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Many technologies are set to revolutionize the efficiency of humans and devices commu-
nication. Three of the trending technologies envisaged to provide huge prospects towards
the realization of the fifth-generation cellular systems are machine-to-machine (M2M)
communication, device-to-device (D2D) communication and cognitive radio networks
(CRNs). M2M facilitates the autonomous communication of smart devices while D2D
facilitates direct connectivity between devices in proximity. Cognitive radio aids effective
utilization of wireless spectrum as cognitive devices could opportunistically access the
spectrum of licensed users. Similarly, relays improve the transmission coverage between
nodes which in turn reduces the outage probability (OP) and increases the transmission
capacity (TC) of the spectrum sharing network. These metrics can be effectively studied
using stochastic geometry (SG): a mathematical tool for deriving insights into the
performance of wireless networks of different spatial configurations. Motivated by these,
this thesis is aimed at addressing three of the research gaps related to spectrum sharing
systems (D2D and CRNs) assisted by relays using SG.

The coexistence of a massive number of machine-type devices (MTDs) with D2D and
cellular users is set to heighten the interference levels within the cellular architecture.
On the other hand, D2D devices would require relays whenever they are farther apart to
improve the outage performance. However, limited battery or the non-altruistic nature of
certain users may deter them from helping other users to relay data. Motivated by the
recent specifications of MTD devices, the first contribution in this thesis conceptualizes
that MTDs can relay data for D2D devices that are not in proximity. In this context,
a probabilistic model is introduced for the availability of M2M devices. Thorough
investigations are made on the TC, TC gains and trade-offs involved for both underlay and
D2D-overlay modes. Using SG, the successful transmission probabilities for all associ-
ated links are derived to determine the TCs in these scenarios and present computable
expressions for the TC gains achieved. Furthermore, an exposition is provided on how
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the density and transmit power of MTDs in the network affect the D2D TC performance.
Results show that the deployment of MTD devices as relays improves the TC as
compared to when only traditional RNs are used. Similarly, higher peak TCs are achieved
at 23dB MTD transmit power. Overall, a lower transmit power (15dB) yields better
performance. Thus, high MTD density can be leveraged to improve the D2D TC when so
manyD2D transmissions occurwithin the system andwhen these devices are farther apart.

The literature on the performance analysis of energy harvesting cognitive radio networks
focused on a dual and multi-hop secondary architecture. Also, the available literature
on a multi-hop primary architecture was not studied in the context of radio frequency
energy harvesting which makes the impact of a multi-hop primary network on the
outage performance of a dual-hop energy harvesting CRN largely unknown. Thus,
the second contribution in this thesis exploits SG and the advancements in wireless
energy harvesting to develop a framework for the outage probability analysis of energy
harvesting underlay CRNs. In this model, #-hop primary users are equipped with
constant energy source while secondary users harvest energy from the transmissions of
primary devices. The transmit power of secondary users is regulated to ensure it does
not violate the target end-to-end OP constraint of the #-hop primary network. Potential
relays that have harvested sufficient energy are eligible to relay data for other secondary
users within the network. This model reveals the impact of the number of primary hops
on the relay selection region and harvested energy (which is generally unknown). Also,
an expression for the total outage probability which encapsulates the impact of N-primary
hops is derived. The impacts of other relevant parameters on the outage probability are
shown in detail. Results show that the multi-hop primary network reduces the secondary
outage probability by regulating the number of transmitting energy harvesting relays
within the network.

Interference cancellation has long been known as an effective approach to reducing the
impact of interference in wireless networks. However, the interplay between interference
cancellation and energy harvesting and how both can be used within the same architec-
ture to improve the outage performance in cognitive radio networks is unknown. This
motivates the third contribution where interference cancellation is incorporated in the out-
age analysis of a Poisson distributed wireless energy harvesting cognitive relay network.
Based on a predefined interference threshold, devices within the primary network are
assumed to be able to cancel a fraction of the strongest interferers in the entire network.
To achieve this, the coefficient of cancellation is adapted into the SG analysis to reduce
the level of interference. The rationale is to further help the secondary network to meet up
with the primary outage constraint by reducing some of the interference experienced by
primary receivers. Analytical results show that this significantly reduces the secondary
OP which in turn improves the network performance based on a set cancellation thresh-
old and residual interference power. However, this is at the cost of reducing the energy
harvesting success probability of the relays within the secondary network which depends
on the primary density as interference from such devices would be cancelled.
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Pelbagai teknologi digunakan bagi mengrevolusi kecekapan komunikasi antara manusia
dan peranti. Tiga teknologi tren yang dirancang untuk memberikan prospek yang besar
ke arah mencapai sistem selular generasi kelima adalah komunikasi dari mesin ke mesin
(M2M), komunikasi peranti ke peranti (D2D) dan rangkaian radio kognitif (CRN).
M2M meningkatkan komunikasi autonomi peranti pintar manakala D2D memudahkan
sambungan terus antara peranti berdekatan. Radio kognitif membantu penggunaan
spektrum tanpa wayar secara berkesan, di mana peranti kognitif boleh mengakses spek-
trum pengguna berlesen secara oportunis. Begitu juga, geganti meningkatkan liputan
penghantaran antara nod yang seterusnya mengurangkan kebarangkalian gangguan (OP)
dan meningkatkan kapasiti penghantaran (TC) rangkaian perkongsian spektrum. Metrik
(or parameter) ini boleh dikaji secara berkesan menggunakan pendekatan geometri
stokastik (SG): alat matematik untuk mengukur prestasi rangkaian tanpa wayar dalam
konfigurasi spatial yang berlainan. Bermotivasikan pernyataan di atas, penyelidikan ini
membentangkan tiga sumbangan kepada analisis prestasi sistem perkongsian spektrum
tanpa wayar generasi masa hadapan yang dibantu geganti (termasuk D2D, M2M, dan
CRN) menggunakan SG.

Keberadaan sejumlah besar peranti jenis mesin (MTD) dengan pengguna D2D dan selular
akan meningkatkan tahap gangguan di dalam seni bina selular. Manakala, peranti D2D
memerlukan geganti setiap kali ia berada jauh untuk meningkatkan prestasi pemadaman.
Walau bagaimanapun, bateri terhad atau sifat tidak altruistik pengguna tertentu boleh
menghalangnya daripada membantu pengguna lain untuk menyampaikan data. Dengan
menjangkakan pembangunan secara besar-besaran peranti jenis mesin MTD dengan
spesifikasi terkini, sumbangan pertama dalam tesis ini berkonsepkan bahawa MTD
boleh menyampaikan data kepada peranti D2D yang berjauhan. Dalam konteks ini,
model kebarangkalian diperkenalkan untuk ketersediaan peranti jenis M2M. Siasatan
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yang menyeluruh dibuat ke atas TC, keuntungan dan keseimbangan TC yang terlibat
untuk kedua-dua mod iaitu underlay dan D2D-overlay. Menggunakan pendekatan SG,
kebarangkalian penghantaran berjaya untuk semua pautan yang berkaitan telah diperolehi
bagi menentukan TC dalam senario ini dan memperlihatkan ungkapan komputasi untuk
mencapai TC. Tambahan pula, penerangan menyeluruh disediakan mengenai bagaimana
ketumpatan dan kuasa penghantaran MTD di dalam rangkaian memberi kesan terhadap
prestasi TC D2D. Hasil penyelidikan menunjukkan bahawa penggunaan peranti MTD
sebagai relay meningkatkan TC berbanding ketika hanya tradisional RN yang digunakan.
Begitu juga, TC memuncak capaian lebih tinggi pada daya penghantaran 23dB MTD.
Secara keseluruhan, daya transmisi yang lebih rendah (15 dB) menghasilkan prestasi
yang lebih baik. Oleh itu, kepadatan MTD yang tinggi dapat dimanfaatkan untuk
meningkatkan D2D TC apabila begitu banyak transmisi D2D berlaku di dalam sistem
dan ketika peranti ini semakin berjauhan.

Kajian literasi tentang analisis prestasi rangkaian radio kognitif tenaga-menuai mem-
fokuskan pada seni bina sekunder dual dan multi-hop. Juga, kajian literasi yang tersedia
mengenai seni bina multi-hop tidak dipelajari dalam konteks tenaga-menuai frekuensi
radio yang menjadikan kesan "transmisi primer multi-hop" tidak diketahui mengenai
prestasi pemadaman dua-hop tenaga-menuai CRN. Oleh itu, sumbangan kedua dalam
tesis ini adalah mengeksploitasi pendekatan SG dan kemajuannya dalam pengambilan
tenaga tanpa wayar untuk mengembangkan kerangka kerja bagi analisis kebarangkalian
gangguan penuaian tenaga underlay CRNs. Pada model ini, pengguna utama #−hop
dilengkapi dengan sumber tenaga yang berterusan sementara pengguna sekunder menuai
tenaga dari penghantaran peranti utama. Kuasa penghantaran pengguna sekunder
dikawal untuk memastikan ianya tidak melanggar sasaran hujung ke hujung OP untuk
tujuan utama rangkaian #−hop. Alat geganti berpotensi untuk mengumpul tenaga yang
mencukupi, layak untuk menyampaikan data kepada pengguna sekunder yang lain di
dalam rangkaian. Seterusnya, kajian ini mendedahkan kesan bilangan hop utama ke atas
kawasan pemilihan geganti dan tenaga yang dikumpul (yang biasanya tidak diketahui)
menggunakan model yang dipelajari. Juga, satu ungkapan untuk kebarangkalian
jumlah gangguan yang merangkumi kesan dari #−hops dihasilkan. Kesan parameter
lain yang berkaitan dengan kebarangkalian. Hasil menunjukkan bahawa rangkaian
primer multi-hop mengurangkan OP sekunder dengan mengatur jumlah transmisi relai
"tenaga-menaui" dalam rangkaian gangguan ditunjukkan dengan terperinci. Sumbangan
ketiga dalam tesis ini adalah menggabungkan pembatalan gangguan dalam analisis
gangguan rangkaian penuaian tenaga kognitif tanpa-wayar dimana peranti disebarkan
secara taburan Poisson.

Berdasarkan ambang gangguan, peranti dalam rangkaian utama diandaikan dapat mem-
batalkan sebahagian kecil daripada gangguan terkuat di seluruh rangkaian yang sering
menguasai gangguan dalam kedua-dua sistem. Bagi mencapai matlamat ini, pekali
pembatalan disesuaikan semasa menganalisis untuk mengurangkan tahap gangguan. Ra-
sionalnya adalah untuk membantu lagi rangkaian sekunder dalam menghadapi kekangan
kendalian utama dengan mengurangkan beberapa gangguan sendiri. Hasil analitikal me-
nunjukkan bahawa pendekatan ini dapat digunakan untuk mengurangkan pengurangan
OP yang sekaligus meningkatkan prestasi rangkaian. Walau bagaimanapun, ini adalah
bagi mengurangkan kebarangkalian kejayaan pengumpulan tenaga geganti dalam rangka-
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ian sekunder kerana beberapa gangguan dari peranti utama akan dibatalkan. Pembatalan
gangguan telah lama diperkenalkan sebagai pendekatan yang berkesan untuk mengu-
rangkan kesan gangguan dalam rangkaian tanpa-wayar. Walau bagaimanapun, interaksi
antara pembatalan gangguan dan pengambilan tenaga-kumpul dan bagaimana gabungan
kedua-duanya dapat digunakan dalam seni bina yang sama untuk meningkatkan prestasi
pemadaman dalam radio kognitif masih belum dikaji lagi.
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CHAPTER 1

INTRODUCTION

1.1 Background

Wireless mobile communication systems have experienced a tremendous change in traffic
within the last few years. This can be partly attributed to the emergence of smart
hand-held devices and internet-based applications. In this respect, the advent of the
fifth-generation wireless networks (5G) is expected to contribute tremendously towards
meeting the unprecedented traffic demands while also providing improved quality of
service (QoS) to users. 5G and the internet of things (IoT) are two trending areas that
are shaping the wireless communication terrain. 5G has a place in commerce and other
aspects of human lives. Particularly, a massive number of devices will be connected and
new application scenarios will emerge [1]. For example, 5G should significantly improve
the spectrum, energy and cost efficiencies compared to the technologies of the past. In
this context, spectrum sharing has the potential of improving the spectrum efficiency as it
allows devices to utilize the spectrum at the same time [2]. Another way to improve this
spectrum efficiency in 5G is by adopting new communication techniques. Among these
technologies are device-to-device (D2D) communication and cognitive radio networks
(CRNs) [3].

The huge capacity demands of emergingwireless communication is another challenge that
calls for efficient spectrum sharing mechanisms. For instance, the advent of machine-to-
machine (M2M) communication and IoT calls for the coexistence between technologies
such as the Long-Term Evolution (LTE) mobile communication standard [4]. Although
these technologies are promising in terms of their prospects and applications, the need to
improve spectrum utilization also increases the level of interference within the network
which has a negative impact on the system performance if not well managed. Moreover,
devices will need to communicate with each other to facilitate the interesting applications
(such as smart communication) they are expected to deliver. However, their performances
degrade within the channel when the level of interference is severe or due to pathloss
when the devices are far apart. This motivates the need for relays to further improve the
quality of communication by forwarding data from source devices to their destinations.

Two major metrics used to measure the performance of wireless communication and
spectrum sharing systems are transmission capacity (TC) and outage probability (OP).
These two metrics are closely connected as the former is a product of the density of active
devices and the successful transmission probability (STP) while the latter adds up with the
STP to give a total of 1 [5]. Similarly, stochastic geometry (SG) is one of the techniques
that have been extensively deployed within the last two decades to answer questions that
are pertinent to wireless networks involving randomly located transmitters and receivers
[6]. This mathematical tool has been deployed to study metrics such as energy-efficiency,
TC and OP. Particularly, the literature is rich in SG-based analyses of the TC and OP of
wireless systems. In line with this, this research is directed at analysing and improving
the performance (i.e., TC and OP) of relay-assisted spectrum sharing systems for future
wireless communication (which includes D2D and CRNs) using SG analyses.
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Figure 1.1: Typical relaying scenarios for relay-assisted D2D communication.

1.2 D2D communication

D2Dcommunication has been identified as a favourable technology for increasing network
capacity, user experience [7] and reliable connectivity of mobile devices [8]. It facilitates
mutual communication between devices in proximity with little or no base station (BS)
intervention [9, 10, 11]. Also, it is a major prospective technology for attaining energy
efficiency in cellular networks [12]. In 5G networks, D2D communication is regarded as
an enabling technology to achieve high spectral efficiency and ultra-densification [13, 8].
Furthermore, it enhances network throughput and reduces delay [14]. However, a major
challenge in D2D networks within a cellular architecture is co-channel interference which
occurs when the existing cellular transmissions interfere with D2D communication.

1.2.1 Relay-assisted D2D communication

D2D can play a life-saving role in applications such as disaster scenarios where the
traditional BS becomes dysfunctional (see [15] for example), and it is very difficult to
communicate with those outside of the disaster zones. In such cases, relay assistance can
be highly propitious [16]. In relay-assisted D2D communication, the source and desti-
nation devices discover an idle node between them to establish mutual communication.
The source node thus transmits data to the relay which decodes and forwards it to the
destination node.

Relay-assisted D2D significantly improves the network performance of traditional D2D
communication [17] in terms of TC [18]. When the source and destination devices are not
adjacent to each other, the application use-cases of D2D communication become more
restricted [19]. Thus, a universal solution cannot be achieved by D2D communication
without the intervention of relays [20]. For instance, when D2D pairs are farther apart,
the OPs of D2D links will increase.

2

© C
OPYRIG

HT U
PM



Moreover, nodes might not be able to reach other nodes due to constraints in transmit
power [21] in a single-hop. In such cases, most traditional interference management
schemes such as power control may not work. This motivates the need to enhance the
range of communication, thereby reducing the OP [22]. Also, in poor coverage areas,
relays can be used to improve network performance [23]. Thus, relay-assisted D2D
communication has several benefits and use cases (see the scenarios in Figure 1.1 for
example).

Device relaying can inherently bring to light the potential of cooperative communication
to meet the growing demand for higher data rates and capacity in 5G cellular systems
[24]. The use of relays facilitates multi-hop transmission which improves spectral reuse
within the network. There are also ‘promises’ of higher data rate, improved QoS, network
capacity and network load balancing. The ubiquity of D2D communication makes
the incorporation of multi-hop D2D communication conceivable as a part of a future
standard. This is because multi-hop D2D communication is not bounded to specific
geographic locations like traditional D2D communication [25].

1.2.2 D2D communication modes

Considering how user devices can access the licensed or unlicensed spectrum, D2D
communication can be classified into in-band (licensed) and out-band (unlicensed)1. The
in-band D2D can be further categorized into underlay and overlay modes (see Figure 1.2).
In the underlaymode, devices use the same spectrum for cellular andD2Dcommunication,
i.e., they share the same radio resources. One motivation for the consideration of inband
D2D communication is that the licensed spectrum has a considerable level of control
compared with the unlicensed band [14]. Asides this, [9, 14, 27] highlighted a number of
benefits including improved spectral efficiency due to the exploitation of spatial diversity.
Also, cellular devices can support inband D2D since the cellular frequency will be
exploited. Furthermore, resource allocation techniques can be easily deployed to manage
the network QoS.

Despite these benefits, inband D2D communication has its own drawbacks [27, 28]. A
typical challenge in underlay D2D is interference which could be addressed when proper
power control and interference management techniques are considered. However, these
may require very complex resource allocation techniques [9]. In the overlay mode, D2D
uses a dedicated spectrum orthogonal to that of cellular communication. The cellular
resources could be underutilized and a typical user cannot perform simultaneous cellular
and D2D transmission. The use of the overlay mode may poorly affect the QoS due to a
high level of unmanaged interference resulting from other wireless technologies sharing
the same spectrum [13, 27]. This interference cannot be controlled by the BS. Thus,
the underlay D2D is more popular [9] and it is the focus of this research. Considering
relay-assisted D2D communication, user devices can function in one of three modes: a
cellular mode where they function as traditional cellular users (CUEs), D2D mode where
they communicate in a D2D fashion, and relay mode where they relay data for other
devices.

1In out-band D2D communication, the interference from D2D to eNodeB-UE is absent [26] as the frequency
spectrum used by D2D does not overlap with the cellular spectrum [9].
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Figure 1.2: In-band D2D spectrum sharing modes.

1.2.3 Spectrum sharing in D2D networks

In the quest for effective utilization of the scarce cellular network resources, it is imperative
that the wireless channel should be shared efficiently [29]. Spectrum sharing occurs
when users/radio communication systems use the same spectrum resource. Sharing
could occur in frequency, time and place (space) [30]. A fundamental component which
affects spectrum sharing systems is the device density. In a dense relay-assisted D2D
communication network, the chance of a more efficient spatial re-use is higher since the
spectrum will be ‘heavily’ used by these systems across the entire network. However, for
effective network performance, the QoS requirements of participating systems have to be
met [31]. In this regard, the level of reliability in terms of success probability for specific
data rates has to be given proper consideration.

On the other hand, the demand for spectral resources becomes higher. Also, a dense
network will experience more interference which significantly affects network perfor-
mance. The level of interference dictates what type of resource allocation mechanisms,
mode control, and power control is required to guarantee the target signal-to-interference-
plus-noise ratio (SINR) thresholds for different systems within the network. Therefore, a
deeper understanding of the effect of device density on the network is crucial.

There are several models for spectrum sharing in relay-assisted D2D networks consisting
of cellular devices, D2D devices, and relay nodes (RNs). As mentioned earlier, relay-
assisted D2D has positioned itself as a potential approach to tackle some of the traditional
challenges of D2D communication such as coverage. Also, efforts have been made to
model and unveil its performance in diverse application use cases and physical layer
configurations using mathematical tools such as SG.
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1.3 Cognitive radio networks

Cognitive radio technology has the potential to improve the spectral utilization efficiency
[1, 32, 33] by filling ‘holes’ in the wireless spectrum. It can address the problems of
spectrum scarcity and requirements in future wireless communication systems [34]. This
is because devices can effectively learn, sense and be ‘cognitive’ of parameters relating to
the operation of the channel environment [35]. In applications like IoT, cognitive sensors
can make the network more spectrally efficient [36]. CRNs can function in one of three
modes: underlay, overlay and interweave. The transmit power of cognitive devices are
controlled based on the channel state to meet up with the interference constraints in the
underlay [37]. In the overlay, the power of secondary devices is used for secondary com-
munication and relaying primary transmission [38]. Spectrum occupancy is periodically
monitored and intelligently detected in the interweave mode. Also, communication is
made over the spectrum holes in an opportunistic manner [38]. Among these modes,
the underlay mode is known for its high spectral utilization efficiency [39]. Thus, this
research focuses on the underlay spectrum sharing mode.

1.4 Other related technologies

Aside D2D communication and CRNs, other concepts considered in this thesis include
M2M communication, Radio-frequency energy harvesting (RF-EH) and interference can-
cellation (IC). These technologies are described as follows:

1.4.1 Machine-to-machine communications

To meet the major technical demands for 5G in cellular networks, D2D communication
will coexist with other paradigms such as M2M technology [40, 41]. M2M communi-
cation is distinguished by the autonomous interaction of a large number of intelligent
machine devices to perform sensing, processing and actuation activities without human
intervention [42, 43, 44]. These devices could be meters in smart grid, electronics and
servers, and navigation sensors used for relaying information through a network. Themain
characteristic that sets M2M apart from other communication paradigm is the absence of
human supervision [42, 43, 45, 46, 44]. The primary aim of M2M communication is to
enable smart devices connect [47].

Current projections of M2M nodes (i.e., machine-type devices, MTDs) to be deployed
in the future show that M2M could account for almost half of connected devices [48],
reaching the order of millions. The massive number of machine devices [49] will be a
major enabler of the IoT [50, 51]. Machines can connect to each other (in a D2D fashion)
or connect to gateways to relay data to the BS using wired or wireless links [52]. Some
interesting applications of M2M are smart meters, autonomous vehicular communication
and e-health [42, 53, 54]. This fast-growing paradigm with billions of interconnected
machines in different applications is imminent [55].

On amore general note, M2Mplays a significant role in the realization of IoT applications.
These include home automation, surveillance, transport, smart environment and health-
care [56]. A peculiar characteristic of this technology is its massive deployment which is

5

© C
OPYRIG

HT U
PM



predicted to be of the order of millions. This puts technical experts in a critical position
to think of the major obstacles on the path to its practical realization and how these
challenges can be effectively addressed. Generally, some of the most prominent tech-
niques for addressing these challenges in relation to energy-efficiency, spectral-efficiency
and reliable communication are RF-EH, cognitive radio technology and multi-hop data
transfer.

1.4.2 Radio-frequency energy harvesting

Radio-frequency (RF) is an affordable and easily accessible energy source found in hand-
held devices, television or radio towers, satellite transmitters, Wi-Fi routers and cellular
mobile base stations [32, 56]. It is suitable for long-distance transmissions such as
simultaneous wireless information and power transfer (SWIPT) [57]. RF can be used
to charge low-power mobile devices such as electronic watches, mp3 player, hearing
aid, wireless keyboard/mouse [58] and other wearable devices like google glasses [59].
RF-EH is a paradigm where RF signals serve as energy harvesting (EH) sources for
wireless nodes [60]. It allows devices to harvest energy for information processing
and transmission. As such, it can function within applications such as wireless sensor
networks (WSN), e-health and radio-frequency identification (RFID) [58]

RF-EH for CRNs

Considering that cognitive devices consume a significant amount of energy during their
operations (e.g., periodic sensing of the spectrum and decision making coupled with
signal processing and data transmission), it is essential that an alternative source of power
is considered for powering these devices [61]. Recently, harvesting ambient interference
was found to be highly propitious for green communication. In simple terms, this means
the interference will be ‘harvested’ and used to power devices within the network. Since
it may be difficult to power all IoT devices using RF-EH, some researchers consider
devices that perform special tasks or have a higher energy burden such as RNs as EH
devices. Note that in scenarios like cognitive-based EH IoT networks, it is essential to
preserve/respect the outage constraints of PUs (i.e., licensed users).

IoT devices in the unlicensed band could harvest energy from primary transmissions and
devices that have harvested sufficient energy can function as relays. This cognitive com-
munication is beneficial as it is more spectral-efficient and the high-density IoT devices
increase the spatial reuse. CRN can be opportunistically powered to exploit underutilized
network by harvesting the freely available energy without an energy supplement [62].
Moreover, cognitive devices can harvest energy to dynamically access the licensed band
[63] which brings benefits in terms of energy and spectral efficiencies. To take these
benefits, RF-EH CRN is considered in this thesis. From the two common architectures
used in EH networks, power splitting and time switching architectures, the time switching
architecture is adopted in this thesis (because of its simplicity [57, 58]).

Another important component required in the analysis of EH networks relates to the
choice of energy harvesting conversion efficiency model, i.e., either linear or non-linear
EH models. Particularly, the linear model is quite malleable for analysis using SG since
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a constant between 0 and 1 is used. This model is well used in the literature and it is also
considered in this thesis. Although the non-linear EH model is more practical, it has a
variable conversion efficiency which complicates the procedure for obtaining the energy
harvesting success probability using stochastic geometry.

1.4.3 Multi-hop CRNs

Multi-hop communication finds unique applications in underlay CRNs as it helps to
subvert issues relating to channel impairments [64]. In otherwords, the use of intermediate
RNs in multi-hop relay networks can help to overcome issues of attenuation and fading to
achieve reliability and network performance efficiency [58]. This improves the coverage
and reliability of the network [32]. However, relays would also require energy to support
their functionality. Note that replacing the batteries of some battery-constrained relays
placed in toxic environments and walls might be difficult. Therefore, EH is a suitable,
safe and cost-saving approach to power up relays [32] in such cases.

1.4.4 Interference cancellation

One of the main limitations of the cellular/ network performance is interference caused
by ‘human-designed’ devices [65]. When devices and relays share the spectrum with
primary users (PUs), this interference further aggravates. Similarly, in a scenario with
dense network infrastructure, there exist an advantage of improved signal power which
comes at the cost of an almost equal increase in interference; thereby limiting the spec-
tral efficiency gains. Two major techniques used to tackle interference are interference
avoidance/coordination and interference cancellation (IC). The former may not be as
competitive as the latter when spectrum utilization is taken to account. This is because IC
facilitates an aggressive spectrum reuse [66]. Thus, IC is a typical approach to mitigating
interference in wireless networks where the desired information is demodulated and/or
decoded. It is used with the estimate of channel states to cancel the interference from
the received signal [65]. IC is a very competitive approach with respect to spectrum
utilization [66].

1.5 Stochastic geometry

Evaluating the performance of wireless communication can be achieved using different
approaches. One such approach is SGwhich has been used extensively within the last two
decades to answer questions pertinent to wireless networks involving randomly located
transmitters and receivers [6]. Particularly, the TC metric using SG has proven to be
very useful as it reveals the network performance in relation to the number of successful
transmissions of user devices of a particular density. Another widely studied performance
metric for wireless communication using SG is the OP [67]. SG has also been handy for
deriving the closed-form expression which captures the impact of the key parameters of
interest and provides design guidelines to network designers and operators [68, 69]. The
parameters of interest include the density of devices, their transmission power and the
QoS expectation in terms of the SIR.
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1.6 Problem statement

After an extensive review of the literature on relay-assisted future generation wireless
spectrum sharing systems (which include D2D, M2M, and CRNs), it was observed that
there is a need to develop new architectures and analytical models that improve on the
successful transmission performances of these systems. Firstly, it was realized that the
existing models on relay-assisted D2D communication have not considered the potential
of using the newly specified MTD devices as relays to improve the transmission capacity
of D2D devices. Also, a systematic SG-based analytical investigation on the impact of
a massive number of MTDs on the TC performance of D2D communication assisted by
randomly selected DUE and MTD relays is lacking in the current literature.

The outage performance of EH-based relay-assisted random underlay CRNs has been
recently investigated in the literature using SG-based models. However, the proposed
model failed to consider the potential of increasing the spectral reuse of the primary
network and the potential improvement that can be achieved using a multi-hop primary
network. Similarly, trade-offs between the OP and EH success probability have also not
been researched in the literature. Additionally, the impacts of the number of primary
hops and other network parameters on the secondary outage performance, relay selection
region and the harvested energy have not been investigated.

Although IC has been well-studied in different portions of the literature such as adhoc
networks, none of the works in the literature has considered the potential of IC in an EH
cognitive relay network (where meeting the primary outage constraint has a priority) de-
spite that cancelling the interference experienced at the primary receiver has the potential
to reduce the secondary outage performance.

1.7 Research questions

The research questions are summarized below.

1. Does the introduction of M2M relays have the potential to improve the TC of D2D
communication?

2. How does the number of primary hops impact the secondary outage performance,
relay selection region and harvested energy in an EH-based relay-assisted CRN
with multi-hop primary transmissions?

3. How does the cancelled portion of the residual interference power impact the
secondary outage performance, relay selection region and harvested energy in
an EH-based relay-assisted CRN with strong interferer cancellation at primary
receivers?

1.8 Research motivation

Spectrum sharing systems play significant roles in the development of future wireless
generation communication systems as they improve the spectrum utilization between de-
vices sharing spectral resources. However, interference becomes a major obstacle that
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negatively impacts the quality of communication. The use of relays is propitious for im-
proving the performance of spectrum sharing systems for future wireless communication.
It has the potential to facilitate data transmission among devices whenever the interference
in the network is severe. Thus, improving the number of successful transmissions using
relays is a current research focus in the literature.

Although, the introduction of relays and interference mitigation techniques can help to
improve on the network performance, in certain cases, some devices are unwilling to
relay data for others (in the case of D2D communication). Also, in cognitive radio
networks with stringent primary outage constraint, it is essential to guarantee the QoS
requirement while ensuring the secondary network does not have to significantly degrade
its performance. To address these issues, new models are required to improve on the
outage performance of cognitive radio networks. These motivate this research to aim at
improving successful transmissions in relay-assisted spectrum sharing systems with D2D
and CRN as the subjects of focus. These paradigms are studied using SG tools.

With the aforementioned in mind, an RF-EH scenario where SUs can harvest RF energy
from other licensed users [70] is considered. This is considerable because a large number
of machine devices will be deployed in future 5G and IoT networks. Such devices will
generate much interference that could be exploited using wireless EH [57]. In scenarios
where devices are energy-constrained, relaying data becomes another challenge as it is
also an energy-consuming process. Hence, taking advantage of EH is a good option. The
SUs in this case harvest energy from the interference of primary users (PUs). Using this
as an energy source provides a better secondary throughput [71].

Additionally, the primary devices transmit in a multi-hop fashion (similar to [64]). Note
that the primary distance in this model is short. This is because the current IoT devices
are designed to be of low power which implies they should have a low transmission range.
Such devices are typical examples of PUs. The projected future EH-based networks will
be able to provide for a range of 5 − 100< [72] which could constitute the secondary
network in this model.

1.9 Research objectives

This research aims at proposing new architectures and developing analytical models for
improving the successful transmissions of devices transmitting information in wireless
spectrum sharing systems assisted by relays. In particular, this will help to increase the
transmission capacity and reduce the outage probability of spectrum sharing networks
(i.e., D2D and CRN, respectively). The first objective represents that of the D2D network
while objectives two and three relates to CRN.

1. To develop an analytical model for improving the TC of relay-assisted D2D com-
munication using machine type devices as relays.

2. To develop an analytical model for EH-CRNs with multi-hop primary relays for
improving the OP of energy harvesting cognitive relay networks.

3. To develop an analytical model for EH-CRNs with interference cancellation at
primary receivers to improve the OP of energy harvesting cognitive relay networks.
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1.10 Research contributions

This thesis contributes to the existing knowledge by improving the successful transmission
performance of the relay-assisted spectrum sharing networks and revealing the associated
trade-offs. These research contributions are as follows:

• It extensively reviews and classifies the existing works on the SG analyses of relay-
assisted D2D communication.

• It proposes the use of machine type relays for improving the transmission capacity
of relay-assisted D2D communication. As such, an analytical framework for the
transmission probability of D2D communication with M2M coexistence is devel-
oped where machine type devices function as relays for D2D devices to improve
the TC performance.

• It develops an analytical framework for the outage probability of energy harvest-
ing cognitive radio network with multi-hop primary users to improve the outage
probability of energy harvesting cognitive relay networks

• It designs an analytical framework for interference cancellation, enabled at the
primary receivers, to reduce the outage probability of secondary users of energy
harvesting cognitive radio networks.

1.11 Research methodology

This section presents the research methodology adopted in this thesis. The research steps
taken from the problem statement to the performance evaluation are clearly discussed.

1.11.1 Notations

The notations used in this research are local to each section and are provided in each
section to make it easier for the reader to follow. Similarly, to facilitate a well-structured
and a smooth reading experience considering the three contributions, the system model
for each research contribution is provided in the respective chapter. However, a general
point of note is that all the networks involve devices sharing a spectrum and using relays
to improve on their chances of successful transmission.

1.11.2 Research framework

The research framework is shown in Figure 1.3. It is divided into interrelated stages
that follow in order. These stages include the research problem formulation, bench-
marks re-implementation, proposed methods, analytical experiments and comparison
with benchmarks.
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Figure 1.3: Research framework.
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1.11.3 Problem formulation

The literature review on relay-assisted future generation wireless spectrum sharing sys-
tems reveals the need to improve on the successful transmission probability and tackle
interference. To have a better understanding of SG, the fundamentals of this mathematical
tool, its general principles and established theorems were studied to learn what problems
could be solved using this tool and what metrics are considered.

Of particular interest is the model developed in [31] where the authors developed a
framework for the transmission capacity of spectrum sharing systems which served as a
basis for this research and many other works carried out in this area.

1.11.4 Benchmarks re-implementation

The first benchmark paper [73] adopted the model in [31] by considering the expected
distance between D2D devices for a two-tier spectrum sharing scenario where D2D
devices are assisted by traditional relays. The source codes were available online2. The
d-s within the paper were matched with the code by changing the notations in the code to
conformwith the paper. Thereafter, the literature on this subject was extensively studied3.
The next step was to extend this model to a three-tier model and thoroughly study how
the use of M2M relays can be analytically adapted into such a model to improve the TC.

One of the challenges encountered was how to split 1 − exp (_1 + _3) into two distinct
probabilities that accommodate MTD relays and traditional D2D relays. This challenge
was successfully tackled by developing a probabilistic model where the existence of MTD
relays and traditional relays are tied to a global probability of one based on their individual
existence probabilities. The details are given in Chapter 3.

The second benchmark [74] used a fundamental theorem in [31] to develop the OP of
EH spectrum sharing systems. The paper was re-implemented and the exact results were
obtained. Similarly, the analytical derivations were followed step-by-step to reproduce
the analytical results in the paper. This follows what is shown in Appendix C of this
thesis.

1.11.5 Proposed methods

The proposed methods focus on improving the successful transmissions (in D2D and
CRNs) and addressing interference (in EH-CRNs). These objectives were achieved by
introducingM2M relays to improve D2D transmissions, incorporating multi-hop primary
transmissions in EH-CRNs, and applying strong-IC to EH-CRNs. The procedure for
obtaining the analytical expressions in Chapter 3 is shown in Figure 1.4. For Chapters 4
and 5, the steps are shown in Figure 1.5.

2http://oa.ee.tsinghua.edu.cn/dailinglong/
3This led to the publication of two survey articles: the first on D2D communication and the second on relay

assisted D2D communication using stochastic geometry (see the list of publications).
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Figure 1.4: Procedure for the analysis in Chapter 3.
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Figure 1.5: Procedure for the analysis in Chapters 4 and 5.
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1.11.6 Analytical experiments

The analytical experiments in this research were carried out in MATLAB R2018a and
MATLAB R2019b (student version). Note that since analytical results are derived, any
version of MATLAB or any mathematical software should produce similar results with
what was obtained in this research. The university PC with processor specification:
Intel(R) Core(TM) i5-3470 CPU@ 3.20GHz (4CPUs), 3.2GHz was used to carry out
the computations in this thesis. The network parameters follow from [73] (Chapter 3)
and [74] (Chapters 4 and 5) while the IC parameters are taken from [75] which are the
benchmarks used. The source codes for all the results published from this thesis (see list
of publications) can be downloaded from the article page on the publishers website.

1.11.7 Performance metrics

The two performance metrics referred to in this thesis for evaluating the considered
cellular networks are described below.

Transmission capacity

Transmission capacity refers to the number of successful transmissions that take place
per unit area in a network, given a constraint in the OP [76]. TC measures the intensity of
transmissions in space. It ismotivated byfixing theOP to achieve a proper characterization
of network performance. TC metric was initially developed for the analysis of the spread
spectrum in adhoc networks. It has found a lot of applications in wireless networks
(specifically in decentralized networks that are difficult to characterize) since then. TC
has been studied in systems with respect to IC [77, 78, 75], scheduling and power control
[79, 80], CRN [81, 82, 83], frequency spread spectrum [84, 85], multiple antennas
[86, 87, 88, 76], etc.

Outage probability

Outage probability is an essential QoS parameter [89] used in wireless communication
systems. OP is the probability that an end-to-end signal-to-noise ratio falls below a par-
ticular protection ratio in noise-limited systems [90]. It is thus an important performance
measure in wireless networks [91]. In cognitive relay networks, the OP is affected by the
transmission distance [92]. Note that in random networks, the distance between a relay
in the secondary network and its destination is a random variable.

1.12 Research scope

This research focuses on using SG for the analysis of relay-assisted spectrum sharing
systems which include D2D communication and cognitive radio networks. A homoge-
neous Poisson point process distribution (where devices are randomly located in the field
of interest) is considered for all devices. Also, the systems studied are assumed to be
assisted by relays. For ease of analysis, Rayleigh fading channel model is considered for
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the special case where the fading coefficient equals 4. This is due to its tractability and
the potential to yield closed-form expressions. Moreover, it is a common assumption in
stochastic geometry literature.

1.13 Thesis structure

This thesis is organized into six chapters. The description of each chapter is as follows:

Chapter 1 provides the background of this thesis. Therein, the concepts and motivation of
spectrum sharing networks, relaying and relevant technologies such as D2D, M2M, and
cognitive radio communication are introduced. The concept and significance of energy
harvesting for cognitive radio networks and interference cancellation are introduced.
Thereafter, the research problem, motivation, objectives, contributions and methodology
are all provided. Following the approach considered in presenting most of the thesis
published in stochastic geometry, the methodology is not considered a separate chapter
for coherence of presentation. For each contribution, details on the system model,
assumptions and notations are provided to make it easy to follow.

Chapter 2 introduces the role of stochastic geometry in the analysis of wireless networks.
A detailed review of the literature on the focus of this thesis is provided. This includes
the transmission capacity analysis of D2D communication and the outage analysis of
cognitive radio networks with classifications. Strengths and limitations of these works
are also provided. Thereafter, the chapter is summarized.

Chapter 3 is focused on the first contribution: transmission capacity analysis of relay-
assisted D2D cellular networks with M2M co-existence. It describes the assumptions
used, the network and the channel models for this contribution. Furthermore, derivations
of the RN existence probability and relay distance expectation are provided. The general-
ized STP for spectrum sharing systems and pertinent lemma used in the analysis are given
in this section as well. TCs of relay-assisted D2D communication with M2M coexistence
for static and variable D2D link distance in the underlay and overlay are analyzed for
Scenarios 1 and 2. Thereafter, the obtained results and discussions for both underlay and
overlay modes are presented. A summary is provided at the end of this chapter.

Chapter 4 is dedicated to the second contribution: outage analysis of energy harvesting-
based relay-assisted random underlay cognitive radio networks with multi-hop primary
transmissions. In this chapter, the systemmodel which includes the network model, chan-
nel model, and transmission and EH model is described. The secondary OP expression
for the proposed network is also derived. Thereafter, results and discussions are presented
and the chapter is summarized

Chapter 5 studies the outage analysis of energy harvesting-based relay-assisted random
underlay cognitive radio networks with interference cancellation. Therein, a description
of the system model that comprises the network model, channel model, and transmission
and EH model is provided. Furthermore, the secondary OP expression for the pro-
posed network is derived. Analytical results are discussed and the chapter’s summary is
provided.
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Chapter 6 concludes this research by describing what has been achieved in the course of
addressing the three main objectives set out in this thesis. The implications of the findings
in this research within the context of wireless communication are provided. Then, other
avenues for research are given to motivate further work in these areas.
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