UNIVERSITI PUTRA MALAYSIA

ISOLATION AND CHARACTERIZATION OF THERMOSTABLE ORGANIC SOLVENT TOLERANT PROTEASE FROM BACILLUS SUBTILIS ISOLATE RAND

RANDA ABDELKAREEM ABUSHAM
FBSB 2009 27
ISOLATION AND CHARACTERIZATION OF THERMOSTABLE ORGANIC
SOLVENT TOLERANT PROTEASE FROM BACILLUS SUBTILIS ISOLATE RAND

By

RANDA ABDELKAREEM ABUSHAM

Thesis Submitted to the School of Graduate Studies, Universiti Putra
Malaysia, in Fulfilment of the Requirements for the Degree of
Master of Sciences

August 2009
DEDICATION

To my beloved husband Eimad Abdu and my sweetheart twins Ahmed and Shimaa.
Currently, thermostable and organic solvent tolerant protease is not available in local and global market. In this research screening and isolation of thermostable and organic solvent tolerant protease from bacteria from spring water and contaminated soils from Selayang, Batang kali and Port Dickson, Malaysia were carried out. Nine isolates were positive on skim milk agar 10 (%). A newly isolated soil bacterium, *Bacillus subtilis* isolate Rand, which exhibited an extracellular protease activity, was identified based on 16S rRNA analysis (GenBank EU233271). Isolate Rand was isolated from contaminated soils from Port Dickson and showed the highest activity (34.9 U/ml). The crude protease activity was enhanced by *n*-hexadecane (log P 8.8) with 1.5 fold, *n*-tetradecane (log P 7.6) with 1.5 fold, *n*-dodecane (log P 6.0) with 1.5 fold, *n*-decane (log P 5.6) with 2 fold, *n*-hexane (log P 3.5) with 1.4 fold, *p*-xylene (log P 3.1) with 1.3 fold, toluen (log P 2.5) with 1.2 fold, benzene (log P 2.0) with 1.9 fold and butanol (log P 0.80) with 1.01 fold. Optimum activity of the crude enzyme was exhibited at 60°C. The enzyme appeared to be
stable and retained its full activity after 30 minutes incubation from 4 to 55°C, while 81% of the activity was still retained at 60°C.

Further optimization studies were carried out to determine the best protease production condition. Maximum protease production was achieved when grown in 50 mL M2 medium (pH 7.0). Inoculum size of 5%(v/v) proved to be the best for protease production, with an optimum temperature of 37°C, when grown under shaking condition of 200 rpm. All carbon sources tested decreased protease production, except lactose and melibiose whereby protease production was improved. Tryptone and ammonium heptamolybdate were found to be the best organic nitrogen and inorganic nitrogen sources, respectively. Protease production was stimulated by l-lysine and calcium.

Protease from the *Bacillus subtilis* isolate Rand was purified using a combination of two purification steps, hydrophobic interaction chromatography on Octyl-Sepharose and gel filtration. Rand protease was purified by 19.3 fold purification and 60.5% recovery. Purified protease migrated as a single band with a molecular mass of ~28 kDa on SDS-PAGE.

The purified protease hydrolyzed azocasein at optimum temperature of 60°C. However, the enzyme lost its activity with a half life of more than 20 min at 60 and 65°C. The optimum activity of the protease was observed at pH 7.0 and it was stable in the pH range of pH 6.5 to 10. Purified Rand protease exhibited high stability in the presence of *n*-dodecane (log P 6.6), diethylether (log P 4.3), *p*-xylene (log P 3.1), toluene (log P 2.5), benzene (log P 2.0), acetone (log P 0.23), butanol (log P 0.8) and ethanol (log P 0.24). The protease activity was completely inhibited by phenylmethanesulfonyl fluoride PMSF
while 43 and 30% reduction of protease activity was observed in the presence of ethylene diamine tetraacetic acid EDTA and 1,4-Dithio-\textsubscript{DL}-threitol DTT, respectively. Protease activity retained about 95% and 63% in the presence of aminopeptidases (Bestatin) and aspartic proteases inhibitor (pepstatin A). Among the metal ions, Zn2+ was found to stimulate protease activity by 175%. Protease activity was enhanced by 105%, 112% and 105%, respectively Na+, K+ and Li+. For substrate specificity, Rand protease was able to hydrolyze several native proteins such as casein, haemoglobin, albumin and azocasein.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

PEMENCELAN DAN PENCIRIAN PROTEASE TERMOSTABIL YANG TOLERAN KEPADA PELARUT ORGANIK DARI BACILLUS UBTILIS ISOLAT RAND

Oleh

RANDA ABDELKAREEM ABUSHAM
Ogos 2009

Pengerusi: Profesor Raja Noor Zaliha Raja Abd Rahman, Phd

Fakulti: Bioteknologi dan Sains Biomolekul

Buat masa ini tidak terdapat protease yang termostabil dan tahan kepada pelarut organik di pasaran tempatan mahupun dunia. Dalam penyelidikan ini, penyaringan dan pemencilan bakteria yang termostabil dan toleran kepada pelarut organik telah dijalankan daripada kolam air panas dan tanah yang tercemar di Selayang, Batang kali dan Port Dickson, Malaysia. Sebanyak sembilan pencilan telah berjaya diasingkan daripada agar susu skim 10 (%). Pengasingan bakteria daripada sampel tanah dikenalpasti sebagai Bacillus subtilis isolate Rand, yang menunjukkan aktiviti protease di luar sel dan pengenalpastian dibuat melalui analisis 16s rRNA (GenBank EU233271). Bakteria yang dipencilkan dari sumber tanah yang tercemar dari Port Dickson ini menunjukkan aktiviti protease yang tertinggi berbanding bakteria lain iaitu (34.9 U/ml). Aktiviti protease kasar telah ditingkatkan 1.5 kali ganda oleh n-heksadekana (log \(P\) 8.8), 1.5 kali ganda oleh n-tetradekana (log \(P\) 7.6), 1.5 kali ganda oleh n-dodekana (log \(P\) 6.0), 2 kali ganda oleh n-dekana (log \(P\) 5.6), 1.4 kali ganda oleh n-heksana (log \(P\) 3.5), 1.3 kali ganda oleh p-xilena (log \(P\) 3.1), 1.2 kali ganda oleh toluena (log \(P\) 2.5), 1.9 kali ganda oleh benzene (log \(P\) 2.5).
2.0) dan 1.01 kali ganda oleh butanol (log P 0.80). Aktiviti optimum protease kasar adalah pada suhu 60°C.

Enzim ini stabil dan mengekalkan aktiviti sepenuhnya selepas 30 minit pengeraman daripada 4 ke 55°C, sementara 81% aktiviti dikekalkan pada suhu 60°C. Seterusnya, proses untuk mengoptimumkan penghasilan protease dalam keadaan yang terbaik telah dijalankan. Penghasilan protease yang maksimum telah dicapai semasa dihidupkan di dalam media M2 berkuantiti 50 ml (pH 7.0). Penggunaan sebanyak 5% (v/v) saiz inokulasi menunjukkan penghasilan terbanyak protease dengan suhu optimum 37°C apabila ditumbuhkan dengan kelajuan goncangan 200 rpm. Penurunan penghasilan protease telah direkodkan apabila diuji dengan pelbagai sumber karbon, kecuali laktos dan melibios yang telah menunjukkan peningkatan dalam pengeluaran protease. Tripton adalah sumber nitrogen organik manakala ammonium heptamolibdat merupakan sumber nitrogen tak organik merupakan penggalak terbaik dalam penghasilan protease. Penghasilan protease telah dirangsang dengan penambahan l-lisina dan kalsium. Proses penulenan protease daripada *Bacillus subtilis* isolate Rand telah dilakukan dengan kombinasi dua langkah penulenan iaitu kromatografi tindak balas hidrofibik pada Octyl-Sepharose dan penurasan gel. Rand protease telah ditulenkan sebanyak 19.3 kali ganda dan 60.5 % pemulihan diperolehi. Jisim molekul protease yang telah ditulenkan adalah ~28 kDa dan dikesan sebagai jalur tunggal pada SDS-PAGE.

Protease tulen menghidrolisiskan azokasein pada suhu optimum 60°C. Namun begitu, enzim ini hilang aktiviti pada tempoh separuh hayat lebih dari 20 minit pada 60 dan
65°C. Aktiviti optimum telah diperhatikan pada pH 7.0 dan ia adalah stabil dalam julat pH 6.5 ke 10. Protease tulen Rand mempamerkan kestabilan tinggi dalam n-dodekana (log P 6.6), dietileter (log P 4.3), p-xilena (log P 3.1), toluena (log P 2.5), benzena (log P 2.0), aseton (log P 0.23), butanol (log P 0.8) dan etanol (log P 0.24). Aktiviti protease telah direncatkan dengan kehadiran fenilmetilsulfonil florida PMSF sementara pengurangan aktiviti diperhatikan sebanyak 43% dalam acid etilena diamina tetraacitik EDTA dan 30% dalam 1,4-Dithio-DL-threitol DTT. Sebanyak 95% aktiviti protease kekal dalam aminopeptidases (Bestatin) dan 63% dalam perencat aspartic proteases (pepstatin A). Antara semua ion-ion logam, ion Zn\(^{2+}\) didapati telah merangsang aktiviti protease sebanyak 175%. Aktiviti protease meningkat sebanyak 105% bagi Na\(^+\), 112% bagi K\(^+\) dan 105% bagi Li\(^+\). Bagi penentuan substrat khusus, Rand protease mampu menghidrolisis beberapa protein asli iaitu casein, haemoglobin, albumin dan azokasein.
ACKNOWLEDGEMENTS

Alhamdulillah, praise to Allah on completion of my study. I would like to express profound gratitude to my advisor, Professor Dr. Raja Noor Zaliha Abd Rahman, for her invaluable support, encouragement, supervision and useful suggestions throughout the period of this research work. Her moral support and continuous guidance enabled me to complete my work successfully. I am also highly thankful to my supervisory committee members, Professor Dr. Abu Bakar Salleh and Professor Dr. Mahiran Basri for their valuable suggestions, encouragement, advice and help throughout this study.

Special thank are extended to Dr. Leow, Afshin, Sue, Baya and Salma for their help, friendship, guidance and knowledge. Special thank are also extended to all member of Enzyme and Microbial Technology Lab and chemistry group especially Fairol, Elly, Dina, Kam, Hidayah, Chee Fah, Ada, Tengku, Wani, Rofandi, Aiman, Marha, Rosa, Rauda, Sabil, Azizah, Wahidah, Elias, Shukuri, Bimo, Ina, Hana, Peiman, Ghani, Fisal, Hisham, Ampon and Zaril. Thank you for the friendship and help.

Finally, I would also like to take this opportunity to express my deep gratitude to my affectionate father Abdel Kareem Hussein, mother Fathia Ali for their fullest support, love, prayers and care, throughout the process of writing the thesis. I would like to thank my family members, brothers, sisters, aunts, uncles and my faithful friends in Malaysia and Sudan for their love and support. Last but not least, my deepest gratitude goes to my
hubby, Eimad Abdu, son, Ahmed and daughter Shima thanks for every thing. Without my family, I would never be here and accomplishing this work will not be possible.
I certify that an Examination Committee met on date of viva to conduct the final examination of Randa Abdelkareem Abusham on her Master thesis entitled “Isolation and Characterization of Thermostable Organic Solvent Tolerant Protease from *Bacillus subtilis* Isolate Rand” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertianan Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Suraini Abd. Aziz, Ph.D.
Associate Professor
Department of Bioprocess Technology
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Mohd Puad Abdullah, Ph.D.
Department of Cell and Molecular Biology
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Dr. Sieo Chin Chin, Ph.D.
Department of Microbiology
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Ainon Hamzah, Ph.D.
Associate Professor
Center of Biotechnology and Bioscience
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(External Examiner)

BUJANG KIM HUAT, PhD.
Professor/Deputy Dean
School of Graduate Studies
University Putra Malaysia

Date: 24 November 2009
This thesis submitted to the senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master. The members of the Supervisory Committee were as follows:

Raja Noor Zaliha Raja Abdul Rahman, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Abu Bakar Salleh, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Mahiran Basri, PhD
Professor
Faculty of Sciences
Universiti Putra Malaysia
(Member)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 10 December 2009
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citation which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institution.

RANZA ABDELKAREEM ABUSHAM

Date: 22 October 2009
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 Protease
2.2 Classification of Proteases
 2.2.1 Serine Proteases
 2.2.2 Cysteine Proteases
 2.2.3 Spartic Proteases
 2.2.4 Metallo Proteases
2.3 Sources of Proteases
 2.3.1 Plant Proteases
 2.3.2 Animal Proteases
 2.3.3 Microbial Proteases
2.4 Thermostable Proteases
2.5 Organic Solvent Proteases
2.6 Optimization
 2.6.1 Effect of Physical Factors on Protease Activity
 2.6.1.1 Effect of pH
 2.6.1.2 Effect of Temperature
 2.6.1.3 Effect of Aeration and Agitation
 2.6.2 Effect of Nutritional Factors
 2.6.2.1 Effect of Nitrogen Sources
 2.6.2.2 Effect of Carbon Sources
 2.6.2.3 Effect of Metal Ions
2.7 Purification and Characterization of Proteases
2.8 Application of Proteases
 2.8.1 Detergent Industry
 2.8.2 Pharmaceutical Industry
 2.8.3 Leather Industry
3 MATERIALS AND METHODS

3.1 Preparation
- 3.1.1 Preparation of Nutrient Agar Plates
- 3.1.2 Preparation of Skim Milk Agar Plates

3.2 Methods
- 3.2.1 Bacterial Sources
- 3.2.2 Isolation and Screening of Proteolytic Bacteria
- 3.2.3 Glycerol Stock Culture
- 3.2.4 Preparation of Inoculum
- 3.2.5 The Effect of Different Liquid Media on Protease Production
- 3.2.6 Assay of Protease Activity
- 3.2.7 The Effect of Organic Solvent on Protease Stability
- 3.2.8 The Effect of Temperature on the Activity and Stability of Protease
- 3.2.9 Bacterial Identification
- 3.2.10 Growth Curve and Protease Production by the Isolate
- 3.2.11 The Effect of Physical Factors on the Protease Production
- 3.2.12 The Effect of Nutritional Factors on the Protease Production
- 3.2.13 Purification of Protease
- 3.2.14 The Characterization of Purified Protease
- 3.2.15 Statistical Analysis

4 RESULTS AND DISCUSSION

4.1 Isolation of Bacterium
4.2 The Effect of Different Liquid Media on Protease Production
4.3 The Effect of Organic Solvent on Protease Stability
4.4 The Effect of Temperature on the Activity and Stability of Protease
4.5 Bacterial Identification
4.6 Growth Curve and Protease Production by *Bacillus subtilis* Isolate Rand
4.7 The Effect of Physical Factors on the Production of Protease
- 4.7.1 The Effect of Temperature on the Production of Protease
- 4.7.2 The Effect of pH on the Production of Protease
- 4.7.3 The Effect of Agitation Rate on the Production of Protease
- 4.7.4 The Effect of Inoculum Size on the Production of Protease
4.7.5 The Effect of Medium Volume on the Production of Protease

4.8 The Effect of Nutritional Factors on the Production of Protease
4.8.1 The Effect of Carbon Sources on the Production of Protease
4.8.2 The Effect of Inorganic Nitrogen Sources on the Production of Protease
4.8.3 The Effect of Organic Nitrogen Sources on the Production of Protease
4.8.4 The Effect of Amino Acids on the Production of Protease
4.8.5 The Effect of Metal Ions on the Production of Protease in the Basal Media
4.8.6 The Effect of Additional Metal Ions on the Production of Protease

4.9 Purification of Protease
4.9.1 Hydrophobic Interaction Chromatography
4.9.2 Gel Filtration Chromatography

4.10 The Characterization of RandP Protease
4.10.1 The Determination of Molecular Weight
4.10.2 The Effect of Temperature on the Activity and Stability of Protease
4.10.3 The Effect of Organic Solvents on the Protease Activity
4.10.4 The Effect of pH on the Activity and Stability of Protease
4.10.5 The Effect of Inhibitors on the Protease Activity
4.10.6 The Effect of Metal Ions on the Protease Activity
4.10.7 The Substrate Specificity of RandP Protease

4 CONCLUSIONS
125
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Proteases from genus Bacillus</td>
</tr>
<tr>
<td>2.2</td>
<td>Potential advantages of enzymatic processes in organic media</td>
</tr>
<tr>
<td>2.3</td>
<td>Organic solvents and their log P values</td>
</tr>
<tr>
<td>2.4</td>
<td>Properties of purified microbial proteases</td>
</tr>
<tr>
<td>2.5</td>
<td>Industrial enzyme market</td>
</tr>
<tr>
<td>3.1</td>
<td>Composition of production media</td>
</tr>
<tr>
<td>4.1</td>
<td>Protease production from different isolates</td>
</tr>
<tr>
<td>4.2</td>
<td>Morphological and biochemical characteristics of B. subtilis isolate Rand</td>
</tr>
<tr>
<td>4.3</td>
<td>Purification table of Rand protease</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Zone formation by bacterium on SMA plate.</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of media on protease production.</td>
<td>55</td>
</tr>
<tr>
<td>4.3</td>
<td>The effect of organic solvent stability to isolate Rand.</td>
<td>57</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of temperature on protease activity.</td>
<td>59</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of temperature on protease stability.</td>
<td>61</td>
</tr>
<tr>
<td>4.6</td>
<td>16S rDNA gene from isolate Rand amplified by PCR.</td>
<td>63</td>
</tr>
<tr>
<td>4.7</td>
<td>16S rRNA nucleotide sequence of Bacillus subtilis isolate Rand.</td>
<td>64</td>
</tr>
<tr>
<td>4.8</td>
<td>Figure 4.8: Nucleotide sequence alignment (CLUSTAL W) of Bacillus subtilis isolate Rand (EU233271).</td>
<td>69</td>
</tr>
<tr>
<td>4.9</td>
<td>Phylogenetic position of isolate Rand with other bacteria.</td>
<td>70</td>
</tr>
<tr>
<td>4.10</td>
<td>Growth curve and protease production by B. subtilis isolate Rand.</td>
<td>73</td>
</tr>
<tr>
<td>4.11</td>
<td>Effect of temperature on protease production and bacterial growth.</td>
<td>75</td>
</tr>
<tr>
<td>4.12</td>
<td>Effect of pH on protease production and bacterial growth.</td>
<td>77</td>
</tr>
<tr>
<td>4.13</td>
<td>Effect of agitation rate on protease production and bacterial growth.</td>
<td>79</td>
</tr>
<tr>
<td>4.14</td>
<td>Effect of inoculum size on protease production and bacterial growth.</td>
<td>82</td>
</tr>
<tr>
<td>4.15</td>
<td>Effect of medium volume on protease production and bacterial growth.</td>
<td>84</td>
</tr>
<tr>
<td>4.16</td>
<td>Effect of carbon sources on protease production and bacterial growth.</td>
<td>86</td>
</tr>
<tr>
<td>4.17</td>
<td>Effect of inorganic nitrogen source on protease production and bacterial growth.</td>
<td>88</td>
</tr>
<tr>
<td>4.18</td>
<td>Effect of organic nitrogen on protease production and bacterial growth.</td>
<td>90</td>
</tr>
<tr>
<td>4.19</td>
<td>Effect of amino acids on protease production and bacterial growth.</td>
<td>92</td>
</tr>
<tr>
<td>4.20</td>
<td>The effect of metal ions on the production of protease in the basal media.</td>
<td>94</td>
</tr>
</tbody>
</table>
4.21 The effect of metal ions with calcium on the production of protease in the basal media. 95
4.22 Effect of additional metal ions on protease production and bacterial growth. 97
4.23 Purification profile of Rand protease on Octyl-Sepharose chromatography. 99
4.24 SDS-PAGE of partial purified of Rand protease by Octyl-Sepharose chromatography. 102
4.25 Purification profile of Rand protease on Sephadex G-75 chromatography. 104
4.26 SDS-PAGE purified of Rand protease by Sephadex G-75 chromatography. 105
4.27 Molecular weight determination of Rand protease by SDS-PAGE. 107
4.28 Effect of temperature on protease activity. 109
4.29 Thermal stability of Rand protease at various temperatures. 111
4.30 Effect of various organic solvent on protease activity. 113
4.31 Effects of pH on protease activity. 115
4.32 Effects of pH on protease stability. 117
4.33 Effect of inhibitors on protease activity. 119
4.34 Effect of metal ion on protease activity. 121
4.35 Substrate specificity of Rand protease. 124
LIST OF ABBREVIATIONS

bp Base pair
cm/h Centimeter per hour
ºC Degree centigrade
Cfu Colony-forming unit
dH₂O Distilled water
DNA Deoxyribonucleic
DTT 1,4-Dithio-DL-threitol
EDTA Ethylene diamine tetraacetic acid
g Gram
g/L Gram per liter
Xg Times gravity
h Hour
kb Kilo base pair
kDa Kilo dalton
L Liter
M Molar
ml Milliliter
min Minute
nm Nanometer
mw Molecular weight
mM Millimolar
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Molar</td>
<td></td>
</tr>
<tr>
<td>ml/min</td>
<td>Milliliter per minute</td>
<td></td>
</tr>
<tr>
<td>mg/ml</td>
<td>Milligram per milliliter</td>
<td></td>
</tr>
<tr>
<td>mA</td>
<td>Milliamphere</td>
<td></td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamide gel electrophoresis</td>
<td></td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
<td></td>
</tr>
<tr>
<td>PMSF</td>
<td>Phenylmethanesulfonyl fluoride</td>
<td></td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
<td></td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dedocyl sulfate</td>
<td></td>
</tr>
<tr>
<td>SMA</td>
<td>Skim Milk Agar</td>
<td></td>
</tr>
<tr>
<td>TCA</td>
<td>Trichloroacetic acid</td>
<td></td>
</tr>
<tr>
<td>TEMED</td>
<td>N, N, N, N’ tetramethyl-ethylene diamine</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
<td></td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
<td></td>
</tr>
<tr>
<td>µl</td>
<td>Microliter</td>
<td></td>
</tr>
<tr>
<td>µm</td>
<td>Micrometer</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
<td></td>
</tr>
<tr>
<td>v/v</td>
<td>Volume per volume</td>
<td></td>
</tr>
<tr>
<td>w/v</td>
<td>Weight per volume</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Enzymes have attracted the attention of the world due to their wide range of industrial applications in many fields including organic synthesis, clinical analysis, pharmaceuticals, detergents, food production and fermentation. Enzymes are gradually replacing the use of harsh chemicals in various industrial processes (Malathu et al., 2008). Proteases represent one of the three largest groups of industrial enzymes and account for about 60% of the total worldwide sale of enzymes. Proteases are of commercial value and find multiple applications in various industrial sectors. Proteases are widely used in detergent, food industry, leather tanning industries, pharmaceutical industry and bioremediation processes (Gupta et al., 2002; Rao et al., 1998).

The main advantage of thermostable protease is that as the temperature of the process is increased, the rate of reaction increases, which in turn decreases the amount of enzyme needed. The thermostable proteases are also able to tolerate higher temperatures, which gives a longer half-life to the enzyme. The use of higher temperatures also is inhibitory to microbial growth, decreasing the possibility of microbial contamination. The use of high temperatures in industrial enzyme processes may also be useful in mixing, causing a decrease in the viscosity of liquids and may allow for higher concentrations of low solubility materials. The mass transfer rate is also increased at higher temperatures as is the rate of many chemical reactions (Zamost et al., 1991).
Enzymatic reactions using protease in the presence of organic solvents have been studied extensively for the synthesis of peptides and esters. If organic solvents can be used as media for enzymatic reactions, the reaction equilibrium of hydrolytic enzymes can be shifted toward completion of the reverse reaction of hydrolysis, that is, the synthetic reaction (Ogino et al., 1995). The use of proteases in peptide synthesis is limited by the specificity and the instability of the enzymes in the presence of organic solvents, since reactions occurred in organic media. However, little attention has been given to the study of organic solvent-stable protease (Ghorbel et al., 2003).

Proteases are the single class of enzymes, which occupy a pivotal position with respect to their applications in both physiological and commercial fields. Proteolytic enzymes catalyze the cleavage of peptide bonds in other proteins. Proteases can conduct highly specific and selective modifications of proteins such as activation of zymogenic forms of enzymes by limited proteolysis, blood clotting and lyses of fibrin clots, and processing and transport of secretory proteins across the membranes. The vast diversity of proteases, in contrast to the specificity of their action, has attracted worldwide attention in attempts to exploit their physiological and biotechnological applications. Proteases represent one of the largest groups of industrial enzymes occur ubiquitously in a wide diversity of sources such as plants, animals, and microorganisms (Rao et al., 1998). Proteases can be classified as serine protease (EC. 3.4.21), cysteine (thiol) protease (EC 3.4.22), aspartic proteases (EC 3.4.23) and metallo-protease (EC 3.4.24) constitute one of the most important groups of industrial enzymes (Adinarayana et al., 2003). Microbial proteases
play an important role in biotechnological processes accounting for approximately 59% of the total enzymes used (Shumi et al., 2004).

1.1 Objectives

The search for new microorganisms producing new and novel proteases for industrial purposes should be continuously pursued. The objectives of this study are:

1- To isolate and identify a bacterium producing thermostable and organic solvent tolerant protease

2- To optimize the protease production of the isolate

3- To purify and characterize the protease produced by the isolate