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The role of the counter electrode in the dye-sensitized solar cell (DSSC) mechanism is 

to collect the electrons received from the external circuit, and mainly to catalyse the 

reduction of tri-iodide ions in the electrolyte system. The faster tri-iodide reduction, the 

faster oxidized dye molecules are regenerated, and thus better DSSC performance.   

Typically, a platinum catalyst layer is used as a counter electrode in DSSC due to its 

high conductivity, stability and electrocatalytic activity. However, platinum is a rare and 

expensive material which prohibit its application for mass production of DSSC. It also 
corrodes when exposed to the iodine-based electrolyte, which therefore affect the long-

term stability of the cell. For the aim of DSSC commercialization, extensive researches 

have been conducted to reduce the cost of DSSC by introducing effective and low-cost 

alternative materials. Carbon-based materials DSSC counter electrodes have attracted 

great interest as alternatives for Pt due to their low-cost, conductivity, catalytic activity, 

and chemical stability. Recently, owing to its superior electrical conductivity and high 

crystallinity, graphene was studied as DSSC counter electrode. Though, its catalytic 

activity for tri-iodide reduction is still considered low. The carbon black also exhibits 

high electrical conductivity, but with high electrocatalytic activity for tri-iodide 

reduction due to its higher surface area. Thus, it is expected that Graphene/ Carbon black 

composites would show higher catalytic activity and better performance as DSSC 

counter electrode and being promising alternative to replace the expensive platinum in 
DSSCs.  

This research started with optimization of the single-layer screen-printed TiO2 

photoanode, and then is intended to investigate the application of low-cost and effective 

Graphene and Graphene/Carbon black (G/Cb) composites counter electrodes for DSSC. 
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Graphene counter electrodes were prepared by drop-casting the diluted graphene 

dispersion on FTO-coated glass substrates. The study focused on the effect of heat 

treatment of the graphene-based counter electrode on the DSSC performance. 

Moreover, to enhance the electrocatalytic activity of the graphene electrodes, six 

different G/Cb composites-based counter electrodes were screen-printed on FTO-coated 

glass using six different pastes composing of varied graphene to carbon black powders 
ratios. For comparison, screen-printed Solaronix carbon paste and platinized-FTO were 

used as reference counter electrodes. 

Different characterizations and measurements were undertaken to investigate the 

applicability of the proposed graphene and G/Cb electrodes to serve as counter 

electrodes in DSSCs. The graphene film with a thickness of ca. 25 µm and heated at 

300⁰ C possesses good adhesion and low sheet resistance 18.3 Ω/□ which was a 

promising value compared to other electrodes (as-deposited, 100⁰ C, and 200⁰ C). 

Hence, the DSSC used graphene electrode heated at 300⁰ C shows power conversion 

efficiency of 3.32%, comparable to 4.48% obtained from Pt-based DSSC. The obtained 

power conversion efficiency was attributed to the high electrical conductivity of the 

graphene electrodes although they possess low electrocatalytic activity for tri-iodide 

reduction. 

Further, the results showed that the DSSC based on CB40 composite exhibited maximum 

power conversion efficiency of 4.58% and fill factor of 0.56 with higher electrocatalytic 

activity than the graphene electrode. The achieved result is comparable to those shown 

by DSSCs using Pt and Solaronix carbon paste of 5.19 and 3.67 with fill factors 0.66 and 

0.61, respectively. The low-cost, high conductivity and the porous structures of the 

introduced graphene and graphene/Carbon black counter electrodes make them potential 

candidates to replace the expensive platinum counter electrode. 
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Elektrod kaunter memainkan peranan penting di dalam mekanisma Sel Pemeka Suria 

(DSSC). Selain peranannya dalam mengumpulkan elektron dari litar luar, ia juga 

berfungsi sebagai katalis pengurangan ion tri-iodida dalam elektrolit. Apabila 

pengurangan elektrolit berlaku dengan cepat, molekul pewarna teroksida akan dijana 

semula dengan cepat dan dengan itu meningkatkan prestasi sel. Biasanya, lapisan 

pemangkin platinum digunakan sebagai elektrod penghitung DSSC kerana 

kekonduksian yang tinggi, aktiviti elektro-katalitik, dan kadar tembus cahaya. Walau 
bagaimanapun, platinum adalah bahan yang mahal serta ia terhakis apabila terkena 

elektrolit redoks iodin/tri-iodida, dan oleh itu menghalang kestabilan jangka panjang sel. 

Untuk mencapai sasaran pengkomersialan DSSC, penyelidikan yang luas telah 

dilakukan untuk mengurangkan kos DSSC dengan memperkenalkan bahan yang efektif 

dan murah. Baru-baru ini, elektrod kaunter DSSC berasaskan bahan karbon menarik 

minat kerana kos rendah, kekonduksian tinggi, aktiviti katalitik, dan kestabilan kimia, 

yang menjadikan ianya alternatif yang berpotensi kepada platinum yang mahal untuk 

pengeluaran DSSC berskala besar. Penyelidikan ini dimulakan dengan pengoptimuman 

fotoanod TiO2 yang dicetak secara print-screen dengan satu lapisan, dan kemudian 

bertujuan untuk mengkaji aplikasi praktikal elektrod kaunter grafena dan grafena / 

karbon hitam (G/Cb) yang murah dan berkesan untuk DSSC. Elektrod kaunter grafena 

disediakan hanya dengan meletakkan grafena yang telah diubahsuai ke atas substrat kaca 
bersalut fluorin timah oksida (FTO). Pelbagai pencirian dan analisis telah dilakukan 

untuk menyelidik kebolehlaksanaan filem grafena yang dicadangkan. Kajian ini 

memfokuskan kepada kesan panas terhadap prestasi filem grafena sebagai elektrod 

kaunter DSSC. Filem grafena dengan ketebalan kira-kira 25 µm yang dipanaskan pada 

suhu 300⁰ C mempunyai lekatan yang baik dan kekonduksian elektrik yang tinggi 

dengan rintangan keping serendah 18.3 Ω / □ yang merupakan nilai yang amat 

meyakinkan berbanding dengan elektrod lain (seperti yang disimpan, 100⁰ C, dan 

200⁰ C). Oleh itu, elektrod grafena yang dipanaskan pada suhu 300⁰ C menunjukkan 

kecekapan penukaran foto ke elektrik 3.32% yang setanding dengan DSSC berasaskan 
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Pt sebanyak 4.48%. Kecekapan penukaran yang diperolehi disebabkan oleh 

kekonduksian elektrik yang tinggi dan struktur pori pada elektrod yang menyediakan 

tempat yang lebih berkesan untuk aktiviti elektro-katalitik. untuk berfungsi sebagai 

elektrod kaunter DSSC. Selain itu, enam elektrod kaunter komposit G/Cb berjaya 

dihasilkan dengan menggunakan enam pes berbeza yang dijadikandari serbuk grafena 

dan serbuk karbon berpelbagai. Pes dicetak pada kaca bersalut FTO dan kemudian 
dibakar di dalam tungku pada suhu 300⁰ C. Sebagai perbandingan, pes karbon Solaronix 

yang telah di screen-print dan FTO-platinum digunakan sebagai rujukan elektrod 

kaunter. Pencirian dan pengukuran yang berbeza telah dikaji untuk setiap elektrod. Hasil 

kajian menunjukkan bahawa DSSC berdasarkan CB40 komposit menunjukkan 

kecekapan penukaran daya maksimum sebanyak 4.58% dan FF 0.56 dengan aktiviti 

elektro-katalitik yang baik. Hasil yang dicapai setanding dengan yang ditunjukkan oleh 

DSSC menggunakan Pt dan Solaronix pes karbon 5.19 dan 3.67 dengan faktor pengisian 

masing-masing 0.66 dan 0.61. Kos yang rendah, kekonduksian tinggi dan struktur 

berpori dari elektrod grafena dan grafena / karbon hitam yang diperkenalkan menjadikan 

ia calon yang berpotensi untuk menggantikan elektrod kaunter platinum yang mahal. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

Since many decades, the World largely relies on traditional non-renewable energy 

sources the so-called fossil fuels in the forms of coal, oil and natural gas. Although, there 

are several problems related to fossil fuels sources like: depletion, increasing cost and 

environmental issues such as greenhouse gas emissions, pollution and their impact on 

weather and climate changes. These considerations have encouraged the researchers and 

industries for the development of sustainable, green, efficient and low-cost energy 

resources. There are different forms of renewable energy resources include nuclear 

energy, wind energy, hydroelectric energy, and solar energy. Although the nuclear power 

plants do not produce air pollution or have an impact on the global warming emissions 

and able to generate significant electricity, the probability of high risk is always last 

despite its tight safety regulations. Wind energy is usually used for operating turbines to 

generate electricity, but it requires widespread areal extent to produce significant 

amounts of energy. Furthermore, the unpredictable nature and the increase in 

maintenance cost of wind turbines hampers the wind energy to be the best solution for 

many counties. Nowadays, 16% of electrical power is obtained initially as converted 

energy from hydroelectric energy [1]. However, this might be not a real renewable 

source and is imperfect due to the high constructions cost and the probability of havoc 

and damages during natural disasters such as flooding and earthquakes.  

The sun provides a constant and steady source of solar power over the year. Compared 

with all other renewable energy sources, solar energy is widely recognised as the most 

promising alternative for fossil energy sources due to its abundance and sustainability. 

Therefore, solar energy latches extensive attraction by researchers and industries. 

Sunlight energy is converted directly into electricity using solar panels. Various types 

and generations of the solar cells were devolved during the years. 

Solar cells can be classified into three generations: The first generation cells is a 

conventional crystalline silicon wafer-based cells (polysilicon and monocrystalline) are 

the dominant commercial solar cells technology. Si-based solar cells exhibit a 

complicated fabrication procedures and expensive producing equipment [2]. The second 

generation cells use semiconductors thin films technologies such as amorphous silicon, 

CIGS (Copper-Indium-Gallium-Selenium), and CdTe (Cadmium Telluride) cells. CdTe 

cells can compete the crystalline silicon cells in cost/watt. However, these technologies 

still exhibit some problems; CIGS cells suffer the toxicity and humidity issues [3]; CdTe 

solar cells encounter low production due to rare of Tellurium and toxicity of Cadmium 

[4].  
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Third generation solar cells include a number of thin film technologies and are still in 

research development stage and have not industrialized yet. Perovskite and Dye-

Sensitized Solar Cells are known as the third generation solar cells. Despite their 

relatively low conversion efficiencies and low stability issues, there are lots of researches 

invested in these technologies as they promise to achieve the aim of producing low-cost, 

high-efficiency solar cells. 

1.2 Statement of the problems 

 In 1991, Dye-Sensitized Solar Cell (DSSC) was demonstrated by O’Regan and Grätzel1 

as a promising alternative to silicon solar cells with the potential of high conversion 

efficiency [5]. A typical DSSC structure consists first of dye-adsorbed TiO2 mesoporous 

film coated on a transparent conductive oxide (TCO) glass as the photoanode. Second, 

an electrolyte system containing Iodide/Tri-iodide (I−/I3
−) redox couple in a proper 

mediator. Third, a counter electrode to provide faster bath for the electrons coming from 

the external circuit and capable to catalyse the reduction of tri-iodide ions [6]. The 

counter-electrode (CE) is one of the most critical components in the DSSC. It plays an 

important role to determine the device efficiency. Its function is to reduce the electrolyte 

redox species which regenerating the sensitizing dye after excitation and electron 

injection, or collection of the holes from the hole conducting material in a solid-state 

DSSC [7]. Typically, the Platinum-coated fluorine-doped tin oxide (FTO) glass is used 

for DSSC counter electrode, because of the Platinum’s high electrical conductivity, 

excellent stability, and excellent catalytic activity toward the reduction of the tri-iodide 

ions in electrolyte system. Besides, its light reflection feature is significantly utilized [8], 

[9],[10]. 

However, platinum is an expensive noble material, and it requires special high-cost 

equipment for conventional deposition [11]. Moreover, The Pt-coated FTO is usually 

prepared through high-temperature hydrolysis processes or thermal platinization that are 

incompatible with flexible conducting substrates which inhibit their usability in many 

different applications. Furthermore, Pt corrodes in iodide-based electrolytes and generate 

PtI4 especially when it is in the form of thin layer  [12],[13],[14].  

Finding new alternative conductive and catalytic materials to replace the expensive 

platinum is considered one direction to minimize the overall cost for the DSSC 

fabrication. 

To overcome the issues related to the use of platinum in DSSC, extensive research work 

have been conducted to explore new conductive and catalytic materials as counter 

electrode. Thus, development of efficient, low cost and Pt-free DSSC. 
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Many different types of abundant and Pt-free CE materials have been investigated as 

DSSC counter electrode. For instance, transition metal oxides [11], sulfides [15], 

conducting polymers such as PEDOT:PSS and its composites [16], carbon materials 

such as carbon black [17], mesoporous carbon [18], carbon nanotubes (CNTs) [19], and 

graphene-based materials and its composites [20],[10],[21].  

According to Velten et al., 2012 and Lee et al., 2008, the carbonaceous materials are 

considered excellent potential candidates for replacing Pt counter electrode in DSSC 

because they exhibit low cost, corrosion resistant, and electrically conductive [26],[21]. 

Carbon black (Cb) is a conductive material with high specific surface area, hence, it 

possess excellent catalytic activity for the reduction of tri-iodide ions in the electrolyte. 

Carbon materials usually exhibit active catalytic sites at their edges. Carbon black with 

its high surface area has many edges, providing more active sites than that of the highly 

structured carbon materials, such as graphene and carbon nanotubes [23]. Besides, 

carbon black composites exhibit comparable performance to platinum [24],[25],[26]. 

Very recently, various graphene and its composites have been materialized as potential 

catalysts for DSSC cathodes, due to graphene’s high crystallinity, chemical, and thermal 

stability as well as the high electron mobility. So far, most of graphene CEs that have 

been used were fabricated primarily through reduction of graphene oxide, and they are 

mostly deposited on flexible substrates. This research is aimed to examine two different 

carbon materials as DSSC counter electrodes for the reduction of (I3
−) species. First, 

examining the pure and high crystalline conductive graphene dispersion as counter 

electrode for DSSC. The high electrical conductivity and crystallinity facilitate a 

production of high current density and voltage. Furthermore, in order to enhance the 

catalytic activity of the graphene electrode, another investigation is to combine the high 

crystalline conductive graphene and carbon black materials in different G/Cb 

composites.  

The proposed composites might provide high conductivity from both materials, 

especially from graphene, and also a good catalytic activity from carbon black. All 

proposed materials possess a range of fascinating properties in terms of conductivity, 

excellent adhesion and a range of electrochemical activity. The most interestingly, 

graphene dispersion and the G/Cb composites shows porous nanoplatelets 

microstructure.  

This porous structure provide many catalytic reduction sites for reducing tri-iodide (I3
−) 

as well as the deep penetration of electrolyte [8]. Easy casting techniques (drop casting 

and screen printing) are used to deposit the proposed materials on FTO-coated glass. In 

addition, the DSSC fabrication process should be optimized in order to achieve the aimed 

results.  © C
OPYRIG

HT U
PM



 

4 

1.3 Objectives of the study 

The purpose of this study is to investigate two different carbon materials as candidates 

to replace the expensive platinum used for (I−/I3
−)-based DSSC counter electrodes. This 

study aims to introduce two different low-cost and effective carbon materials for DSSC 

counter electrode with retaining high power conversion efficiency. In this work, high 

crystallinity graphene dispersion, and other six (6) different Graphene/ Carbon black 

composites are investigated as counter electrodes in DSSCs. However, all introduced 

materials are compared with the standard Pt-coated FTO and the commercial Solaronix 

Carbon paste made counter electrodes. To accomplish the aim of this project, there are 

set of objectives which have to be resolved include: 

 

1. To study the electrical properties of the films deposited using the high 

crystallinity graphene dispersion and G/Cb composites as conductive materials 

to be applicable for DSSC counter electrode. 

2. To examine the electrocatalytic activity of the graphene dispersion-based 

electrode and G/Cb composites as DSSC counter electrode for the reduction of 

tri-iodide (I3
−) ions in the redox couple. 

3. To suggest the most effective fabrication procedure of the Iodine-mediated 

DSSCs using the graphene dispersion-based and the G/Cb composites as 

counter electrodes for high DSSC performance.  

 

 

1.4 Scope and limitations 

This research work does not seek to address the problems of graphene or carbon black 

synthesis methods. Due to limitation of screen-printing mesh size and for the purpose of 

easy-handling, the area for both photoanode and counter electrode of the DSSC devices 

was initially fabricated as 1 cm2. After that, a black metal mask with aperture of 0.25 

cm2 was always placed onto each photoanode during the cell photovoltaic test to form 

the accurate active area and to avoid the light diffusion issues [27]. However, the solar 

simulator is calibrated before measurement. As there are different types of electrolytes, 

this research work focuses on the Iodine-mediated DSSC fabrication and 

characterization based on the standard platinum counter electrode and the proposed 

graphene and G/Cb composite-based counter electrodes. However, another, commercial 

(Solaronix carbon paste) counter electrode is used for comparison. This research 

concerns only the standard N719 sensitized-TiO2 photoanode. In this research, although 

the photoanode fabrication procedure is optimized and characterized, all parameters 

related to the photoanode are still out of the research scope. Moreover, this research 

covers neither solid-state nor flexible dye-sensitized solar cells. 
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1.5 Thesis Organization 

This project thesis is organized in five chapters as per the followings: 

Chapter one is the introductory part that discusses the background of the energy 

resources and the photovoltaic devices focusing on the third generation DSSC 

technology. It also highlights the research problem statement. In addition to that, the 

general research aims and the specific objectives, research scope, and limitations, as well 

as the thesis outlines have been presented. 

Chapter two introduces a background about energy demand and the photovoltaics 

technology developments. Also, it describes the structure and work principle of the dye-

sensitized solar cells. Then, it reviews the previous studies related to development in 

dye-sensitized solar cell components. Mainly, it addresses the development in the 

counter electrode materials. 

Chapter three initially introduces the materials and methods used in the dispersion 

modification and pastes synthesis. Furthermore, it demonstrates the DSSC components 

preparation processes, DSSC complete assembly. The characterization techniques and 

measurements methods used in the research are explained and discussed in this chapter.  

Chapter four presents and discusses all the results achieved from the research study. 

Chapter five briefly highlights the research conclusion and findings. It also presents a 

possible recommendation for future studies. 
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