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Salin ity is a major abiotic stress l imiting the productivity of crop plants 

g lobally. The discovery of novel genes in stress adaptation wil l  provide 

effective genetic engineering strategies leading to greater stress tolerance .  

The objectives of this research are to identify and isolate salin ity tolerance 

genes from the mangrove plant, Bruguiera cylindrica (L.) Blume through 

suppression subtractive hybridization (SSH) and bacterial functional assay. 

B. cylindrica propagules were grown in fresh water and 20 ppt salinity water. 

Root morphology differences between B. cylindrica grown in fresh water and 

20 ppt sal inity water were largely d ue to the need of roots to obtain more 

water and nutrients during salinity stress. B. cylindrica plants grew better in 

the presence of salt as higher mean values were obtained for al l  

morphological measurements compared to B. cylindrica plants grown in 

fresh water. 
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Four RNA extraction methods were attempted to obtain h igh yield and high 

purity RNA. The cesium chloride method was chosen for RNA extraction as 

it gave the highest amount of pure RNA. Subtracted cDNAs were prepared 

from the roots of the B. cylindrica seedlings that were grown in fresh water 

and salt water, respectively. A total of 84 subtracted cDNAs were cloned into 

pCR-BLUNT I I  TOPO and sequenced. A total of 51 subtracted cDNAs with 

good sequencing quality were assembled into 7 contigs and 1 0  singletons. 

These non-redundant sequences were grouped into unknown protein 

(41 . 1 8%) , novel (29.4 1 %) ,  protein destination and storage (1 1 .76%), energy 

(5.88%), intracellular traffic (5 .88%) and protein synthesis (5 .88%). Some 

motifs of novel and unknown sequences may involve in the salin ity tolerance 

of B. cylindrica such as Kv1 .3 voltage-gated K+ ion(s) channel signature , 

calcium-activated BK potassium channel alpha subunit and Kir2 . 1  inward 

rectifier K+ ion(s) channel signature. 

Meanwhi le, a cDNA library was also constructed from the roots of B. 

cylindrica that were grown in fresh water. Bacterial functional assay was 

performed to identify cDNAs that confer salt tolerance. A total of 85 cDNA 

clones that were able to grow on 2x YT containing 400 mM NaCI were 

sequenced and 73 cDNAs with good sequence quality were assembled into 

9 contigs and 53 singletons. The non-redundant sequences were also 

categorised into unknown protein (58 .06%), metabolism (9.68%), 

transporters (9.68%), transcription (6.45%), energy (4 .84%) , cel l  

growth/division (4 .84%), novel (3 .23%), miscellaneous (1 .61 %) and 

d isease/defense (1 .61 %). A motif search on novel and unknown cDNA 
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sequences had revealed some possible motifs that may be involved in 

salinity tolerance of B. cylindrica e.g.  C. e/egans Srg family integral 

membrane protein signature and 2Fe-2S ferredoxins, iron-sulfur binding 

region signature. 

Sequence analysis of subtracted cDNAs and putative salt tolerant cDNAs 

isolated by bacterial  functional assay showed some putative proteins that 

may be involved in the salinity tolerance of B. cylindrica such as putative 

potassium transporter HAK 1 p  (M33) , putative zinc finger protein (M3) ,  

ubiquitin (BC27) and L-ascorbate peroxidase (A46) .  
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Kemasinan merupakan suatu tekanan abiotik utama yang menghadkan 

produktiviti tanaman di se/uruh dunia. Penemuan gen-gen novel yang 

terlibat dalam adaptasi tekanan persekitaran akan menyediakan asas 

strategi pengubahsuaian genetik ke arah penyesuaian tanaman terhadap 

tekanan persekitaran yang lebih tinggi .  iVlatlamat penyelid ikan in i  adalah 

untuk mengenalpasti dan memencilkan gen-gen dalam toleransi kemasinan 

dari pokok bakau, Bruguiera cylindrica (L.) Blume melalui strategi 

"suppression subtractive hybrid ization (SSH)" dan "bacterial functional 

assay". 

B ij i  benih vivipariti B. cylindrica disiram air biasa dan air bergaram sebanyak 

20 ppt. Perbezaan morfologi akar yang terhasil di antara B. cylindrica yang 

d isiram dengan air biasa dan air bergaram kemungkinan d isebabkan oleh 

keperluan akar untuk memperolehi air dan nutrien yang lebih banyak 

semasa berada di  dalam keadaan tekanan kemasinan. B. cylindrica 

membesar dengan lebih baik dengan kehadiran garam kerana n ilai purata 

v 



ukuran morfologi yang lebih tinggi diperolehi d ibandingkan dengan B. 

cylindrica yang disiram dengan air biasa . 

Daripada empat kaedah pengekstrakan RNA yang telah d icuba, kaedah 

cesium k lorida telah dipi l ih kerana kaedah ini memberi hasil RNA yang 

paling tulen dan tinggi .  cDNA yang diekspres di dalam akar B. cylindrica 

yang membesar dengan kehadiran garam sahaja telah d iperolehi melalui 

strategi SSH. Strategi SSH menyingkirkan cDNA di  dalam akar B. cylindrica 

yang disiram dengan air biasa. Sejumlah 81 klon dari SSH telah d ik lon ke 

dalam peR-BLUNT \I TOPO dan dijujuk. Sebanyak 51 jujukan cDNA yang 

berkualiti dihimpunkan ke dalam 7 "contig" and 1 0  "singleton". Jujukan­

jujukan yang tidak redandensi ini d ikumpulkan ke dalam kumpulan protin 

tidak d iketahui (4 1 . 1 8%), unik (29 .41 ) ;  destinasi and penyimpanan protin 

( 1 1 . 76%), tenaga (5.88%), trafik intrasel (5.88%) dan protin sintesis (5 .88%). 

Motif yang dimil ik i  oleh jujukan unik dan tidak d iketahui mungkin terlibat d i  

dalam toleransi kemasinan pokok bakau B. cylindrica seperti Kv1 .3 voltage­

gated K+ ion(s) channel signature ,  calcium-activated BK potassium channel 

alpha subunit and Kir2 . 1  inward rectifier K+ ion(s) channel signature. 

Setain itu , satu perpustakaan cDNA telah disediakan daripada akar B. 

cylindrica yang disiram dengan air biasa . "Bacterial functional assay" telah 

d igunakan untuk mengenalpasti cDNA yang mempunyai sifat toleransi 

kemasinan. Sejumlah 85 klon yang tumbuh di atas plat 2x YT telah d ipencil 

dan d ijujuk . Sebanyak 73 jujukan yang berkualiti dihimpunkan ke dalam 9 

"contig" and 53 "singleton". Jujukan-jujukan yang tidak redandensi turut 
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dikategorikan ke dalam kumpulan protin tidak d iketahui (58.06%) , 

metabolime (9.68%) ,  pengangkutan (9 .68%) , transkripsi (6 .45%) ,  tenaga 

(4.84%), pertumbuhan and pembahagian sel (4.84%), unik (3.23%), lain-lain 

( 1 .61 %) serta penyakit dan pertahanan (1 .6 1 %) .  Carian motif ke atas jujukan 

unik dan tidak d iketahui telah memberi gambaran terhadap motif yang 

mungkin terlibat d i  dalam toleransi kemasinan B. cy/indrica seperti C. 

e/egans Srg fami ly integral membrane protein signature and 2Fe-2S 

ferredoxins,  iron-sulfur binding region signature .  

Analisa penjujukan cDNA dari SSH dan "bacterial functional assay" 

menunjukkan kehadiran protin-protin yang mungkin terlibat d i  dalam 

toleransi kemasinan pokok bakau, B. cylindrica seperti "putative potassium 

transporter HAK1 p" (M33) , "putative zinc finger protein" (M3), "ubiquitin" 

(BC27) and "L-ascorbate peroxidase" (A46) .  
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CHAPTER 1 

INTRODUCTION 

Salinity is one of the major abiotic stress l imiting plant productivity and 

growth g lobally. Salinity imposes osmotic stress and ionic stress to the 

plants. I rrigation practices in agricultural lands have steadi ly increased the 

concentration of salt in the soil (Khan and Duke, 2001 ) .  Unfavorable 

physiochemical environments can cause average losses more than 65% of 

optimal yields (Boyer, 1 982). More efficient and productive agriculture wi l l  be 

possible on salt affected soils if crop plants with improved salinity tolerance 

can be selected and bred through traditional breed ing or genetic 

engineering. 

As halophytes can live under h igh  salinity condition, it  is advantageous to 

identify genes that are involved in the sal inity tolerance of these plants to 

adapt to harsh environment. Mangroves are unique communities along the 

tropical and sub-tropical coastal regions that are formed by almost fifty 

unrelated plant species (Banzai et al. , 2002a), Mangroves are d ivided into 

two groups based on their morphological features of salt management Le, 

'secreters' and 'non-secreters' (Tomlinson, 1 986) .  The 'secreters' possess 

salt glands or salt hairs to eliminate excess salt from plants while the 'non­

secreters' have no such morphological devices (Tomlinson, 1 986; Banzai et 

al. , 2002a) .  

I n  this study, Bruguiera cylindrica (L) Blume, known local ly in Malaysia as 

"bakau putih", was chosen as a source to study novel salinity tolerance 



genes in halophytes. B. cylindrica is categorized as one of the 'non­

secreters' and it tolerates hig h  salin ity through the ultrafiltration system 

whereby the plant is able to exclude a large proportion of salt from the water 

it uptakes and selectively absorbs only certain ions (Tomlinson, 1 986). 

The objectives of this study were to identify genes that are involved in 

salinity tolerance of B. cylindrica using suppression subtractive hybridization 

(SSH) and bacterial functional assay. By using the SSH method, genes that 

were expressed only in the root of B. cylindrica grown in the presence of 

NaCI can be identified . Meanwhile, B. cylindrica cDNAs that confer salt 

tolerance to bacteria can be isolated by performing bacterial functional 

assay. 
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2. 1 Stress in  plants 

CHAPTER 2 

LITERATURE REVIEW 

Stress results changes in p lant physiology caused by one or more 

environmental and biological factors (Hale and Orcutt, 1 987). Table 1 shows 

the sources of environmental stress for plants (Hale and Orcutt, 1 987) . 

Stresses are d ivided into two groups i .e .  abiotic and biotic stress. Abiotic 

stress depends on geographical and climatic d ifferentiation such as annual 

rainfall d ifferences, chil l ing , heat, d rought, salinity, flooding and freezing 

(Holmberg and BOlow, 1 998 ; Abeysinghe et al. , 2000) . Whereas, examples 

of biotic stresses are d iseases and pests. 

2.1 . 1  Salt and drought stress 

Salin ity and drought are the two major environmental factors that reduce 

plant productivity currently (Serrano et al . .  1 999) . Boyer (1 982) mentioned 

that disease and insect damages cause losses of less than 1 0% while 

unfavorable physiochemical environments cause losses of more than 65%. 

From historical records, civil izations had never progressed in one locality for 

more than 1 000-2000 years because of the destruction of the resource base 

of the area (Ashraf, 1 994) .  As a result of poor water management, 

civil izations have been destroyed by the accumulation of salt on the soils. If 

there is l imited rainfal l ,  salt is not leached out of the soi l .  Crop plants take in 

salt through their roots and yields are reduced as the salt concentration 

increases. Drought and salinity are interconnected because crop production 
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Table 1 .  Sources of environmental stress for plants (reproduced from Hale 
and Orcutt, 1 987) . 

Physical  Chemical Biotic 

Drought Air pollution Competition 

Temperature Allelochemicals Allelopathy 

Radiation (organic) Lack of symbioses 

Flooding Nutrients (inorganic) Human activities 

Mechanicaf Pesticides Diseases 

Electrical Toxins I nsects 

Magnetic Salts 

Wind pH of soi l solution 
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