of an efficient 

separation and purification technique is one of these major challenges, as it typically 

represents at least 40% (up to 80%) of bioethanol production cost (Le et al., 2011). 

Moreover, the product (ethanol) inhibition is another limiting factor for the efficient 

production of ethanol (Garhyan et al., 2004). It was previously reported that yeast 

cells do not grow in ethanol concentration above 11 wt.% where the ethanol-

producing capability of the cells is totally blocked at a concentration of 10 wt.% 

(Luong, 1985).  

Fermentation and purification are the major steps during bioethanol production. 

Ethanol and total water are the major components of the broth after fermentation. 

Separation is necessary to purify the ethanol from the fermentation broth (Tian et al., 

2013). Distillation has been used as the main purification method for ethanol 

recovery for many years (Lei et al., 2003). Distillation has a lot of advantages that 

place it as the preferred choice for industrial application due to: high alcohol recovery 

(99+ %), sufficient energy efficiency at moderate feed concentrations, and easy 
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simulation process with different available software programs. On the other hand, 

distillation has some negative aspects such as the high energy consumption and costs, 

the high operating temperatures which cause the deactivation of proteins and 

enzymes, and the need for additional separation to reach product dryness 

specifications (Vane, 2008). 

Therefore, developing new separation techniques become a hot issue to improve 

biofuels production efficiency, and reduce energy consumption (Nigiz et al., 2013). 

Bioethanol recovery techniques from fermentation broth were classified by Serra et 

al. (Serra et al., 1987) into conventional or modified conventional systems 

(distillation system) and nonconventional systems (non-distillation systems).  

The non-conventional systems are recently proposed as alternatives for ethanol 

recovery with energy saving and low investments such as pervaporation, vacuum 

stripping, gas stripping, solvent extraction, adsorption and various hybrid processes 

were mostly developed during the 70’s when there was the interest to produce 

chemicals using less fossil fuel (Offeman et al., 2005). 

In the last decade, the application of membrane technology for biological separation 

processes have flourished throughout the world because it overcomes several 

constraints associated with conventional techniques. Membrane systems have 

several advantages over conventional separation processes such as distillation, 

adsorption, and extraction (Schmidt et al., 1997). Pervaporation technology is 

currently developed to be integrated with the fermentation process for bioethanol 

recovery during the continuous alcoholic fermentation process. Fermentation 

systems operated in continuous mode offer several advantages compared to batch 

processes, generally resulting in enhanced volumetric productivity and, 

consequently, smaller bioreactor volumes and lower investment and operational 

costs (Ivanova et al., 2011). In this context, several studies have been conducted to 

develop new designs of bioreactors and new membrane modules to optimize 

bioethanol production; parallelly, researchers turned their focus towards using 

computing methods to optimize the bioethanol production process. Mathematical 

model–based simulations of actual bioreactor runs suggest how process variables 

such as substrate and product concentrations change and how nutrient feeding should 

be “tuned” with respect to time, pattern, concentration, and composition to elicit the 

desired response. Insights gained from modelling can guide us in the adjustment of 

a process, reducing the number of characterization rounds required. Furthermore, 

comparing actual experimental results with model predictions helps improve the 

models themselves.  

Many aspects complicate the modelling of the bioprocess since the fermentation 

process has both non-linear and dynamic properties, and the metabolic processes of 

the microorganisms are very complicated and cannot be modelled precisely. The 

most important properties of a biological mathematical model were defined in the 

Edwards and Wilke’ that postulates: (a) it is capable to represent all the culture 

phases; (b) it is flexible enough to approximate different data types without the 
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insertion of significant distortions; (c) it must be continuously derivable; (d) it must 

be easy to operate, once the parameters evaluated; (e) each model parameter is to 

have a physic significance and must be easy to evaluate (Bellgardt, 2000).  

Although the continuous operation is known to be advantageous over the batch 

process in term of reducing operational costs, it has not yet enjoyed the same measure 

of acceptance in the industry as that of the batch operation. Some of the major 

hindrances to the industrial applications of continuous fermentation are susceptibility 

to contaminations and complex operational problems like a nonlinear process that is 

difficult to control (O’Brien et al., 2000). Kinetic modelling may be regarded as an 

important tool in developing an efficient ethanol fermentation process, since models 

help in process control, reducing process costs, and optimization of the performance 

of biotechnological processes. 

1.2 Problem Statement 

Besides the complexity of fermentation modelling itself, coupling the alcoholic 

fermentation with a separation system such as pervaporation separation for ethanol 

recovery implies another challenge to developing an ‘integrated model’ of the 

fermentation-pervaporation system. The current models do not ideally represent the 

integrated system since it is standard models describing the fermentation process and 

pervaporation process as separate units. Thus, modified models should be developed 

specifically for the modelling of a fermentation-pervaporation integrated system by 

taking into account the effects of the interaction between both processes.   

In this regard, several issues have been highlighted in the present study to be 

addressed. First of all, it is known that ethanol is selectively removed from the 

fermentation broth during continuous fermentation using a separation process such 

as pervaporation which eliminates the ethanol inhibitory effect. On the other hand, 

this process can concentrate minor secondary products to the point where they 

become toxic to the yeast. The inhibitory effect of byproducts on the fermentation 

process has been confirmed in previous studies (Maiorella et al., 1983), However, 

most available fermentation models highlighted the inhibitory effect of ethanol 

(Brown et al., 1981; Ghose et al., 1979; Luong, 1985; Palmqvist et al., 2000; Q. 

Zhang et al., 2015), the inhibitory effect of substrate (Ghose et al., 1979; Mota et al., 

1984; Starzak et al., 1994; Q. Zhang et al., 2015), and inhibition effect of cell density 

on the growth called ‘’ self-inhibition ‘’(Contois, 1959; Mazzoleni et al., 2015), 

whereas of inhibition effect of byproducts did not receive the same attention. Thus, 

a vital part of the present study was devoted to developing a new modified Monod 

model which takes into account the inhibitory effect of byproducts.   

Indeed, defining the optimal operating conditions of a process plays an important 

role to enhance its performance and productivity. While the optimal conditions of 

the fermentation process using S. cerevisiae yeast have been well-known for several 

decades ago, there no agreement about the optimal conditions of the pervaporation 

process due to the differences in the properties of the used membrane, the selected 
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range of factors, and the characteristics of the components of the experimental setup. 

Therefore, using Response Surface Methodology (RSM) approach for the 

optimization of ethanol pervaporation process was used due to the reliability RSM 

approach compared to the one-factor-at-a-time approach which does not consider the 

interactions between variables during the optimization process.  

In addition, the majority of studies investigating the modelling of pervaporation for 

ethanol recovery have used the ethanol/water mixture as a feed whereas the 

fermentation broth normally contains other metabolites which may influence the 

pervaporation separation performance (Hietaharju et al., 2019; Kanse et al., 2017; 

Qiu et al., 2019). Using ethanol/water standard solution is understood as it allows 

better control of the operating conditions, however, the fermentation broth should be 

used during the validation of the model for more reliability.  

The integration biological fermentation model and pervaporation separation model 

is a very challenging step. The notion of ‘integrated model’ provides a platform to 

infuse the researches from two different fields biological process modelling and 

separation modelling for bioethanol production and recovery in a harmonized way 

and hence provokes interconnected investigations from both fields. The previous 

studies have focused more on the interaction between both process in term of 

productivity of performance, for example, the effect of product removal by a 

pervaporation on ethanol fermentation (Miyazawa et al., 1998), or the effect of 

fermentation broth components on the pervaporation process (García et al., 2009) 

whereas a lack in studies discussing an integrated model for the integrated 

fermentation-pervaporation system was noted. The few reported modelling studies 

have considered the conventional modelling approach of continuous fermentation at 

a fixed dilution rate ignoring the fact that output flux is variable due to the change of 

the ethanol concentration in fermentation broth and its effect on the pervaporation 

process performance. These issues and points will be fully covered in the present 

study. 

1.3 Objectives 

The major objective of this study is to develop an integrated model of a fermentation-

pervaporation system. This will include the following secondary objectives and 

tasks: 

1. To develop a modified Monod model for bioethanol fermentation process 

with the incorporation of byproducts inhibitory effects. 

 

2. To model pervaporation process based on solution- diffusion mechanism. 

 

3. To develop an integrated model based on a continuous combined fermentation-

pervaporation system for bioethanol production. 
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1.4 Scope of Study 

The presented work is focused on the modelling of a fermentation-pervaporation 

system by taking the effect of the interactions on both fermentation and 

pervaporation processes. Firstly, a preliminary investigation was conducted to 

evaluate the amount of byproducts formation during the alcoholic fermentation and 

study the effect of initial substrate concentration on the formation of these 

byproducts. Based on this investigation, an experimental design was set to determine 

the effect of these byproducts during the alcoholic fermentation to end up with a new 

Modified Monod model for the alcoholic fermentation with taking the byproducts 

inhibitory effect into account. 

Secondly, RSM approach was used to optimize the pervaporation process and study 

the effect of temperature, feed concentration, flow rate and vacuum pressure which 

may be dependent on each other and it was needed to consider their interactions in 

this study. Besides the RSM model, a solution-diffusion model will be developed to 

predict the total flux and separation factor during the pervaporation process, and the 

developed model will be validated against experimental data using the fermentation 

broth for more reliability and to assess the ability to integrate the model with the 

fermentation process. 

Finally, an integrated mathematical model to describe the fermentation-

pervaporation system was built based on the developed models. The obtained model 

was validated against experimental data and then compared to previous models 

reported in the literature to assess its performance. 

In the present study, the proposed models were developed assuming that the fouling 

of the membrane is negligible during the pervaporation process. Although that this 

assumption is valid for the present study due to the use of glucose solution as a feed 

of the fermentation process, the fouling problem was reported as the most factor 

reducing the permeation flux during the pervaporation process (Kamelian et al., 

2020; Sun et al., 2020; Zhao et al., 2021; Zhu et al., 2020). Therefore, the application 

of the suggested integrated model in this study is only limited in the cases where the 

fouling factors are not significant. Thus, it is suggested to take the fouling 

phenomena into account in the modelling of the integrated fermentation-

pervaporation system especially in the presence of foulants particles in the feed. 

Moreover, the solution-diffusion model in the present work does not consider the 

variation of feed concentration along with the module. Therefore, this model is 

suitable only for flat sheets or small membrane modules as the feed concentration 

varies along the x-direction for the large modules. 
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1.5 Outline of Thesis 

The presented thesis is divided into five chapters. Chapter one covers the 

introduction, problem statement, objectives, scope and thesis structure. Chapter two 

presents the theory and literature review closely related to this work including 

principles, mechanism, and modelling of both fermentation and pervaporation 

process and the integration of these process for bioethanol production. Chapter three 

includes the different materials and methods used in the presented study and describe 

the experimental design of different stages of the project. Chapter four presented the 

obtained results and discussed the findings. Conclusions have summarized in chapter 

five which involves some recommendations for future works as well. 
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