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Along with the developments of numerous MaOO algorithms in the last decades, 

comparing the performance of MaOO algorithms with one another is highly needed. The 

evaluation criteria of Many Objective Optimization algorithm (MaOO) play a critical 

role in evaluating the competition MaOO algorithms. Although these criteria have been 

criticised in literature, they are employed in the evaluation randomly, and the process of 

selecting them remains unclear. In addition, the weight of importance is critical for 
evaluating the performance of MaOO algorithms. All evaluation studies for MaOO 

algorithms have ignored to assign such weight for the target criteria during evaluation 

process. Thus, the need for standardizing the criteria set became inevitable. Not to 

mention the role of weight of importance in assessing the performance of MaOO. 

 

 

These challenges (a) the multiple evaluation criteria and (b) criteria importance 

considered an intricate multi-criteria decision making (MCDM) problem; in such 

problem, the MCDM methods are recommended. Several studies in MCDM have 

proposed competitive weighting methods. However, these methods suffer from 

inconsistency issues arising from the high subjectivity of pairwise comparison. (c) The 

inconsistency rate increases in an exorbitant manner when the number of criteria 
increases which considered an issue in the existing superior weighting methods such as 

AHP and BWM, and the results are affected accordingly. Thus, this research aims to 

standardize and weigh the evaluation criteria of MaOO competitive algorithms base on 

fuzzy Delphi and new fuzzy-weighted zero-inconsistency (FWZIC) methods.  

 

 

The proposal exhaustive evaluation methodology has three phases: The first phase, 

standardizing the MaOO evaluation criteria, Fuzzy Delphi method utilized to analyse the 

expert consensus on the best set of evaluation criteria and its indicators. In the second 
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phase, the FWZIC method is proposed to compute the unified criteria set's weight 

coefficients with zero consistency. Lastly, the exhaustive evaluation methodology 

evaluated to test its validity and efficiency accordingly. 

 

 

The results show that 31 out of 49 got the expert consensus as the most suitable criteria 
set; and their importance weight results computed accordingly, the main criterion (called 

Pareto_based) got the higher weight (0.538) in compared to others.  

 

 

Lastly, the proposed unified model of the most suitable criteria set validated by the 

experts from the field of study and the efficiency of the FWZIC method proved in 

comparison to F-AHP and F-BWM superior methods those show high inconsistency 

results which overall exceeded the maximum consistent ratio (i.e., 0.1). On the other 

hand, FWZIC effectively computes the important weight of the criteria with zero 

inconsistency. The implications of this study bring benefits to the optimization 

community, industrial and researchers by providing exhaustive evaluation methodology 

for evaluating MaOO algorithms, which can be generalized to solve such problem 
effectively. 
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Seiring dengan perkembangan banyak algoritma MaOO dalam beberapa dekad yang 

lalu, membandingkan prestasi algoritma MaOO antara satu sama lain sangat diperlukan. 

Kriteria penilaian algoritma Banyak Objektif Pengoptimuman (MaOO) memainkan 

peranan penting dalam menilai algoritma MaOO persaingan. Walaupun kriteria ini telah 

dikritik dalam literatur, kriteria ini digunakan dalam penilaian secara rawak, dan proses 

pemilihannya tetap tidak jelas. Di samping itu, berat kepentingan sangat penting untuk 
menilai prestasi algoritma MaOO. Semua kajian penilaian untuk algoritma MaOO telah 

mengabaikan untuk menetapkan bobot tersebut untuk kriteria sasaran semasa proses 

penilaian. Oleh itu, keperluan untuk menyatukan kriteria yang ditetapkan menjadi tidak 

dapat dielakkan. Tidak ketinggalan peranan pentingnya dalam menilai prestasi MaOO. 

 

 

Cabaran ini (a) kriteria penilaian pelbagai dan (b) kepentingan kriteria dianggap sebagai 

masalah membuat keputusan pelbagai kriteria (MCDM) yang rumit; dalam masalah 

seperti itu, kaedah MCDM disyorkan. Beberapa kajian di MCDM telah mencadangkan 

kaedah pemberat daya saing. Walau bagaimanapun, kaedah ini mengalami masalah 

ketidakkonsistenan yang timbul dari subjektiviti perbandingan berpasangan yang tinggi. 

(c) Kadar ketidakkonsistenan meningkat dengan cara yang terlalu tinggi apabila bilangan 
kriteria meningkat yang dianggap sebagai isu dalam kaedah pemberat unggul sedia ada 

seperti AHP dan BWM, dan hasilnya dipengaruhi dengan sewajarnya. Oleh itu, 

penyelidikan ini bertujuan untuk menyatukan dan menimbang kriteria penilaian 

algoritma kompetitif MaOO berdasarkan kaedah fuzzy Delphi dan kaedah fuzzy-

weighted zero-inconsistency (FWZIC) baru. 

 

 

Metodologi penilaian lengkap cadangan mempunyai tiga fasa: Fasa pertama, 

menyatukan kriteria penilaian MaOO, kaedah Fuzzy Delphi digunakan untuk 

© C
OPYRIG

HT U
PM



 

 

iv 

menganalisis konsensus pakar mengenai set kriteria penilaian terbaik dan indikatornya. 

Pada fasa kedua, kaedah FWZIC dicadangkan untuk menghitung pekali berat set kriteria 

bersatu dengan konsistensi sifar. Terakhir, metodologi penilaian menyeluruh dinilai 

untuk menguji kesahan dan kecekapannya. 

 

 
Hasilnya menunjukkan bahawa 31 dari 49 mendapat konsensus pakar sebagai kriteria 

yang paling sesuai ditetapkan; dan pentingnya hasil berat dikira dengan sewajarnya, 

kriteria utama (disebut Pareto_based) mendapat berat yang lebih tinggi (0.538) 

berbanding yang lain. 

 

 

Terakhir, model bersatu yang dicadangkan dari kriteria yang paling sesuai yang disahkan 

oleh pakar dari bidang kajian dan kecekapan kaedah FWZIC terbukti dibandingkan 

dengan kaedah unggul F-AHP dan F-BWM yang menunjukkan hasil ketidakkonsistenan 

yang tinggi yang secara keseluruhan melebihi nisbah konsisten maksimum (iaitu 0.1). 

Sebaliknya, FWZIC dengan berkesan menghitung berat kriteria penting dengan tidak 

konsisten. Implikasi kajian ini membawa manfaat kepada komuniti, industri dan 
penyelidik pengoptimuman dengan memberikan metodologi penilaian yang menyeluruh 

untuk menilai algoritma MaOO, yang dapat digeneralisasikan untuk menyelesaikan 

masalah tersebut dengan berkesan. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction 

This chapter introduces the research topic, the statement of the problem, and research 

objectives. This chapter also presents the scope of this research where the experimental 

and technical scopes are explained. A brief background of the research components is 

presented in Section 1.2. The statement of the problem, on which the direction of the 

research is based, is identified, and introduced in Section 1.3. Research questions are 

listed in Section 1.4. This is followed by the objectives of the research, which are 

described in Section 1.5. The connections amongst research objectives, research 
questions, the specific and general problem is presented in Section 1.6. Moreover, the 

scope of the study is discussed in Section 1.7. The research contribution significant of 

the study is presented in Section 1.8. The main structure of the thesis is briefly outlined 

in Section 1.9. Finally, a summary of the chapter is presented in Section 1.10. 

1.2 Research Background 

Optimisation is a method or process of finding the best solution to a problem under a 

specific circumstance (set of constraints). In handling or optimising a single objective, 

such as improving performance or reducing cost, the aim is to find the best solution 

amongst all possible alternatives or the closest one to the ideal solution, i.e., the global 

optimum solution. Optimising a problem for a single objective is uncommon. 

Optimisation models are often designed to address problems with more than one 

objective. 

In the optimisation field, cases with conflicting objectives are common. For example, 

producing a new mobile phone that is lightweight might conflict with providing an 

affordable phone. When the objective problem has two or three functions such as in this 
case, it is referred to as multi-objective optimisation (MOO). In this case, the algorithmic 

and mathematical models used for a single objective are unsuitable, and even the 

principle of optimality changes from a single global optimum to a set of ideal solutions. 

According to (Jin et al., 2018), in the past 20 years, single- and multi-objective problems 

(problems with less than three objectives) have been addressed effectively by using 

evolutionary algorithms. Multi-objective evolutionary algorithms (MOEAs) exhibit 

better performance in a single run compared with traditional mathematical programming 

techniques in finding a set of non-dominated solutions. However, the performance of 

these algorithms in term of the convergence and diversity of the solution results towards 

the Pareto Front (PF) dramatically declines when the number of objectives exceeds four, 

(i.e. many-objective problems (MaOPs)) (de Campos Jr et al., 2010; Zheng et al., 2016). 
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Therefore, an efficient solving method is required to resolve this type of problem that 

represents the most common real-world problems. Real-world problems are often 

complicated because of their multiple conflicting objectives and are referred to as multi-

objective problems (MOPs). Previous studies have not reached a consensus regarding 

the definition of Many Objective Problems (MaOPs). Several scholars define MaOPs as 

MOPs with more than two objectives (Wang et al., 2013). However, when MOPs have 
four or more objectives, they are called MaOPs to distinguish them from MOPs (Li et 

al., 2015a). MaOPs have many applications in the real world; for example, they are used 

when the number of objective problems reaches or exceeds 100, such as electric vehicle 

control (Cheng et al., 2017c), socio-environmental field (Al-Jawad et al., 2019b), design 

of optical networks (Figueiredo et al., 2016a), water resource management (Al-Jawad et 

al., 2019a), QoS-aware web services (Ramírez et al., 2017), energy consumption (Fan et 

al., 2019) and multi-city robustness (Trindade et al., 2017). Many challenges are 

encountered in solving MaOPs because of the curse of high dimensionality in MaOPs. 

Such difficulties are evident in maintaining balance between good diversity and decent 

convergence over the Pareto front (set of ideal solutions), in the unclear relation between 

articulate preferences and objectives that are difficult for a decision maker to 

differentiate and in the unaffordable computational complexity. The current scenario 

for evaluating and benchmarking the many-objective optimisation (MaOO) algorithms 

using existing performance indicators are difficult regardless of the capability of these 

indicators to assess optimisation algorithms for MaOPs. Thus, comparing and evaluating 

optimisation algorithms of MaOPs are difficult and present a challenging issue in 

visualizing the MaOO solution (Maltese et al., 2016). 

Although MaOO problems have received much research attention, but MaOO evaluation 

is indisputably difficult in the context of continuous improvement and development in 

the optimisation community. MaOO evaluation requires further inspection. Moreover, 

the methodological aspects of performance assessment in MaOO must be emphasised to 

ensure that the evaluation and comparison of MaOO algorithms are efficient and 

sufficient. 

1.3 Problem Statement  

The problem statement of this research driven from the research gap and theoretical gap 

as will present in the following sections: 

1.3.1 Research Gap 

Comparing and evaluation processes consider the challenges and limitations of MaOO. 

In MaOO approaches, the evaluation process proceeds via a random selection of one or 

two evaluation metrics. The benchmarking process is an essential step in the comparison 

of algorithm performance under similar conditions, parameter settings and applied 
criteria to evaluate the quality of proposed algorithms. (Coello et al., 2020; He et al., 

2016b; Jin et al., 2018; Pal et al., 2016a; Wang et al., 2017b; Wang et al., 2020; Wang 

et al., 2018; Yu et al., 2018a). 
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Problem 1: Lack of identifying the MaOO evaluation criteria and unified model is 

one reason for the MaOO evaluation problem. 

 

The main challenge in the development of MaOO is that many metrics have been 

proposed to compare the performance of different evolutionary approaches in MaOO. 

This situation leads to difficulties when comparisons of the outputs of different 
algorithms are needed, and the appropriate metrics must be selected to perform such 

comparisons. Hence, the process of choosing appropriate metrics remains unclear. 

Accordingly, this conflict reflects the evaluation of algorithms in the benchmarking 

process (Yu et al., 2018). Studies often encounter conflicts amongst various criteria 

during the benchmarking process and result in a major challenge because measuring 

these criteria creates different values representing the different criteria’s metrics; criteria 

with an unknown importance create another problem because developers cannot 

compare a new approach with other existing approaches (He et al., 2016b; Riquelme et 

al., 2015). The performance metrics for MaOO, especially convergence, diversity, and 

cardinality criteria, have received several criticisms. The misleading results obtained 

from these convergence criterion metrics due to the curse of high dimensionality in 

MaOO cause evaluation results that rely on one or two metrics to become inaccurate. 
The sensitivity of certain diversity criterion metrics to the reference point set 

specification creates confusion in the selection of the best diversity criterion metrics and 

the differentiation between diversity and uniformity criteria because these two criteria 

often give rise to confusion (Ishibuchi et al., 2016e). In addition, the number of 

nondominated solution results increases remarkably with the increase in the number of 

objectives, thereby making the cardinality criterion an issue during evaluation. Although 

these metrics have been criticised in literature, they are still randomly selected and 

applied in the evaluation of the performance of MaOO algorithms. Moreover, the process 

of selecting any of these metrics remains unclear (Coello et al., 2020; Ishibuchi et al., 

2016e; Pal et al., 2016a; Wang et al., 2017b; Wang et al., 2020) 

Problem 2: Limitation in determining the significant contribution (weigh of 

importance) for each of this MaOO criterion and its indicators  

 

In MaOO approaches, performance criteria are considered a critical challenge because 

the high-dimensional objective space increases the conflict between convergence and 

diversity; this conflict remains a challenge for evaluation because of the imbalance in 

the results (Cai et al., 2015b). Many performance metrics have been proposed in the last 

decades. Several of them have gradually disappeared, whereas others continue to 

dominate. In addition, the extent to which these metrics affect evaluation performance is 

still unclear and requires additional effort because of the lack of agreement on which 

metric to apply in evaluating the performance of MaOO algorithms (He et al., 2016b; 

Riquelme et al., 2015; Yu et al., 2018a). The evaluation of the work focuses on assisting 

and comparing the performance quality indicators or the functionality of state-of-the-art 
optimisation algorithms for MaOPs. A comparison of the performance of MaOO 

algorithms is the main procedure in performance evaluation. Many studies have 

attempted to manipulate such comparison to analyse the performance quality of MaOO. 

Several of them have conducted investigations on the basis of an existing approach, such 

as in (Chebli et al., 2016), (Ishibuchi et al., 2016c), (Santos et al., 2018) and (Li et al., 

2019). However, (Yu et al., 2018a) proposed a new way for evaluating MaOO 

algorithms. Yet, the role of evaluation criteria is totally ignored.  In such cases, the 
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weight of importance is critical for evaluating the performance of MaOO algorithms. 

Many indicators have been developed in recent decades to compare the quality 

performance of various evolutionary approaches in MaOO. Although all of these criteria 

and their indicators show high efficient results in evaluating and comparing the MaOO, 

the degree of importance for each of them in implementing the evaluation is ambiguous 

and subject to further study and investigation (He et al., 2016b; Riquelme et al., 2015; 
Yu et al., 2018a).  Furthermore, in a particular evaluation scenario based on a set of 

selected criteria, some criteria should have more importance than others according to the 

relevant needs and changes in the scenario. However, relevant studies with an evaluation 

of MaOO have not provided any weighting mechanisms for the criteria that have been 

used during the evaluation process. Thus, assigning weights for the evaluation criteria of 

MaOO needs further study.  

1.3.2 Theoretical Gap 

A decision support system is proposed on the basis of the MCDM method to solve 

multiple criteria attributes that may increase the quality of decision making. In the real 

world, beneficial methods that address MCDM issues are introduced as the 

recommended solutions to support decision-makers in solving problems and performing 

weight determination and evaluation (Brugha, 1998; Kaya et al., 2018; Serrai et al., 

2017; Yu et al., 2018b).  

The mathematical criteria weighting method assigns weights to attributes that are 

characterised by the relative importance of criteria (Brugha, 1998). These weights 
indicate the condition and impact within each attribute in the assessment and decision-

making process (Hwang et al., 2011). Overall, two approaches can be used to identify 

criteria weight, namely, objective and subjective assessments (Wang et al., 2009b).  

To evaluate the weights of criteria, the objective evaluation approach uses the 

information on each criterion with certain techniques, including the Criteria Importance 

through Intercriteria Correlation (CRITIC) and Entropy (Lin et al., 2017; Mohammed et 

al., 2020; Petković et al., 2017). Such strategies do not rely on the subjective judgment 

of decision-makers on weight assignment. Weights are assigned by a mathematical 

method to the criteria (attributes) (Zavadskas et al., 2016). These methods are commonly 

used in the previous study, while inconsistency issues cannot be produced; however, the 

subjective weights of the findings are the most important factors to determine, as they 

reflect the opinions of highly qualified experts with extensive experience (Vinogradova 
et al., 2018). If the raw data change, the precision of the weights obtained for the 

evaluation criteria can be changed. Therefore, in these techniques, the mechanism for 

specifying weights is not perfect. For example, suppose the criteria must be subjectively 

weighted. In that case, such methods cannot add the expertise and subjective value of 

decision-makers to a decision, which takes the drawbacks of such techniques into 

consideration (Khatari, 2020). © C
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Subjective evaluation gives importance to attributes dependent on the experience of 

decision-makers and subjective value. Subjective weights represent the cumulative 

experience and subjective judgment of decision-makers (Nigim et al., 2004; Salih et al., 

2020). Examples for these techniques are the analytic hierarchy process (AHP) and the 

best worst method (BWM) (Rezaei, 2015a). AHP is a very popular tool in MCDM, 

which depends on human preferences (Leung et al., 2000). This method was developed 
by Thomas L. Saaty (Saaty, 1990). Despite the success of AHP, the weighting procedure 

has a significant drawback—the inconsistency issue (Tung et al., 1998). In AHP, the 

measured priorities are only feasible when the consistency check has been passed to the 

pairwise comparison. In addition, many decision problems cannot be hierarchically 

ordered if consideration should be given to the relationship and dependency of high-level 

elements with low-level elements.  

In addition, the weights of the criteria are also generated in BWM on the basis of pairwise 

comparison among the set of criteria (Rezaei, 2015a). BWM is one of the most relevant 

and most modern MCDM approaches, which requires fewer comparisons than AHP, 

resulting in high consistency in the determination of weight criteria (Rezaei, 2016). In 

2015, BWM suggested that the weights of criteria can be calculated by comparing them 

with a reduced number of pairwise comparisons (i.e. 2n-3, where n represents the number 
of criteria). In the meantime, Fuzzy BWM is better compared with Fuzzy AHP in terms 

of consistency (Guo et al., 2017b; Sofuoğlu et al., 2017). BWM performs reference 

comparisons, meaning that only the preference for the best criteria and the preference of 

all the criteria over the worst criterion have to be determined (Guo et al., 2017b). The 

strengths of fewer comparisons are not fractional, and they facilitate the understanding 

of decision-makers (experts) compared with most MCDM approaches. BWM utilises a 

1-9 scale to perform pairwise comparisons (Rezaei, 2015a). As mentioned above, BWM 

effectively decreased the number of the pairwise comparisons from n(n −  1)/2) in 

AHP to 2n –  3 in BWM (Yang et al., 2016).   

Similar to AHP, the first problem in the BWM is the difficulty in deciding the best and 
worst criteria and the significant value of all criteria against the worst criterion and the 

best criteria over certain criteria (Rezaei, 2015a). The decision-maker specifies the 

number of times a certain criterion is compared with other criteria when the measure 

takes a scale, which ranges from 1 to 9. Given uncommon subjective comparisons, this 

comparison requires a large cognitive capacity. In other words, it is not a normal method, 

and it is hard to compare the two uncorrelated criteria. Furthermore, the original and the 

extended versions of the BWM propose several measurements for consistency; however, 

certain weaknesses exist, including: (i) deficiency of a procedure to offer the decision-

maker instant feedback on the consistency of pairwise comparisons, (ii) absence of 

accounting for ordinary consistency and (iii) shortage of consistency threshold value to 

evaluate the reliability of results (Liang et al., 2019). Defining the significant level for 
MaOO criteria is considered a challenging task. As mentioned, MCDM weighting 

methods can tackle such issue. However, superior weighting methods, such as AHP and 

BWM, suffer from inconsistency issues. On the basis of the inconsistency issues of the 

existing MCDM weighting methods, using any of the existing methods is impractical 

because of the highlighted drawbacks. Furthermore, one theoretical gap is that no 
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method that provides a practical weighting paradigm without inconsistency has been 

proposed yet.  

In conclusion, the proposed evaluation criteria model that aims to standardize the most 

suitable criteria and propose a new weighting method to weigh them based on their 

importance without inconsistency will provide an exhaustive evaluation methodology 

for assessing the MaOO algorithms. The configuration of the problem statement is 
demonstrated in Figure 1.1. 

 
Figure 1.1 : Problem Statement Configurations 
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1.4 Research Questions  

- RQ-1: What are the available techniques for evaluation the performance of 

many objective optimization (MaOO) algorithms? And how are they 

employed to evaluate the competitive MaOO algorithms? 

- RQ-2: Which evaluation criteria are addressed for many objective 

optimization algorithms?  

- RQ-3: To what extend these criteria significantly affect the evaluating of the 

competitive MaOO algorithms?  

- RQ-4: How can overwhelming the inconsistency of pairwise and reference 

comparisons in the existing weighting methods in determining the importance 
of each evaluation criterion? 

- RQ-5: What are the suitable methods for developing an exhaustive evaluation 

methodology to evaluate the MaOO algorithms? 

- RQ-6: To what extent are the results of the proposed method valid and 

efficient?  

 

 

1.5 Research Objectives 

This study aims to develop standardizing and weighting methodology for the evaluation 

criteria of many-objective optimization competitive algorithms based on fuzzy Delphi 

and fuzzy-weighted zero-inconsistency methods. Therefore, the objectives of this study 

are presented as follows: 

 
 To investigate the existing technologies on many-objective optimization 

algorithms evaluation and highlight the weakness. 

 To propose a unified criteria model for the evaluation process in the context 

of MaOO based on fuzzy Delphi Method.  

 To develop a new weighted method with zero inconsistency.  

 To determine the weight of criteria based on exhaustive evaluation 

methodology of the unified model and the new proposed method.  

 To evaluate the Fuzzy weighted method with zero inconsistency (FWZIC), 

based on subjectively and comparison analysis. 
 

 

1.6 The Connectivity amongst Research Objectives, Questions and Research 

problem 

The specific and general research problems that have derived from the proposed research 

questions and its relationship with the research objectives are demonstrated in Table 1.1. 

This research questions are used to guide and focus on the research, whereas the research 

objectives have provided the necessary answered to solve the discussed research 

problem.© C
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Table 1.1 : The Connectivity amongst Research Objectives, Questions and Research problem 

 

 Research Problem mapping 

Research Questions Research Objectives Specific Problem General Problem 

RQ-1: What are the available techniques 

for evaluation the performance of many 

objective optimization (MaOO) 

algorithms? And how are they employed 

to evaluate the competitive MaOO 

algorithms? 

 

 To investigate the existing 

technologies on many objective 
optimization algorithms evaluation 
and highlight the weakness.  

S
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 RQ-2: Which evaluation criteria are 

addressed for many objective 

optimization algorithms?  

 To propose a standardized criteria 

model for the evaluation process in 
the context of MaOO based on fuzzy 
Delphi Method.  

 

 Lack of defining the MaOO evaluation 

criteria. 

  Lack of a unified model is one reason 

for the MaOO evaluation problem. 
 

RQ-3: To what extend these criteria 

significantly affect the evaluating of the 

competitive MaOO algorithms?   To develop new weighted method 

with zero inconsistency 
 

 Inconsistency in criteria weighted 

values. 
 

RQ-5: What are the suitable methods for 

developing an exhaustive evaluation 

methodology to evaluate the MaOO 

algorithms? 

RQ-4: How can overwhelm the 

inconsistency of pairwise and reference 

comparisons in determining the 

importance of each evaluation criterion? 

 To determine the weight of criteria 

based on exhaustive evaluation 
methodology of the unified model 
and the newly developed method. 

 

 Multi-criteria evaluation 

 Importance of criteria. 

 

RQ-6: To what extent are the results of 

the proposed exhaustive evaluation 

methodology valid and efficient?  

 To evaluate the Fuzzy weighted 

method with zero inconsistency 
(FWZIC), based on subjectively and 
comparison analysis. 
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1.7 Scope of the study 

This research investigates the existing methods in evaluating the performance of MaOO 

algorithms. The research was designed to solve the problem of randomize selection of 

the criteria and the ignorance of its significant in evaluating the MaOO. Thus, this 

research focusses on developing a standardizing and weighting methodology for 

evaluation criteria of MaOO.   However, this research does not claim that the evaluation 

criteria are only limited to the criteria in the proposed unified model. 

The research focuses on proposing a new weighing method that can compute the 

importance of evaluation criteria without any inconsistency. The unified evaluation 

criteria of MaOO are used in the experimental to compute the importance weight for 
each criterion and its indicators as proof of concept of our proposed methodology. 

1.8 Research Contribution and significant 

The main contribution of this research is to create a standardizing and weighting 

methodology for the evaluation criteria of many-objective optimization competitive 
algorithms based on fuzzy Delphi and fuzzy-weighted zero-inconsistency methods. This 

methodology can solve the evaluation process in optimization field. Furthermore, it can 

provide and assist the optimization community and industrial (researchers and 

developers) by provide exhaustive evaluation methodology for evaluating MaOO 

algorithms, which can be generalized to solve such problem effectively. Figure 1.2 

demonstrates the contribution diagram. 
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Figure 1.2 : Contribution diagram 

Standardizing and Weighting Methodology for the Evaluation Criteria of Many-Objective 

Optimization Competitive Algorithms Based on Fuzzy Delphi and Fuzzy-Weighted Zero-

Inconsistency Methods  

Objective 

 

To standardize the criteria model for 

exhaustive evaluation process in the context of 

MaOO. 

  
  

Objectives 

 

To formulate and develop a new weighted 

method with zero inconsistency. 

How to solve the problem 1: 

Identify the most important evaluation criteria 

using Fuzzy Delphi method (FDM) 

  
  

How to solve the problem 2: 

Based on proposed criteria model and the 

proposed new weighting method without 

consistency (FWZIC) 

 

Contribution 1: 

A standardized model for evaluation criteria of 

MaOO 

 
  

Contribution 2: 

 A new method for weighing the MaOO criteria 

importance with zero inconsistency. 

  

Problem 2: 

There is no study considered or computed 

the importance of the evaluation criteria of 

MaOO and its indicators. 

• Some of the studies considered only few 

criteria metrics with no evidence of its 

performance overwhelming in compared to 

others, such as Hypervolume, IGD, and GD 

(Wang, Jin, & Yao, 2017). Defining the 

significant level for MaOO criteria is 

considered a challenging task.  

• In AHP the number of comparisons increase 

progressively when the number of criteria is 

increased. As a result, pairwise comparisons 

introduce a particular amount of 

inconsistency (Destercke, 2018; Koczkodaj 

& Urban, 2018; Morgan, 2017) BWM 

shows difficulty to determine the best and 

worst criteria and importance level of the 

best criterion overall criteria as well as the 

importance of all criteria over the worst 

criterion (Salih et al., 2020) 

 

Problem 1: 

 

The basis of criteria selection in the 

number or type is not clear. 

• Evaluation process for Optimization 

algorithms (MaOO) is challenging job and 

are problematic due to multiple criteria that 

need to be considered (Ma, Yang, Wu, Ji, & 

Zhu, 2016), (Ishibuchi, Imada, Setoguchi, & 

Nojima, 2016) (Ishibuchi, Masuda, & 

Nojima, 2015). 

• There is no agreement on which of those 

criteria are the most suitable for evaluation of 

MaOO, (Yu & Lu, 2018).  
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1.9 Structure of Thesis  

This research is composed of six chapters. Figure 1.2 demonstrates the structure of the 

study These chapters are briefly reviewed as follow:  

Chapter 1 – Introduction: this chapter introduce the research background, problem 

statement. In addition to illustrate the research questions, objectives and connectivity 

among research objectives, research questions, specific problem, and general problem.  

Moreover, this chapter presents the research scoup and contribution to the body of 

knowledge and the significant of the study. 

Chapter 2 - Literature Review: a systematic review analysis for the Many-objective 

optimization algorithms presents in this chapter, an overview on optimization and the 
differences between single-, multi- and many objective optimizations discussed in this 

chapter. In addition, to exam, analysis and criticize the literature work on Many objective 

optimization algorithms. Moreover, analyse the existing evaluation criteria weighting 

methods and highlight its issues. End with the open issues of evaluating the MaOO and 

the recommended solutions. 

Chapter 3 – Research Methodology: describe the research methodology in detail 

which consists of in four main phases, namely, investigation phase, proposed unified 

MaOO evaluation criteria model phase, development of new weighting method phase, 

and evaluation and comparison study phase. Through the phases, this chapter will show 

in precisely how the five research objectives will be achieved. 

Chapter 4 - Unifying the Evaluation Criteria of Many-Objective Optimization 
Competitive Algorithms: This chapter presents and discusses the result model of the 

most suitable evaluation criteria set for MaOO. Further, this chapter explains how the 

proposed model solve the problems outlined in the problem statements. The validation 

process of the proposed model also presented. 

Chapter 5 - Application of The Fuzzy-Weighted Zero-Inconsistency Method: This 

chapter presents and discusses the results of the proposed weighting methods FWZIC. 

Further, this chapter explains how the proposed exhaustive evaluation methodology’s 

results solve the problems outlined in the problem statements. The results of the 

comparison studies are also discussed. 

Chapter 6: Conclusion and Future Work. This chapter provides the study’s 

conclusion and is followed by the highlights, the summary of research contributions, the 

limitations, and a discussion of future work. © C
OPYRIG
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Figure 1.3 : Structure of the thesis 
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1.10 Chapter Summary 

This chapter presents the background of the study. Specifically, it describes the concept 

of optimization and evaluation many objective optimization algorithms, as well as the 

criteria that use in evaluation process. The most vital point of this study’s background is 

that evaluation criteria which is indicate the quality of MaOO performance. As such, 

different criteria might measure the same MaOO and show comparison results in a 

different way. This chapter also illustrates the inappropriate and random selection of 

evaluation criteria and how it can adversely affect the results and decision making in 

developing of comparing the MaOO algorithms and might be financially cost for the 

industry and optimization community if it is failed to meet their expectations. Following 
this are detailed explanations of the problem statement, the research objectives and 

scope, and the study’s significance. 
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