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Exposure to a whole-body vibration is an occupational risk factor, which leads to 
research interests in biodynamic responses of a human body. The knowledge of 
biodynamic responses of a seated human body on a suspension seat are limited 
as previous studies were merely focused on the rigid and conventional seats. 
The main objective of this thesis is to predict the seat transmissibility of a seated 
human body on the agriculture suspension seat. In addition, factors affecting the 
seat transmissibility and the apparent mass, such as postures and vibration 
magnitudes are also investigated. In the first experiment, the vertical seat 
transmissibility and the Seat Effective Amplitude Transmissibility (SEAT) values 
were measured. Eleven healthy male subjects aged between 21 to 35 years old, 
with a mean weight and height of 61.5 kg, and 1.68 m, respectively participated 
in the study. All the subjects were exposed to random vertical vibration in the 
range of 1 to 20 Hz, at three vibration magnitudes (0.5, 1.0 and 2.0 m/s2 r.m.s.) 
for 60 s. For each exposure, four postures were investigated (“relax”, “slouch”, 
“tense”, and “backrest”). The results showed that the primary resonance 
frequency of the seat transmissibility for every posture was pronounced between 
1.7 and 2.5 Hz. The transmissibility at the resonance was the highest for the 
“backrest” condition. The results of SEAT values revealed that “slouch” posture 
showed the highest value (64.7%). In the second experiment, the apparent mass 
of a seated human body on a rigid and suspension seat were measured. Two 
sitting conditions were investigated – i) without the backrest and ii) with the 
vertical rigid backrest. The experimental measurement revealed a lower peak 
magnitude and resonance frequency of apparent mass without the backrest for 
a suspension seat (4.0 to 5.2 Hz), as compared to those measured with a rigid 
seat (4.5 to 5.4 Hz). For both seats, there was a reduction in the peak of apparent 
mass when in contact with a backrest. In both experiments, there was a reduction 
in the primary resonance frequency of the seat transmissibility and the apparent 
mass with an increase in the vibration magnitude, suggesting a non-linearity in 
the suspension seat-human system. Using the measured apparent mass of the 
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seated human body on suspension seat, a two-degree-of-freedom lumped 
parameter model was developed. The model was able to fit the measured 
responses of the body in various sitting conditions (with and without the 
backrest). The modelling found that when a human body was in contact with the 
backrest, the mass decreased and the stiffness increased, resulting in an 
increase in the derived damped natural frequency. A combined three-degree-
lumped-parameter of suspension seat-human body model was developed to 
predict the suspension seat transmissibility. The model was capable in predicting 
the seat transmissibility by minimizing the sum-of-least-squares error between 
the experimental measurements and the model prediction. It was found that the 
performance of the suspension seat did not depend on the suspension 
mechanism alone, but rather on the combination of the seated human body with 
the suspension seat. This research shows that the vibration transmission of a 
suspension seat can be predicted. Such predictions will assist the optimization 
of the suspension seat, and thus reduce the time needed to assess the 
suspension seat performance. 
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Pendedahan kepada getaran seluruh badan merupakan risiko pekerjaan, yang 
menjadi tumpuan dalam penyelidikan respon biodinamik badan manusia. 
Pengetahuan mengenai respon biodinamik manusia ketika duduk dikerusi 
sistem penggantungan adalah terhad, kerana kajian terdahulu banyak memberi 
fokus kepad kerusi rigid dan konvensional. Objektif utama tesis ini adalah untuk 
menjangka kebolehpindahan getaran kerusi terhadap manusia ketika duduk 
dikerusi penggantungan pertanian. Selain itu, faktor-faktor yang mempengaruhi 
kebolehpindahan getaran kerusi dan jisim nyata, seperti postur dan magnitud 
getaran turut dikaji. Dalam eksperimen pertama, kebolehpindahan getaran 
kerusi secara menegak dan nilai Kebolehpindahan Efektif Amplitud Kerusi 
(SEAT) diukur. Sebelas subjek lelaki yang sihat, berumur sekitar 21 hingga 35 
tahun, dengan min berat 61.5 kg dan min tinggi 1.68 m mengambil bahagian 
dalam kajian. Kesemua subjek didedahkan kepada getaran rawak menegak 
dalam julat 1 hingga 20 Hz, pada tiga magnitude getaran (0.5, 1.0 and 2.0 m/s2 
punca min kuasa dua) selama 60 saat. Pada setiap pendedahan getaran, empat 
postur diselidik (“mengendur”, “membongkok”, “menegang” dan “bersandar”). 
Keputusan menunjukkan resonan frekuensi pertama, kebolehpindahan kerusi 
untuk setiap postur adalah ketara antara frekuensi 1.7 hingga 2.5 Hz. 
Kebolehpindahan ketika diresonan adalah tertinggi ketika postur “bersandar”. 
Keputusan SEAT menunjukkan postur “membongkok” mencatat nilai tertinggi 
(64.7%). Dalam eksperimen kedua, jisim nyata badan manusia ketika duduk 
dikerusi rigid dan kerusi penggantungan diukur. Dua kedudukan duduk dikaji – 
i) tanpa sandar dan ii) dengan sandaran rigid menegak. Keputusan ujikaji 
menunjukkan puncak magnitud dan resonan frekuensi yang lebih rendah pada 
jisim nyata untuk kerusi penggantungan (4.0 hingga 5.2 Hz), jika dibandingkan 
dengan kerusi rigid (4.5 hingga 5.4 Hz). Untuk kedua-dua eksperimen, terdapat 
pengurangan pada resonan frekuensi yang pertama untuk kebolehpindahan 
kerusi dan jisim nyata apabila magnitud getaran ditambah, menimbulkan 
cadangan tidak linear dalam sistem kerusi penggantungan-manusia. Dengan 
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menggunakan jisim nyata yang telah didapati dari badan manusia ketika duduk 
dikerusi penggantungan, dua darjah kebebasan model parameter bergabung 
dibangunkan. Model berkenaan berpadanan dengan respon badan yang telah 
diukur dalam pelbagai kondisi duduk (dengan dan tanpa tempat bersandar). 
Model menunjukkan apabila badan manusia bersentuhan dengan tempat 
bersandar, jisim berkurang, manakala unsur kekakuan meningkat, 
menyebabkan peningkatan dalam unsur teredam frekuensi semula jadi. 
Kombinasi model parameter bergabung kerusi penggantungan-badan manusia 
dibangunkan untuk menjangka kebolehpindahan getaran kerusi 
penggantungan. Model tersebut berjaya menjangka kebolehpindahan getaran 
kerusi penggantungan dengan meminimumkan ralat jumlah kuasa dua terkecil 
antara keputusan eksperimen dan model jangkaan. Keputusan menunjukkan 
prestasi kerusi penggantungan tidak hanya bergantung kepada mekanisma 
penggantungan sahaja, malah ianya disebabkan oleh gabungan pengaruh 
badan manusia ketika duduk di atas kerusi penggantungan. Kajian ini 
membuktikan getaran penghantaran dari kerusi penggantungan boleh dijangka. 
Jangkaan tersebut dapat membantu mengoptimumkan kerusi penggantungan 
dan seterusnya mengurangkan masa yang diperlukan untuk menilai prestasi 
kerusi penggantungan. 
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CHAPTER 1 

 

INTRODUCTION 
 
 

This chapter describes a brief introduction to the background of this research. 
Subsequently, the objectives and the corresponding hypotheses are explained, 
and the necessity of the research is being justified. Next, the scope and the 
limitations of the study are highlighted. Finally, an overview of the thesis is 
discussed at the end of the chapter. 
 
 
1.1 Research Background 
 
 
Exposure to a whole-body vibration (WBV) in transports during a daily life is 
common. The WBV occurs when a human body is supported by a vibrating 
surface.  It is generally transmitted through the floor, the seat surfaces and the 
backrests, such as through driving a car or commuting using trains. Humans’ 
exposure to the WBV is an extensive occupational risk factor, which is commonly 
associated with the lower back pain (LBP). It also affects the performance and 
the comfort of professional drivers (Bovenzi, 2010; Mayton et al., 2008).  
 
 
Previous studies found that higher exposures to the WBV were associated to an 
off-road rather than an on-road conditions (Scarlett et al., 2002; Darby et al., 
2010; Kim et al., 2018). Thus, it is likely to exceed the health guidance caution 
zone of 8 hours exposure in 24 hours span, which is in accordance to ISO 2631–
1 (1997) standard. WBV can cause muscle lengthening and shortening which 
could potentially increase the muscle tension due to a stretch reflex (Ritzmann 
et al., 2010). Furthermore, it was reported that muscle activities were higher 
under the conditions with vibrations in comparison to the conditions without 
vibrations (Li et al., 2015).  
 
 
The term biodynamic is widely used in human vibration engineering practice, as 
mentioned in the ISO 8727 (1997). Biodynamic can be defined as the mechanical 
properties or responses of the body, parts and systems either with reference to 
impressed forces or motion, or in the relation to the body’s own mechanical 
activity (Griffin, 2012). The most common way to describe the biodynamic 
response is by studying the dynamic characteristics of the human body from a 
measurement of the apparent mass.  
 
 
According to the ISO 5982 (2001), apparent mass is the force and motion at the 
point of input of vibration to the body (“to the body” transfer functions). Griffin 
(2012) defined the apparent mass as the complex ratio of force to acceleration 
during simple harmonic motion, or also called as “effective mass”. Current 
laboratory procedures for evaluating seat performances can benefits from this 
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transfer function (apparent mass) under conditions similar while driving vehicles 
(ISO 5982, 2001). Apparent mass of the human body is commonly used as it 
gives insight into the dynamic behavior of the human body, representing 
frequencies at which the human body is most sensitive to acceleration. 
(Mansfield, 2005). The apparent mass has not only been used to derive models 
for seats assessment (Pang et al., 2005; Wu and Qiu, 2019), but to identify 
resonance for exposure risk assessment (Rakheja et al., 2008; Pranesh et al., 
2010) as well.  
 
 
The exposure to the WBV can be reduced with a conventional or suspension 
seat. The conventional seat does not have its own suspension mechanism, and 
consist of standard foam cushion. Suspension seat has its own suspension 
mechanism and designed to isolate vibration at lower frequencies than normal 
seat (conventional seat). It is common for off-road vehicles, such as agricultural 
tractors to be equipped with the suspension seat. The suspension seat is aimed 
to reduce the effect of excessive vibration and shock to the human body. The 
suspension seat’s efficiency depends on (i) the seat transmissibility, (ii) the input 
vibration at the seat base and (iii) the sensitivity of the human body to the input 
vibration on the seat surface (Griffin, 2012). The excitation sources such as road 
roughness, engine, tyres and dynamic working load are referred to input 
vibration. 
 
 
The most common way to analyse the characteristics of a suspension seat is to 
measure its magnitude transmissibility. Seat transmissibility can be defined as 
the ratio between vibrations on the seat surface to the seat base and it is 
dimensionless. The characteristics of the seat and the human body are both 
important. The combination of the seat and the human body formed a coupled 
system and it is affected by each other (Lo et al., 2013; Kim et al., 2017). Thus, 
in order to predict the suspension seat performance, it is necessary to include 
the human response in the model as well.  
 
 
The apparent mass of the human body is usually measured on a rigid seat, with 
less attention given for the suspension seat. However, there are evidences that 
type of seat could affect the apparent mass of human body (Toward and Griffin, 
2011; Dewangan et al., 2018). The use of suspension seat is common for 
agricultural tractors. Research on the contribution factors of the apparent mass 
of a human body seated on the suspension seat will not only improve the 
knowledge of the dynamic mechanisms of the human body when exposed to the 
WBV, but can be used to develop biodynamic models of the human body as well.  
 
 
The conceptual framework of this study is shown in the Figure 1.1. 
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Figure 1.1: Conceptual framework of the study 
 
 
1.2 Problem Statement 

 
 

1.2.1 Effect of Sitting Postures and Vibration Magnitudes on the 
Vibration Transmission.  

 
 
Standards have been proposed to test the seat transmissibility by using the inert 
mass or human subject (ISO 7096, 2000). According to the standard, the test 
person shall adopt a natural upright posture. However, in a normal working 
condition, human body adopted various postures depending on the farm 
activities. In addition, the variation in vibration magnitudes also been influenced 
by the work surface and the speed of the tractors. These variables may affect 
the performance of the suspension seat, and thus affect the vibration 
transmission through the suspension seat. Nevertheless, it’s remained unclear 
on how these factors affecting the suspension seat performance. 
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1.2.2 Influence of the Suspension Seat on the Apparent Mass of a Seated 
Human Body 

 

 

Seated human bodies on the rigid seat and exposed to the WBV have been 
extensively investigated in various experimental conditions. (Matsumoto, 2002, 
Rakheja et al., 2010; Dewangan et al., 2018). Changes in the seating condition 
will influence the human responses (Griffin, 2012). A suspension system 
introduces a degree of freedom between the subject’s ischial tuberosity when in 
contact with the seat pan, which allows the relative movement of the hip. 
However, to date, limited studies have been reported on the apparent mass of 
the seated human body on a suspension seat. 
 

 

1.2.3 Modelling the Apparent Mass of a Seated Human Body on the 
Suspension Seat. 
 
 

Both suspension seat and a human subject have close natural frequency. 
Suspension seat and a human body form a combined dynamic system that affect 
the seat transmissibility. The human body introduces another degree-of-freedom 
to the system. The influence of the human body to the seat transmissibility may 
be caused by the seat dynamics or the response of a human body, or may be 
caused by the combined effect of both the seat dynamics and the response of a 
human body. The influence of these factors on the relative contributions of 
variations in the biodynamic response and variations in the seat transmissibility 
are not known. Thus, this research seeks to find the mechanics underlying the 
non-linearity of the human body to develop a mathematical model of the apparent 
mass. The modelling from the apparent mass will help to understand the dynamic 
response of seated human body seated on suspension seat. 
 
 
1.2.4 Incorporating Human Response with Suspension Seat for the 

Prediction of Seat Transmissibility 
 
 
Off-road vehicles are usually driven on rough surfaces, which cause severe 
vibrations. These vibrations are usually low in frequency, ranging below 5 Hz 
(Zhou, 2014; Yan et al., 2015). Vibrations at low excitation frequencies (1 - 20 
Hz) are the main risk factors for the musculoskeletal disorders, which can reduce 
the work efficiency of drivers and passengers (Burström et al., 2015; Scarlett et 
al., 2007; Smets, 2010). Thus, such vibrations require isolation.  
 
 
Previous researchers have noted that the human body cannot be simply 
replaced with a rigid mass (Toward, 2010; Panta et al., 2014). However, limited 
studies on the modelling of the agriculture suspension seat have considered the 
human responses. Thus, the need of a suspension seat-human body model is 
crucial to predict the dynamic performance of the suspension seat when exposed 
to the WBV. 
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1.3 Objectives 
 
 
1.3.1 Main Objective 
 
 
The main objective of the thesis is to predict the suspension seat transmissibility 
when exposed to the vertical WBV. The objective can be achieved by 
investigating the seat transmissibility and the apparent mass of a seated human 
body on the suspension seat. The specific objectives are described below. 
 
 
1.3.2 Specific Objectives 

 
 

i. To investigate the effects of sitting postures and vibration magnitudes 
on the vibration transmission of a suspension seat. 
 

ii. To investigate the apparent mass of a seated human body on the rigid 
and suspension seat. 

 
iii. To develop a mathematical model of the apparent mass of a seated 

human body on the suspension seat. 
 
 

1.4 Research Questions and Hypotheses 
 
 
This thesis aims to answer four main questions: 
 

i. Is the sitting postures and vibration magnitudes affect the vibration 
transmission of a suspension seat?  
 

ii. How the apparent mass of a seated human body is different from 
rigid and suspension seat? 
 

iii. How to develop a mathematical model of the apparent mass of a 
seated human body on the suspension seat?   

 
iv. Can the response of human body be included in the modelling to 

predict the seat transmissibility? 
 

 
It was hypothesized that: 
 

i. The sitting postures and vibration magnitudes would affect the 
vibration transmission of a suspension seat. 
 

ii. The resonance frequency of the apparent mass of the seated human 
body would reduce when seated on the suspension seat. 
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iii. The apparent mass of a seated human body can be represent by 
the lumped parameter models. 
 

iv. The response of the human body is combined with the response of 
the suspension seat by using lumped parameter model to predict 
the seat transmissibility. 

 
 
1.5 Significance of the Study 
 
 
The present study is important to advance the understanding on the response of 
a human body when seated on the suspension seat. The suspension seat is an 
important component of the agricultural machineries for isolating the vibration 
transmitted to the driver and for reducing the discomfort and health risk. An in-
depth understanding in the characteristics of suspension seats and biodynamic 
responses of a human body seated on the suspension seat can assist 
manufacturers in optimising the seat design.  
 
 
In addition, the study proposed the method of prediction of seat transmissibility. 
Thus, it is useful for the industry to identify the performance of the suspension 
seat that meets their usage and consequently improves the safety of the workers 
from an excessive exposure to the WBV. 
 
 
1.6 Scope and Limitation of the Study 

 
 

1.6.1 Scope of the Study 
 
 
The scope of the study is simplified as in Figure 1.2. Three main categories are 
explored, which includes factors affecting biodynamic responses of the seated 
human body, seats, and vibration input. The apparent mass measurement leads 
to the development of a lumped parameter model of a seated human body on a 
suspension seat. In addition, the suspension seat transmissibility are 
investigated. Both the data will be used to predict the suspension seat 
transmissibility. 
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Figure 1.2: Simplified diagram representing the scope of the study 
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1.6.2 Limitation of the Study 
 
 
The suspension seat used in the study is limited to a passive suspension seat. 
The reason for such a suspension seat is studied is because it is commonly used 
in the agriculture industry in Malaysia. Hence, it would be helpful to use the 
suspension seat that is commonly used in the industry. Nevertheless, the 
contribution of the knowledge gain from this research can be applied to different 
types of suspension seats. 
 
 
1.7 Thesis Layout 
 
 
Overall, the thesis comprises of five chapters. 
 
 
Chapter 1 introduces the research. An overview of the research background is 
presented.  
 
 
Chapter 2 describes the related studies of a human response to the WBV, the 
suspension seat transmissibility and the existing models of a seated human 
body. The knowledge gap is highlighted at the end of the chapter. 
 
 
Chapter 3 specifies the equipment, material, methodology and data analysis 
used in the thesis. The flow and experimental design of the research are 
presented in this chapter.   
 
 
Chapter 4 investigates the vibration transmission and the human responses on 
the suspension seat. The effect of the vibration magnitudes, postures and the 
backrest support are explored. Then, mathematical models are proposed to 
predict the suspension seat transmissibility. A general discussion of the findings 
are reported at the end of the chapter. 
 
 
Chapter 5 concludes the main findings of the study, along with the 
recommendation for future research. 
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