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Drug encapsulation offers advantages in controlled drug release and targeted 
drug delivery applications. Limited work had been carried out to encapsulate 
drug, magnetic nanoparticles and polymer in a single step process. The 
supercritical antisolvent (SAS) process offers a single step precipitation process 
and operates at a low temperature. Therefore, the SAS process has potential to 
encapsulate drug, polymer and magnetic nanoparticles. This study aims to use 
the SAS process to encapsulate tamoxifen (TAM) within a biodegradable 
polymer, Poly-L-Lactic acid (PLLA) for controlled drug delivery applications and 
later incorporated magnetic nanoparticles for targeted drug delivery applications. 
 
 
The investigation began with manipulating operating pressure, the concentration 
of polymer, solution flow rate, and temperature of the system of the SAS system. 
The operating conditions affect the particle size and morphology of the 
encapsulated particles. The particle size of TAM-PLLA particles was 
successfully reduced from 1.85±0.06 µm to 0.43±0.03 µm with low particles 
agglomeration. The target particle size is below 1 µm to cater to the need to 
cross the tumor vasculature and to provide a stable colloidal system, which was 
covered in the later part of this study. TAM-PLLA particles have shown controlled 
release behavior by diffusion mechanism.  
 
 
In the second stage of this study, the potential of the SAS process in developing 
drug-magnetic nanoparticles particles in polymer for targeted drug delivery was 
assessed. Tamoxifen was encapsulated with oleic acid magnetic nanoparticles 
(OAMNP) in poly-l-lactic acid. Introducing OAMNP in the formulation increases 
the complexity of the SAS process, as the quinary system is involved; rather than 
a typical quaternary system. This work has identified the method to incorporate 
OAMNP in sample preparation to ensure the success of the SAS process and 
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maintaining the magnetization characteristics of OAMNP in the final product. 
Polymer and OAMNP concentrations were manipulated to obtain the smallest 
particle size with non-agglomerated morphology and acceptable saturation 
magnetization value. Under the optimum encapsulation conditions, 43% of drug 
loading with a size of 0.67±0.09 µm and non-agglomerated particles. The 
superparamagnetic behaviour of formed particles with a saturation 
magnetization value of 4.1337 emu/g is achieved. These results are encouraging 
for tamoxifen controlled and targeted delivery applications.  
 
 
The stability of particles in the biological environment was assessed in the 
colloidal stability study. Encapsulated particles were dispersed in various 
biological media such as Phosphate Buffered Solution (PBS), culture media, and 
culture media with serum. Factors such as concentration, time, and temperature 
were varied, and samples were evaluated based on particle size and zeta 
potential value. The condition that gives the most stable colloidal stability was 
identified. 
 
 
Our final interest is to study the cytotoxicity of the final products in comparison 
to raw material. Brine shrimp assay was proposed as a mechanism to evaluate 
the cytotoxicity of TAM-OAMNP-PLLA. Lethal concentration LC50 was the 
concentration required to kill 50% of the sample population and has been used 
as a guideline to determine the toxicity of a sample. It was found that 
encapsulated tamoxifen (with and without) magnetic nanoparticles was non-toxic 
compared to raw tamoxifen, which possessed LC50 of 0.38 mg/mL as compared 
to 1.51 mg/mL (tamoxifen with PLLA) and 1.09 mg/mL (tamoxifen, magnetic 
nanoparticles with PLLA).  
 
 
Overall, the SAS process has successfully produced encapsulated tamoxifen in 
Poly-l-lactic acid and tamoxifen with magnetic nanoparticles in Poly-l-lactic acid 
with particle size less than 1 µm and spherical morphology. The final products 
from the SAS process have proven to have potential in controlled and targeted 
drug delivery applications. 
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Kaedah genting anti-pelarut (SAS) menggunakan bendalir superkritikal (SCF) 
untuk menghasilkan kapsulasi ubat di dalam polimer. Enkapsulasi ubat 
mempunyai kelebihan di dalam aplikasi penghantaran ubat terkawal dan tepat. 
Namun, terdapat limitasi dalam kajian untuk menghasilkan enkapsulasi ubat, 
polimer dan partikel nano magnet menggunakan satu proses. Proses SAS 
menawarkan satu langkah pemendakan dan beroperasi di suhu rendah, yang 
menjadikan proses ini amat sesuai untuk memproses bahan farmaseutikal. Oleh 
itu, proses SAS berpotensi untuk digunakan sebagai teknik pengkapsulan ubat, 
polimer dan partikel nano magent. Pengajian ini mensasarkan untuk 
menggunakan proses SAS untuk mensintesis tamoxifen yang dikapsulkan di 
dalam asid (L-poli laktik) dan kemudiannya menggabungkan partikel nano 
magnet di dalam formulasi. 
 
 
Pengajian ini bermula dengan memanipulasi tekanan operasi, kepekatan 
polimer, kadar aliran larutan dan suhu sistem proses SAS.  Keadaan operasi 
akan memberi kesan kepada saiz partikel dan keadaan morfologi ubat terkapsul. 
Saiz partikel yang terkandung telah berjaya dikurangkan dari 1.847 ± 0.06μm 
kepada 0.425 ± 0.03μm dengan pengurangan aglomerasi partikel. Saiz partikel 
ditetapkan kepada kurang dari 1 µm untuk memenuhi kriteria penghantaran 
untuk melepas pembuluh darah tumor di samping menyediakan sistem koloid 
yang stabil. Partikel TAM-PLLA telah menunjukkan profil penghantaran ubat 
terkawal melalui mekanisma penyebaran. 
 
 
Di dalam bahagian kedua pengajian, potensi proses SAS di dalam menyediakan 
ubat dan partikel nano magnet di dalam polumer untuk penghantaran ubat 
secara tepat telah dikaji. Tamoxifen telah dienkapsulasi bersama partikel nano 
magnet disaluti asid oliek (OAMNP) di dalam asid (L-poli laktik). Kemasukan 
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OAMNP di dalam formulasi  telah menabahkan kerumitan di dalam proses SAS 
kerana telah melibatkan proses berasaskan lima komponen, berbanding sistem 
berasaskan kuarter yang sering dijalankan menggunakan proses SAS. 
Pengajian ini telah mengenal pasti metod untuk memperkenalkan OAMNP di 
dalam penyediaan sample untuk memastikan kejayaan proses SAS dan bagi 
mengekalkan keupayaan magnetik OAMNP di dalam produk akhir. Kepekatan 
polimer dan OAMNP telah dimanipulasi untuk mendapatkan saiz partikel 
terkecil, tidak beraglomerasi dan nilai magnetisasi tepu yang sesuai. Di bawah 
proses enkapsulasi yang optimum, 43% pemerangkapan ubat telah dicapai 
dengan saiz partikel 0.67±0.09 µm dan sifat tidak beraglomerasi.  Keupayaan 
superparamagnetic partikel mempunyai nilai magnetisasi tepu sebanyak 4.1337 
emu/g. Keputusan ini menunjukkan potensi partikel untuk digunakan di dalam 
aplikasi penghantaran ubat secara terkawal dan tepat. 
 
 
Kestabilan sistem koloid mengandungi partikel yang terhasil dari proses telah 
dinilai dengan menyebarkan partikel di dalam pelbagai larutan, PBS , media 
kultur dan media kultur bersama serum. Faktor seperti kepekatan larutan, masa 
dan suhu telah dipelbagaikan dan sampel telah dinilai berdasarkan saiz partikel 
dan nilai potensi zeta. Keadaan proses yang memberikan koloid yang stabil telah 
dikenal pasti.  
 
 
Tumpuan akhir kami ialah untuk menentukan sitotoksisiti partikel dan 
membandingkannya dengan bahan mentah. Ujian brine shrimp telah dijadikan 
mekanisma untuk menguji sitotoksisiti partikel TAM-OAMNP-PLLA yang terhasil. 
Nilai media dos letal (LC50) ialah nilai ketepuan untuk membunuh 50% populasi 
sampel dan telah digunakan sebagai tanda aras untuk menentukan toksisiti 
sesuatu sample. Dari ujikaji, kami telah menentukan tamoxifen yang diliputi oleh 
PLLA adalah tidak toksik (nilai median dos letal tamoxifen di dalam PLLA ialah 
1.51 mg/mL manakala nilai median dos letal tamoxifen dan OAMNP di dalam 
PLLA ialah 1.09 mg/mL) berbanding tamoxifen yang dibekalkan pengeluar (nilai 
median dos letal ialah 0.38 mg/mL). Kesimpulannya, proses SAS telah 
menghasilkan tamoxifen yang dikapsulkan bersama partikel nano magnetik di 
dalam polimer terbiodegradasi dengan saiz partikel yang kurang dari 1 µm dan 
mempunyai bentuk sfera. Produk akhir dari proses SAS telah dibuktikan 
mempunyai potensi untuk aplikasi penghantaran ubat secara terkawal dan tepat. 
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CHAPTER 1 
 
 

1 INTRODUCTION 
 
 
1.1 Background 
 
The motivation in drug research development is to produce drug formulation that 
can escalate comfort and convenience to patients and increase patient 
compliances. Consequently, in 1952, the research and development in drugs 
delivery has steered its focus on sustained and controlled drug delivery 
specifically on establishment of controlled released mechanism before further 
advancing in targeted drug delivery area in 1990 (Park, 2015).   
 
 
In conventional drug delivery, the drug is released rapidly and without any 
constraints, causing its bioavailability to be reduced, and the drug concentration 
decreases at the targeted tissue or cells. Patients are experiencing the side 
effects of drugs due to the release of drugs at non-targeted cells and healthy 
cells and also require multiple drug administration, which affects patients’ 
comfort and convenience. In controlled drug and targeted drug delivery, drugs 
can be targeted to be released on the specific location and released in the 
therapeutic range preventing overdosing. 
 
 
Figure 1.1 shows a controlled released vs. conventional released profile.  

 

 
 
Numerous effort has been carried out by researchers to produce drugs with 
controlled and targeted drug delivery characteristics.  In the nanotechnology 
area, efforts such as encapsulating drugs in nanoparticles (Cai et al., 2015), 
intercalating drugs in layered compounds (Rives et al., 2014), or attaching drugs 

Figure 1.1: Controlled released system profile versus conventional 

released profile (Adapted from Kikic and Sist, 2000) © C
OPYRIG

HT U
PM
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to tailored particle surfaces (Gonçalves et al., 2014) have been carried out. By 
encapsulating active ingredients in particulate carriers, a controlled drug release 
behaviour can be achieved as the drug will be released slowly from the coating 
materials by diffusion or erosion of the coating matrices. Conventional processes 
such as solvent evaporation, phase separation, spray-drying, and solvent 
diffusion are commonly used to synthesize encapsulated drugs. However, these 
methods have their limitation, such as extended operating hours (Pujara et al., 
2017; Takeuchi et al., 2018). Conventional methods require multiple processes 
before recovering final product to reduce the possibility of solvent traces in the 
final product due to usage of a high volume of solvent in the process (Imbrogno 
et al., 2015; Pereira et al., 2016). 
 
 
Limitations in the conventional encapsulation processes can be overcome by 
using multiple techniques offered by supercritical fluid (SCF) technology. SCF 
processes include Rapid Expansion Supercritical Solutions (RESS), Particles 
from Gas Saturated Solutions (PGSS), Gas Anti Solvent (GAS), Supercritical 
Anti Solvent (SAS) and Solution-Enhanced Dispersion by Supercritical Fluid 
(SEDS). Supercritical Carbon dioxide (scCO2) is commonly used as supercritical 
fluid in these processes because carbon dioxide is inert, safe, easy to handle, 
easily available, has mild supercritical pressure and temperature point and non-
toxic. In a supercritical fluid precipitation, scCO2 can act as solvent, anti-solvent, 
co-solvent or solute, or propellant gas depending on the process requirements 
(Cocero et al., 2009; Kumar et al., 2014).  The process that uses scCO2 as the 
solvent is known as RESS, where scCO2 dissolves solutes before inducing 
precipitation by rapidly decreasing scCO2 density, thus reducing the solubility of 
solutes in the scCO2. Limitation in the RESS process is the limited choice of 
active ingredients that are soluble in scCO2. This limitation can be overcome by 
using scCO2 as an antisolvent in the process (SAS).  
 
 
SAS process is one of the processes that use scCO2 as antisolvent in the 
process. In the SAS process, solutes have to be miscible with the solvent but 
immiscible in scCO2.   In the meantime, the solvent should be miscible in scCO2. 
Upon entering the precipitation vessel, which has been charged with scCO2, 
scCO2 will diffuse into solution droplets, dissolving the solvent, and creates a 
high supersaturation condition in the vessel that eventually leads to precipitation 
of the solutes.   
 
 
Magnetic nanoparticles have been extensively studied to be applied in targeted 
drug delivery and targeted drug therapy (Chomoucka et al., 2010). In the 
targeted drug delivery application, drugs should be able to be transported to the 
centre of disease under various conditions without causing side effects to the 
body. Magnetic nanoparticles, which are generally derived from ferric oxide, are 
available at 10-20 nm in size (Lu et al., 2007).  
 
 
Magnetic nanoparticles offer advantages that can be used in biomedical 
application due to many reasons, such as (Mornet et al., 2004; Lu et al., 2007): 
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1. Rapid response upon applied magnetic fields and negligible residual 

magnetism. 
2. No risk of agglomeration at room temperature 
3. Offers no harm to the human body except for patients with magnetized 

materials in the body 
4. Can be used in hyperthermia treatment; a cancer therapy treatment using 

heat 
5. Complimentary to a modern diagnostic method such as magnetic resonance 

imaging (MRI) 
6. Ability to direct active ingredient directly to the vicinity of the targeted area in 

the body 

 
The potential of co-precipitation of magnetic nanoparticles and active ingredient 
within particulate carriers offer more opportunities and possibilities in research 
and development on controlled drug delivery and drug targeting.  

 

1.2 Problem Statement 
 
Tamoxifen (TAM) is an anti-cancer drug that has been widely used in the 
treatment of breast cancer. However, patients who are consuming TAM for an 
extended time are experiencing side effects such as hot flushes, resulting in 
irregular menstrual cycle for premenopausal women, endometriosis, benign 
endometrial lesions, and increase risk of endometrial carcinoma amongst 
postmenopausal women (Mourits et al., 2001). Side effects of drugs are due to 
the interaction of drugs with healthy tissues in the body. A drug delivery system 
that can control the drug release rate and location of drug release is important to 
ensure the drug is released at a desirable dosage, within the therapeutic range 
and at the targeted location in the body. These characteristics may be achieved 
using the encapsulation of drugs within a suitable carrier.  
 
 
Several methods have been employed to synthesized encapsulated drugs, such 
as emulsion solvent evaporation, spray drying, freeze-drying, emulsification, and 
melt granulation (Bohrey et al., 2016; Frank et al., 2018; Hamzehloo et al., 2017; 
Kaimainen et al., 2015; Mangwandi et al., 2015). However, these processes are 
limited due to multiple steps of process involved, an additional process to recover 
the final product in powder form, and problems with solvent traces in the final 
product. 
 
 
The supercritical antisolvent process (SAS) has been chosen as the working 
process to encounter these abovementioned problems. The SAS process has 
advantages such as a simple, single-step precipitation process, the ability to 
recover the final product in powder form, and elimination of solvent in the final 
product. However, to avoid unsuccessful precipitation in the SAS process, 
special attention has to be given to the selection of solutes, solvent, and 
operating parameters. Unsuccessful precipitation in the SAS process is usually 
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due to partial solubility in CO2 due to modification of the miscibility gap of solvent-
antisolvent, which later will results in operating point falls in vapour/liquid region 
rather than supercritical region, unsuitable selection of encapsulating material 
and incomplete elimination of solvent which induced film formation of particles 
(Prosapio et al., 2018a).  
 
 
In this work, tamoxifen is encapsulated within a biodegradable and 
biocompatible polymer, Poly-L-Lactic acid (PLLA) (English, 1998) for controlled 
drug delivery application.  SAS process has been employed for PLLA 
micronization (Song et al., 2002) and as encapsulating material for drugs such 
as paclitaxel (Li et al., 2012), naproxen (Montes et al., 2014), astaxanthin (Liu et 
al., 2019), and 5-fluorouracil (Cuadra et al., 2020). To this date, no study has 
been carried out to encapsulate tamoxifen in PLLA using the SAS process yet. 
In the SAS process, process parameters such as operating pressure, 
temperature, polymer concentration, and solution flow rate gives effect on the 
physicochemical properties of the final product (Kalani and Yunus, 2011). To 
further understand the impact of each variable to the product’s final 
characteristics, this work focuses on varying the process parameters and 
investigate its effects on the final product. There is a need to determine the 
process parameters of SAS that results in successful precipitation, gives a 
smaller particle, but less agglomeration particles since the final products from 
SAS are heavily influenced by SAS process parameters. Encapsulated 
tamoxifen is expected to have a controlled release behavior, which will be 
controlled by the swelling mechanism of the polymer. However, to ensure TAM-
PLLA particles can be successfully delivered across the tumor vasculature has 
high retention time in the tumor site , particles has to possess size less than 600 
nm (Chawla and Amiji, 2002). Thus, the final product from SAS process has to 
have minimum particle size for a better delivery and high retention time in the 
tumor site. 
 
 
To explore the potential of tamoxifen in targeted drug delivery, tamoxifen has to 
be co-precipitated with magnetic nanoparticles (MNPs). In targeted drug 
delivery, a drug can be delivered directly to the vicinity of the target with the aid 
of an external magnet. The choice of MNPs in this work is oleic acid-coated 
magnetic nanoparticles (OAMNP). The selection of solvent is essential in the 
SAS process. The chosen solvent has to be able to dissolve all solutes 
(tamoxifen, PLLA, and OAMNP) and also has to be miscible with supercritical 
carbon dioxide. The other factor to be considered in the solvent selection is 
human innocuity, where the solvent has to be in class 3 (non-toxic) of 
pharmaceutical guidelines (Fages et al., 2004). However, to dissolve three 
solutes using one solvent is challenging. Dichloromethane (DCM) can be used 
to dissolve tamoxifen and PLLA (Ravikumara et al., 2016). However, OAMNP 
has not been able to dissolve in DCM. OAMNP has to be dispersed in a co-
solvent that will help with the dispersion in DCM prior SAS process. A suitable 
co-solvent to disperse OAMNP with tamoxifen and PLLA in DCM has to be 
identified. The effect of operating parameters has to be studied to confirm a 
successful encapsulation of OAMNP with tamoxifen in PLLA. For potential 
applications in controlled and targeted drug delivery, the final product from the 
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SAS process has to display a controlled release profile and possess magnetic 
characteristics. 

In the pharmaceutical research area, in-vivo tests and in-vitro tests are common 
tests that are conducted to study drug release behavior. However, a preliminary 
test prior in vivo test, which is known as the colloidal stability test is often 
overlooked. The colloidal stability test is important to be carried out before 
starting on any in vivo studies. Aggregations or clots formation of particles are 
most likely to happen after introducing the particles into a new, complex 
environment which are regulated by enzymes, salts, and pH (Lazzari et al., 
2012).  The colloidal stability test is a cheap, simple procedure but also a good 
indicator of the success of the in-vivo test. Colloidal stability results are important 
to determine the stability of optimized products from the SAS process in various 
biological environments which are simulated by varying types of biological fluid 
such as phosphate-buffered saline (PBS), culture medium with and without 
serum. Colloidal stability of a system can be observed from particle size, surface 
charges, and formation of agglomeration in the colloidal system. 

According to Farré et al., (2009), the toxicity of a compound can be altered due 
to few factors such as particle size, shape, crystallinity, zeta potential, surface 
charges, and surface coating effect. A study conducted by Nazir et al., (2013) 
has concluded that brine shrimp lethality assay is an effective tool for pre-
screening, designing, and synthesis of potent antitumor drugs. In-vivo 
cytotoxicity evaluation on tamoxifen against brine shrimp has been evaluated by 
Badisa et al., (2009). However no work on cytotoxic activity of encapsulated 
TAM-PLLA and TAM-OAMNP-PLLA using brine shrimp lethality assay has been 
carried out.  The toxicity and detrimental effects of the final product from the SAS 
process are yet to be determined. Hence in this study, the safety evaluation of 
TAM-OAMNP-PLLA particles using brine shrimp lethality assay (BSLA) are to be 
conducted. 

1.3 Contribution of the research 

In this thesis, the usage of the Supercritical Anti Solvent Process to encapsulate 
tamoxifen in poly-l-lactic acid (PLLA) and encapsulation of tamoxifen and 
magnetic nanoparticles in PLLA are novel and has not been reported elsewhere. 
The SAS co-precipitation involving the formation of a quinary system, which are 
solvent, polymer, the active compound, magnetic nanoparticles (OAMNP), and 
supercritical carbon dioxide, has not been reported elsewhere too. The type of 
polymer, active ingredients, and operating parameters are unique for each 
system and vital for successful precipitation in the SAS process (Prosapio et al., 
2018a). Identifying operating parameters that result in a successful precipitation 
process and understanding the effect of parameters on the physicochemical 
properties of formed particles in the SAS process will be useful for industries for 
scaling up purposes as well as researchers for good operational performance. 
This project will also identify the methodology to disperse OAMNP fully is the 
solvent of choice, which eventually will simplify the preparation process of 
materials prior SAS process. The understanding of the colloidal stability of 
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particles in a biological environment is critical to assess its fate after 
administration into the bloodstream. Brine shrimp lethality assay will provide 
useful information on the toxicity potential of the final product from the SAS 
process. 

1.4 Objectives 

The objectives of this study are: 

i. To investigate the effects of Supercritical Anti Solvent (SAS) process
parameters in encapsulating Tamoxifen in biodegradable polymer for
controlled drug delivery.

ii. To evaluate the potential of using the Supercritical Anti Solvent (SAS)
process in encapsulating tamoxifen and magnetic nanoparticles in
biodegradable polymer for controlled and targeted drug delivery.

iii. To determine the colloidal stability of encapsulated tamoxifen and OAMNP
in the polymer.

iv. To assess the toxicity of encapsulated tamoxifen and OAMNP in the
polymer formed from the SAS process using brine shrimp lethality assay.

1.5 Thesis Outline 

The thesis starts with Chapter 1, which comprises of problem statement and 
objectives of this work, followed by Chapter 2, which presents the literature 
review on properties of supercritical fluid and applications of supercritical fluid in 
the industry. Roles of supercritical fluid in the pharmaceutical industry and drug 
encapsulation methods and drug encapsulation using supercritical fluid are 
discussed. This chapter also includes a literature review on magnetic 
nanoparticles, conventional methods on attaching magnetic nanoparticles with 
drugs and polymer, and also characteristics of drug-magnetic nanoparticles-
polymer composites. Literature review on colloidal stability, the interaction of 
forces involves in particle stabilization in a colloidal system, and efforts that have 
been taken to increase the stability of a colloidal system will also be covered in 
Chapter 2. This chapter also includes a literature review on toxicity study and 
various types of cytotoxicity tests.  

In chapter 3, the materials and methods used in the study are clearly described. 
TAM used as starting material is unprocessed and used directly as per received 
from the supplier. Supercritical carbon dioxide is chosen as a working fluid due 
to attractive characteristics. Operating parameters in the encapsulation of TAM 
and polymer and also TAM-magnetic nanoparticles-polymer carried out using 
the SAS process are elucidated in this chapter. Characterization processes and 
procedures of formed particles are also explained in this chapter. Colloidal 
stability and cytotoxicity test of encapsulated TAM-PLLA and TAM-OAMNP-
PLLA particles were explained in this chapter. 
In chapter 4, the results for each of the objectives are presented. Chapter 4 is 
divided into four subchapters subjected to each of the objectives. In section 4.1, 
results and discussion for objective one are presented. A preliminary study to 
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determine the characteristics of encapsulated TAM compared with raw TAM and 
to determine whether the SAS process is a chemical process or mechanical 
process was conducted. The chapter continues with discussions on the effects 
of varying the operating parameters of the SAS process, starting with varying 
pressure, concentration, flow rate, and temperature. One factor at a time method 
has been chosen, and the optimum condition was selected at the smallest 
particle size and least agglomerated particles. The drug released behaviour of 
the optimized particles was observed and discussed. A drug release profile of 
TAM from polymer was established by fitting drug release data in several kinetic 
models. From the drug release data, a mathematical model that fits the drug 
release data was chosen. In section 4.2, oleic acid-coated magnetic 
nanoparticles (OAMNP) have been chosen to be encapsulated with TAM within 
polymer using the SAS process. A preliminary study to determine the 
magnetization value for encapsulated OAMNP in the polymer (without TAM) was 
carried out. In this study, the amount of polymer and OAMNP were varied, and 
the effect on particle size, morphology, and loading capacity were evaluated. The 
in-vivo drug release study was conducted, and drug release behaviour was 
proposed. A mathematical model that best fits with drug release behaviour was 
chosen. In section 4.3, a colloidal stability study was carried out for the optimized 
particles. A set of the colloidal system was prepared by dispersing encapsulated 
TAM in various medium; phosphate-buffered solution (PBS), complete media 
(CM) for cell culture, and culture media without serum (CMWS) at different 
condition. Variation of ultra-sonication condition, the temperature of colloid, and 
the concentration of medium was carried out. The formation of aggregates in 
various biological fluids and changes in particle size, the colour of medium, and 
the formation of sedimentation were monitored and observed. In section 4.4, 
results on the preliminary assessment of the toxicity of encapsulated drugs from 
the SAS process using brine shrimp analysis were presented. Toxicity after 24 
and 48 hours of exposure was determined, and lethal concentration (LC50) value 
was determined.  
 
 
Chapter 5 is a concluding chapter. All conclusions based on the objectives of the 
study are presented in this chapter, and recommendations for future work are 
proposed. 
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