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Nanocarriers-based drug delivery systems have become the new option for treating 

cancer due to their negligible side effect. Sorafenib (SF) and 5-Fluorouracil (5FU) drugs 

have severe side effects on the human body. Therefore, new nanocarriers-based drug 

delivery systems should be implemented to load these drugs. In this study, SF and 5- FU-

loaded chitosan nanocarriers with and without graphene oxide (GO) and folic acid (FA) 

were synthesized to evaluate the anticancer activity on human liver cancer (HepG2) and 

colon cancer (HT29) cells. All the nanocarriers were prepared by the ionotropic gelation 

method where drugs were entrapped with chitosan and chitosan/graphene-oxide 

composite via cross-linking with sodium tripolyphosphate (TPP). The nanocarriers were 

found uniform size with efficient drug loading and encapsulation. Chitosan nanoparticles 

(CS NPs) loaded with SF drug (SF-CS-SF NPs) was found 76 nm while folate conjugated 

SF loaded chitosan NPs (SF-CS-SF-FA NPs) was found 82 nm. Besides, SF and 5-FU 

loaded CS NPs (SF/5FU-CS-SF NPs) were found 78 nm and FA conjugated SF/5FU 

loaded CS NPs (SF/5FU-CS-SF-FA NPs) was found 142 nm. Moreover, the GO/CS 

composite based SF loaded (GO-CS-SF) was found 122 nm and folate conjugated 

GO/CS composite based SF loaded nanocomposite (GO-CS-SF-FA) was found 164 nm. 

All the nanoparticles' encapsulation efficiency was found to be 70-80% while 

nanocomposites encapsulation efficiency was found 80-90%. XRD and FTIR evaluation 

found the amorphous structure and the chemical bond formation of the nanocarriers, 

respectively. The in vitro release study showed the sustained release of the drugs from 

all the nanocarrier systems. The nanocomposites were found slightly slow release 

compared to nanoparticles. Overall, most of the drug (90%-100%) release was achieved 

within120 hours for all samples. The cytotoxicity study revealed better anticancer 

activity compared to the free drugs alone against human hepatocellular carcinoma 

(HepG2) and human colorectal carcinoma (HT29) cells. The IC50 value for pristine 

drugs is higher than nanocarriers. Moreover, all the nanocarriers have shown no toxicity 

to normal fibroblast human dermal fibroblast adult cells (HDFa). This is towards the new 

generation of drug delivery systems of tailor-made properties with better efficacy and 

accuracy. 
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Sistem penyampaian ubat berasaskan pembawa nano telah menjadi pilihan baru untuk 

merawat kanser kerana kesan sampingannya yang boleh diabaikan. Ubat-ubatan, 

Sorafenib (SF) dan 5- Fluorouracil (5FU) mempunyai kesan sampingan yang teruk pada 

tubuh manusia. Oleh itu, sistem penyampaian ubat berasaskan pembawa nano baru perlu 

dilaksanakan untuk memuatkan ubat-ubatan ini. Dalam kajian ini, SF dan 5-FU-

dimuatkan di atas pembawa nanokitosan dengan/dan tanpa grafin okisda (GO) dan asid 

folik (FA) dan telah disintesis untuk menilai aktiviti antikansernya pada sel-sel kanser 

hati manusia (HepG2) dan kanser kolon (HT29). Kesemua pembawa nano telah 

disediakan dengan kaedah gelasi ionotropic, di mana ubat-ubatan telah terperangkap 

dengan komposit kitosan dan kitosan / grafin-oksida melalui hubungan silang dengan 

natrium tripolyphosphate (TPP). Penyampain nano yang telah disintesis didapati 

berukuran seragam dengan muatan dan enkapsulasi ubat yang cekap. Nanopartikel 

kitosan (CS NPs) yang dimuatkan dengan ubat SF (SF- CS-SF NPs) didapati bersaiz 76 

nm sementara NPs kitosan SF konjugasi folat (NFs SF-CS- SF-FA) didapati bersaiz 82 

nm. Selain itu, SF dan 5-FU dimuatkan CS NPs (SF / 5FU-CS-SFNPs) didapati bersaiz 

78 nm dan FA konjugasi SF/5FU CS NPs dimuatkan (SF / 5FU-CS- SF-FA NPs) didapati 

bersaiz 142 nm. Lebih-lebih lagi, SF yang dimuatkan komposit GO/CS(GO-CS-SF) 

didapati bersaiz 122 nm dan komposit folat konjugasi GO/CS berasaskan SF dimuatkan 

(GO-CS-SF-FA) nanokomposit didapati bersaiz 164 nm. Semua kecekapan enkapsulasi 

nanopartikel didapati disekitar 70- 80% manakala kecekapan enkapsulasi 

nanokompositnya didapati disekitar 80-90%. Penilaian XRD dan FTIR, masing-masing 

mendapati struktur amorfos dan pembentukan ikatan kimia pembawa nano. Kajian 

pelepasan in vitro menunjukkan pelepasan ubat yang berterusan dari semua sistem 

pembawa nano. Bagi nanokomposit, didapati pelepasan sedikit perlahan berbanding 

dengan nanopartikel. Secara keseluruhan, majoriti pelepasan ubat (90 - 100%) dicapai 

dalam masa 120 jam untuk semua sampel. Kajian sitotoksisiti menunjukkan aktiviti 

antikanser yang lebih baik bagi nanokomposit berbanding dengan ubat bebas terhadap 

sel-sel karsinoma hepatoselular manusia (HepG2) dan sel-sel karsinoma kolorektal 

manusia (HT29). Nilai IC50 untuk ubat-ubatan asli adalah lebih tinggi daripada 
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pembawa nano. Tambahan lagi, semua pembawa nano tidak menunjukkan toksik kepada 

sel-sel fibroblas dewasa manusia biasa (HDFa). Ini adalah ke arah generasi baru sistem 

penyampaian ubat dengan ciri yang boleh dilaras dengan keberkesanan dan ketepatan 

yang lebih baik. 

 

 

Kata kunci: Sorafenib, 5-fluorouracil, Asid folik, Nanopartikel kitosan, Grafin oksida, 

nanopartikel, nanokomposit, system penyampai, terapeutik, sel HepG2, HT29dan HDFa.  
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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Background 

 
 
The term, “Nanotechnology” was first conceptualized by an American physicist name 

Richard Feynman back in 1959 [1]. Nanotechnology involves the discovery of novel 

materials and manufactures them for the development of nano systems, or nanostructured 

material for extensive use in the fields of science and research. This technology initializes 

the construction or reconstruction of nanomaterials at the molecular or atomic level. 

Nanomaterials exhibit great research and development potential in medical applications. 

Some of these applications include therapeutic, diagnosis, theranostic, biosensing, 

nanomedicine, and nanodrug delivery. Nanotechnology has transpired with therapeutics 

and theranostics nanocarrier-based drug delivery system (DDS) based on nanosized 

materials. The synthesis of new nanomaterials has led to the development of new drug 

delivery systems. These materials offer great excitement to scientists and researchers as 

they exhibit unique characteristics that are more superior to their bulk counterparts. 

 

 

Nanomaterial-based DDS such as nanoparticles and nanocomposites can target the 

deadliest diseases like cancers, tuberculosis, etc. to deliver the therapeutics agents. For the 

sake of efficient drug transport, the nanostructured materials play a crucial role to deliver 

the drugs to the targeted sites. These nanocarriers DDS are effectively reducing the drug 

dosage with controlled/sustained release of the drug, resulting in less or no side effects 

[2]. 

 

 

1.2 Nanomedicine 

 
 
The term "Nanomedicine" was first reported by Drexler et al. in 1991 [3]. Integration of 

nanotechnology towards the medical field has been considered as the implementation of 

nanomedicine. Nanomedicine is often exhibited as nanodrug delivery systems. The goal 

of nanomedicine is to develop sophisticated drug delivery strategies, effective drug 

delivery systems such as nanodrugs or nanodelivery systems [4]. The nanomedicine based 

nanodelivery systems (NDS) play an effective role to the delivery of therapeutics and 

theranostics agents such as drug, gene, imaging agents, etc., to improve 

pharmacokinetic/pharmacodynamic profiles of therapeutics agents, enhance drug 

penetration and its biodistribution, optimize the efficacy of anti-cancer agents, target the 

specific disease site without affecting the normal cell or tissue [4-6]. 
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1.3 Nanodrug Delivery Systems 

 

 

Nanodrug delivery system (NDDS) usually refers to the nanomaterials or nanostructured 

materials-based delivery system to deliver therapeutic, diagnostic, or the combination of 

both, the so-called theranostic agents to the specific region of disease to overcome the 

toxicity of the agents [7]. The NDDS offers a potential opportunity to enable the stability, 

biodegradability, bioavailability, solubility, low toxicities of therapeutic agents [8]. 

NDDS gains attention in the last decade in the clinical phase most recently in the medical 

world. NDDS can transport and release drugs at the site of action over a long period of 

time by enhancing drug activity and preventing drug accumulation in normal cells, thus 

avoiding wastage of drugs, and killing of healthy cells. To treat cancer with low toxic 

systems is a big aspiration of the researchers. The NDDS encompasses the most 

important aspect in drug delivery by targeting the site-specific delivery of the drugs with 

unwanted side-effects. NDDS sometimes refers to a nanocarrier drug delivery system or 

the host of the therapeutics agent’s delivery. In this work, chitosan and graphene oxide 

nanomaterials were used as the host to deliver Sorafenib and 5-Fluorouracil drugs to the 

liver and colon cancer cells. chitosan and graphene oxide both exhibited excellent 

properties such as biodegradability, bioavailability, non-toxic, anti-inflammatory, and so 

on which make them worthy as a host for nanocarrier materials [9]. 

 

 

1.4 Problem Statement 

 

 

The current conventional treatment of Sorafenib and 5-Flurouracil is usually associated 

with high toxicity, poor absorption in the tumor cell, low specificity, drug losses, 

damaging healthy organs or cells, non-specific distribution of drugs, unwanted 

distribution, multiple drug resistance (MDR), high clearance rate, drug loss before it 

reached the cancer cells, high clearance rate and tremendous side effects. Besides, they are 

often cleared from the circulation before reaching the target site and thus do not 

accumulate in the tumor region. These drugs block the signaling pathways that can lead 

to some extent to disrupt normal cell functions. Even though they primarily inhibit cancer 

cell proliferation, but they also inhibit normal cell growth such as hair follicles, bone 

marrow and gastrointestinal tract cells in the body. This leads to a low rate of patient 

survival profile. Therefore, it is necessary to develop novel strategies and novel 

nanocarriers that will carry the drug molecules specific to the affected cancerous region 

in an adequate amount and duration within the therapeutic window [10-17]. 

 

 

Chitosan and graphene oxide are evaluated in this study as nanocarrier materials as there 

is not a lot of research has done with chitosan and graphene oxide to load Sorafenib and 

5-Fluorouracil drugs. To develop the therapeutics novel nanodrug delivery systems using 

chitosan and graphene-based materials is a challenging task for the current researchers to 

manufacture with efficient parameters and physio-chemical characteristics for better 

therapy, imaging, controlled release of drugs. For example, when larger size of 

nanocarriers is administered into the human blood vessels, they often are trapped by 

various biological compound such as protein, enzymes and other different organs and 

released therapeutics agents before it reached to the tumor cells. Besides, nanocarriers 

with very small size often escape the uptake by the targeted organs and eliminate from 

the body without proper release of therapeutic agents. As a result, it is crucial for scientists 
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to optimize and formulate the chitosan and graphene based nanocarrier systems in the 

size of more than 50 nm and less than 200 nm to load significant amount of therapeutics 

agents and deliver it effectively to the cancer cells. [18]. 

 

 

Sorafenib (SF) is a multi-kinase inhibitor, and it inhibits cell proliferation, angiogenesis, 

and threonine kinase activities in tumors [19]. However, like other anticancer drugs, the 

efficacy of SF is associated with high toxicity to normal healthy tissues. Besides, the 

bioavailability of oral uptake of SF is low. Due to the poor aqueous solubility and low 

bioavailability (~8.43%), the clinical use of SF is limited for cancer treatment which is 

leading to the necessity of developing better formulations of delivery system of SF to 

increase the antitumor efficacy [20]. On the other hand, 5- Fluorouracil (5FU) is the first-

line drug for colon cancer. However, the low drug uptake, drug resistance, drug toxicity 

significantly limits the clinical efficiency of 5FU [21]. Studies have found that the 

anticancer efficacy of SF and 5FU has been improved using various types of nanocarriers, 

such as polymer nanoparticles, inorganic nanoparticles, micelles, liposomes, etc. [22-

25]. Therefore, this work focused on the development of new formulation of nanocarrier 

systems with efficient loading of SF and 5FU for effective delivery or transport of the 

drugs to the cancer cells. Furthermore, the study focuses on the synthesis, 

characterization, and optimization of Sorafenib-loaded chitosan nanoparticles, Sorafenib 

and 5-Fluorouracil loaded dual drug-chitosan nanoparticles and Sorafenib-loaded 

chitosan graphene oxide nanoparticles. All the nanodelivery systems were conjugated 

with folic acid to synthesize the folate-conjugated nanocarrier delivery systems to test 

the efficacy. Nanodelivery systems were evaluated by the cytotoxicity study using HDFa, 

HepG2, and HT29 cell lines. 

 

 

1.5 Hypothesis 

 

 

The chitosan and graphene exhibit high surface area and high stability to hold the drugs as 

a result, the synthesized nanodelivery systems are anticipated to improve the delivery 

efficiency as well as enhance the accumulation of dose of Sorafenib and 5- Fluorouracil 

drugs in cancer region and thus anticancer action on cancer cells. Moreover, due to the 

properties of biodegradability and high drug loading ability, the chitosan and graphene 

oxide based nanocarriers could be a good option to deliver the drugs to for liver and colon 

cancer and thus reducing the chances of unspecific drug delivery to the healthy tissues 

and delivering drugs only to the cancerous regions. 

 

 

1.6 Scopes of Study 

 

 

This research work is derived from the fact that most anticancer drugs in chemotherapy are 

severely toxic and harmful to normal human cells. As a result, this study is aimed to 

synthesize the nanocarriers based on chitosan nanoparticles as well as chitosan/graphene 

oxide nanoparticles with folic acid-coated and non-coated, to load Sorafenib and 5-

Fluorouracil. The synthesized nanocarriers will be characterized by the X-Ray 

Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High-

Resolution Transmission Electron Microscopy (HRTEM), Thermogravimetric Analysis 

(TGA), Dynamic Light Scattering (DLS), Fourier Transform Inferred Spectroscopy 
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(FTIR), Energy Dispersive X-ray (EDX). The release studies and encapsulation/loading 

capacity was investigated by the High- Performance Liquid Chromatography (HPLC) 

and UV-visible spectroscopy. Moreover, the synthesized nanocarriers will be tested on 

the human liver (HepG2), colon (HT29) cancer, as well as normal human dermal 

fibroblast adult (HDFa) cell lines, to investigate their toxicity level and anticancer 

activity. 

 

 

1.7 Objectives of Study 

 

 
1.7.1 General Objectives 

 

 

To synthesize and characterize Sorafenib-loaded chitosan nanoparticle, dual drugs 

Sorafenib and 5-Fluorouracil-loaded chitosan nanoparticle, and Sorafenib-loaded 

chitosan/graphene oxide nanocomposite. These nanocarriers were then functionalized 

with folic acid to obtain their folate-coated version of nanoparticles and nanocomposites. 

Finally, all the nanocarriers were characterized and evaluated on HDFa, HepG2 and 

HT29 cancer cell lines. 

 

 

1.7.2 Specific objectives 

 

 

The specific objectives of this study are as follows: 

a) To prepare Sorafenib-loaded chitosan nanoparticle (SF-CS NPs), dual drugs 

Sorafenib and 5-Fluorouracil loaded chitosan nanoparticle (SF/5FU- CS NPs) and 

Sorafenib-loaded chitosan/graphene oxide nanocomposite (GO-CS-SF) by the ionic 

gelation method. Followed by coating SF-CS NPs, SF/5FU-CS NPs, and GO-CS-

SF nanocomposites using folic acid (FA) to form folic acid coated Sorafenib loaded 

chitosan nanoparticles (SF- CS-FA NPs), folic acid coated Sorafenib and 5-

Fluorouracil loaded chitosan nanoparticles (SF/5FU-CS-FA NPs) and folate 

functionalized Sorafenib loaded chitosan/graphene oxide nanocomposite (GO-CS-

SF- FA). 

b) To evaluate the size, shape, crystallinity, physiochemical properties, thermal 

stability of SF-CS, SF-CS-FA, SF/5FU-CS, SF/5FU-CS-FA, GO- CS-SF, GO-CS-

SF-FA using the different analytical techniques. 

c) To evaluate the in vitro release behavior of Sorafenib and 5-Fluorouracil from SF-

CS, SF-CS-FA, SF/5FU-CS, SF/5FU-CS-FA nanoparticles and GO-CS-SF, GO-CS-

SF-FA nanocomposites. 

d) To evaluate the cytotoxicity of the SF-CS, SF-CS-FA, SF/5FU-CS, SF/5FU-CS-FA 

nanoparticles and GO-CS-SF, GO-CS-SF-FA nanocomposites on human 

hepatocellular carcinoma (HepG2) and human colorectal adenocarcinoma (HT29) 

cancer cell lines and human normal dermal fibroblast adult (HDFa) cell lines using 

the MTT assay. 
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1.8 Significance of Study 

 

 

This current study aims to synthesize anticancer drug-loaded chitosan nanoparticles and 

chitosan/graphene oxide nanocomposite formulation to increase the efficacy of the drug 

against liver and colon cancer. Chitosan nanoparticles and chitosan/graphene oxide 

nanocomposite were formulated to be used as nanocarriers for chemotherapeutic cancer 

drug delivery systems owing to increase the solubility, reduce the dose and toxicity and 

improve the bioavailability of the anticancer drugs. The final importance of this study is 

to evaluate the inhibitory effect of the nanocarriers on human hepatocellular carcinoma 

(HepG2) cell lines and human colorectal adenocarcinoma cancer cell lines (HT29) by in 

vitro cytotoxicity studies. 
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