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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Master of Science

BLOCK BACKWARD DIFFERENTIATION FORMULA WITH OFF-STEP
POINTS FOR SOLVING FIRST ORDER STIFF ORDINARY

DIFFERENTIAL EQUATIONS

By

AMIRATUL ASHIKIN BINTI MOHD NASARUDIN

June 2020

Chairman: Zarina Bibi Binti Ibrahim, PhD
Faculty: Science

This thesis compiles four new numerical methods that are successfully derived and
presented based on Block Backward Differentiation Formulas (BBDFs) for the nu-
merical solution of stiff Ordinary Differential Equations (ODEs). The first method
is a one-point block order three BDF with one off-step point. The second method is
developed by increasing the order of one-point block BDF with one off-step point to
order four in order to increase the accuracy of the approximate solution. The third
and fourth method are extension of the one-point block to two-point block BDFs
method with off-step points.

The order and error constant of the methods are determined. Conditions for con-
vergence and stability properties for all newly developed methods are discussed and
verified so that the derived methods are suitable for solving stiff ODEs. Compar-
isons of stability regions are also investigated with the existing methods. Newton’s
iteration method is implemented in all developed methods. Numerical results are
presented to verify the accuracy of the block BDF with off-step points for solving
stiff ODEs and compared to the existing related methods of similar properties.

The final part of the thesis is by applying the formulated methods in solving the
global warming problem and home heating problem as the example that the derived
method can be applied to solve a real life application. In conclusion, by adding off-
step point, the accuracy is improved. Therefore, it can be an alternative solver for
solving first order stiff ODEs.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Master Sains

FORMULASI BLOK PEMBEZAAN KE BELAKANG DENGAN
TITIK-TITIK LUAR LANGKAH UNTUK MENYELESAIKAN

PERSAMAAN PEMBEZAAN BIASA KAKU PERINGKAT PERTAMA

Oleh

AMIRATUL ASHIKIN BINTI MOHD NASARUDIN

Jun 2020

Pengerusi: Zarina Bibi Binti Ibrahim, PhD
Fakulti: Sains

Tesis ini merangkumi empat kaedah berangka yang baru berjaya diterbitkan be-
rasaskan Rumus Beza ke Belakang secara Blok (BFBB) sebagai penyelesaian be-
rangka untuk persamaan pembezaan biasa (PPB) kaku yang telah berjaya diterbitkan.
Kaedah pertama adalah satu-titik blok peringkat tiga FBB dengan satu titik luar
langkah. Kaedah kedua diterbitkan dengan meningkatkan peringkat kaedah satu-titik
blok FBB dengan satu titik luar langkah kepada peringkat empat untuk meningkatkan
ketepatan anggaran penyelesaian. Kaedah ketiga dan keempat merupakan lanjutan
daripada satu-titik blok ke dua-titik BFBB dengan titik-titik luar langkah.

Peringkat dan ralat pemalar bagi setiap kaedah ditentukan. Syarat-syarat untuk
penumpuan dan ciri-ciri kestabilan bagi kesemua kaedah yang baru diterbitkan telah
dibincangkan dan disahkan bahawa kaedah-kaedah tersebut sesuai untuk menyele-
saikan PPB kaku. Perbandingan rantau kestabilan dengan kaedah-kaedah sedia ada
juga diselidik. Kaedah lelaran Newton diimplementasikan kepada kesemua kaedah-
kaedah yang telah diterbitkan. Keputusan berangka dibentangkan untuk menge-
sahkan ketepatan blok FBB dengan titik-titik luar langkah dalam menyelesaikan PPB
kaku dan membandigkannya dengan kaedah-kaedah berkaitan sedia ada yang mem-
punyai ciri-ciri yang sama.

Bahagian akhir tesis adalah dengan mengaplikasi kaedah-kaedah yang telah diter-
bitkan dalam menyelesaikan masalah kepanasan global dan masalah pemanasan
rumah sebagai contoh bahawa kaedah yang diterbitkan boleh diaplikasikan dalam
aplikasi kehidupan sebenar. Kesimpulannya, dengan menambah titik luar langkah,
ketepatan boleh ditingkatkan. Oleh itu, ianya boleh menjadi salah satu alat penyele-
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saian alternatif untuk menyelesaikan PPB kaku.
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CHAPTER 1

INTRODUCTION

1.1 Ordinary Differential Equations

Ordinary differential equations (ODEs) are known to play an important role in real-
life problems involving mathematical modelling such as in physics, medical area,
engineering and economics. ODEs are equations which relate a function, f with
one independent variable and its derivatives. The general form of first-order ODE is
given below:

dy
dx

= y′ = f (x,y), (1.1)

with initial condition
y(a) = η

at certain interval of x where x ∈ [a,b].

Numerous numerical methods are able to solve equation (1.1) but may not necessar-
ily work well. This is because ODEs are divided into two types which are stiff and
non-stiff. Usually, the non-stiff ODEs are advisable to be solved using the explicit
method. Meanwhile, the stiff ODEs often solved by the implicit method. Many
problems in sciences carried ”stiff” behavior. Curtiss and Hirschfelder (1952) are
the first to use the term stiff in numerical field. Therefore, stiff ODEs are the type
of ODE tested in this thesis. There are several definitions of stiffness collected from
previous researchers:

(i) Stiff problems are characterized by the fact that the numerical solution of
slow smooth movements is considerably perturbed by nearby rapid solutions,
(Hairer and Wanner, 1999).

(ii) Stiff equations are equations where certain implicit methods, in particular
BDF, perform better, usually tremendously better than explicit ones, (Curtiss
and Hirschfelder, 1952).

(iii) An ordinary differential equation problem is stiff if the solution being sought
varies slowly, but there are nearby solutions that vary rapidly, so the numerical
method must take small steps to obtain satisfactory results, (Moler, 2003).

(iv) An initial value problem is stiff if the absolute stability properties dictate a
much smaller step size than is needed to satisfy approximation requirement
alone, (Petzold, 1983).
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As a conclusion, the definition of stiffness consider in this reseach is the one defined
by Lambert (1973).

Definition 1.1.1 Lambert (1973)
The system of (1.1) is said to be stiff if

(i) Re(λi) < 0, i= 1,..., s

(ii) maxi|Re(λi)| >> mini|Re(λi)| where λi are the eigenvalues of the Jacobian
matrix J = ∂ f

∂y .

However, in solving stiff ODEs, any numerical method must satisfy some conditions.
This is because not any randomly numerical method can solve stiff problems espe-
cially explicit method. To determine the methods are suitable to solve stiff ODE,
following definitions are stated,

Definition 1.1.2 Dahlquist (1963)
If the numerical method possesses A-stable condition, therefore the method is suit-
able to solve for stiff ODEs.

Definition 1.1.3 Lambert (1973)
A numerical method is said to be A-stable if its region of absolute stability contains
the whole of the left-hand half-plane Re hλ < 0.

The involvement of off-step point in solving ODEs is not a new issue. Off-step
point is believed to improve the approximation of the solution for ODEs. In the next
section, a brief explanation on the definition of off-step point will be presented.

1.2 Off-Step Point

There is no general accepted definition for off-step point given but usually off-step
point indicates any point located between two points, xn+i and xn+i+1 where i = Z.
In this project, we let the off-step point be defined as in Lee and Ismail (2014):

x
n+d

2
= xn +

d
2

h for d = 1,3 (1.2)

The off-step points used in this project are x
n+1

2
and x

n+3
2

. Based on Enright and

Higham (1991) strategy, they have tested several points for choosing the points as

2
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the off-step point. The off-step point is chosen as half of the step size, 1
2 h because it

is believed can obtain the optimized point and a zero stable formula.

In the following section, the review on linear multistep method (LMM) is given and
some definitions related to the study are provided.

1.3 Linear Multistep Method

The implementation of implicit LMM is more relevant to solve stiff problems. The
idea of LMM proposed by Dahlquist (1959) which capture the attention of Henrici
(1962) to explore the method. Hence, one of the famous definition of LMM is formed
by Lambert (1973),

Definition 1.3.1 Lambert (1973)
The general form of linear k-step method for first order ODEs are given as follows:

k

∑
j=1

α jyn+ j = h
k

∑
j=0

β j fn+ j (1.3)

where α j and β j are constants where we assume that αk 6= 0 and that not both α0
and β0 are zero. k is defined as the order of the method and h is the step size.

Formula of LMM (1.3) can be derived using interpolating polynomial, generating
function or Taylor’s series expansion. To construct the linear difference operator L,
we use Taylor’s series expansion for clearer picture,

y(x+ jh) = y(x)+
( jh)1

1!
y′(x)+

( jh)2

2!
y′′(x)+

( jh)3

3!
y(3)(x)+ · · · , (1.4)

Definition 1.3.2 Lambert (1973)
The associated linear difference operator L for equation (1.3) simplified as following
equation,

L[y(x);h] =
k

∑
j=0

[α jy(x+ jh)−hβ jy′(x+ jh)] (1.5)

where y(x) is an arbitrary function, continuously differentiable on [a,b].

Corresponding to the strategy of the research, we are adapting the linear difference
operator L associated with the developed methods where we consider the step size
as h

2 given by Abasi et al. (2014)

3
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Definition 1.3.3 Abasi et al. (2014)
Following linear difference operator L formed when the step size is taken at half of
the step size:

L[y(x),h] =
k

∑
j=0

[α jy(x+ j
h
2
)−hβ jy′(x+ j

h
2
)]. (1.6)

Operator L in equation (1.6) is introduced to help in determining the order of pro-
posed methods. The functions y(x+ j h

2 ) and y′(x+ j h
2 ) can be expanded using Taylor

series at x such below

y(x+ j
h
2
) =y(x)+

( j h
2 )

1

1!
y′(x)+

( j h
2 )

2

2!
y′′(x)+

( j h
2 )

3

3!
y(3)(x)+ · · · ,

y′(x+ j
h
2
) =y′(x)+

( j h
2 )

1

1!
y′′(x)+

( j h
2 )

2

2!
y(3)(x)+

( j h
2 )

3

3!
y(4)(x)+ · · · .

(1.7)

The coefficients of y(x) and derivatives of y(x) in (1.6) are collected after the expan-
sion give the following equation

L[y(x);h] =C0y(x)+C1hy′(x)+ · · ·+Cphpy(p)(x)+ · · · (1.8)

where Abasi et al. (2014) gives Cp as

C0 =
k

∑
j=0

α j,

C1 =
k

∑
j=0

( jα j)−2
k

∑
j=0

β j,

...

Cp =
1
p!

k

∑
j=0

jp
α j−

2
(p−1)!

k

∑
j=0

j(p−1)
β j.

(1.9)

From equation (1.5), Henrici (1962) stated the definition to determine the order of
LMM. In this research, definition below are used to determine the order of the pro-
posed methods associated with the LMM formed by the new proposed method.

Definition 1.3.4 Henrici (1962)
The LMM (1.3) is said to be of order p if C0 =C1 = · · ·=Cp = 0, Cp+1 6= 0 where
Cp+1 is error constant.

The most important analysis for any formulated numerical method is to check the

4
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convergence of the method. In LMM case, Henrici (1962) already stated the neces-
sary condition for any LMM to be convergent.

Definition 1.3.5 Henrici (1962)
The necessary and sufficient conditions for a method to be convergent are that it be
consistence and zero-stable.

The justification of this statement is because the magnitude of the local truncation
error controlled by consistency while the zero stability controlled the error that prop-
agated at each step of calculation which described by Abasi et al. (2014).

Lambert (1973) gives the condition for any LMM (1.9) to be consistent and zero-
stable as below,

Definition 1.3.6 Lambert (1973)
The LMM (1.3) is said to be consistent if it has order p≥ 1.

Definition 1.3.7 Lambert (1973)
Method (1.3) is said to be zero-stable if it satisfied root condition where the condition
states that if all the roots of first characteristics polynomial have modulus less than
or equal to unity and those of modulus unity are simple.

The main idea to solve for ODEs in this thesis is using block LMM method. In the
next section, the definition of block method is described.

1.4 Block Methods

A block method is recognized as a method that computes concurrently solution val-
ues at different points along x-axis, see Ibrahim (2006). Mehrkanoon et al. (2009)
detailed the advantages of block method by stating that at each application of a block
method, the solution will be approximated at more than one point. The number of
points depending on the structure of the block method. Thus, Chu and Hamilton
(1987) represents b-block r-point method as,

5
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Definition 1.4.1 Chu and Hamilton (1987)
Let Ym and Fm be vectors defined by

Ym =[yn+1,yn+1,yn+2, ...,yn+r−1]
t ,

Fm =[ fn+1, fn+1, fn+2, ..., fn+r−1]
t ,

(1.10)

A general k-block, r-point method can be written as

Ym =
k

∑
i=1

AiYm−i +h
k

∑
i=0

BiFm−i (1.11)

where A′is and B′is are r× r coefficients matrix and m = 0,1,2, ... represent the block
number, n = mr is the first step number in the mth block and r is the proposed block
size.

1.5 Problem Statement

We consider the solution of first order ODEs with off-step points where we propose

y′ = f (x,y),

with the given initial point
y0 = y(x0),

in the interval
a ≤ x≤ b

and solved using 1-point and 2-point Block BDF method with off-step points.

1.6 Objectives of the thesis

This study concerns on the development of efficient codes that are based on BBDF
methods for the numerical solution of stiff ODEs. The main objectives are summa-
rized as follows:

(i) to derive 1-point and 2-point block BDF methods with off-step points of order
three, four, five and six that are suitable for solving stiff ODEs,

(ii) to analyse the stability and convergence of the derived methods,

(iii) to implement methods as in (i) with fixed step sizes using Newton’s Iteration,

(iv) to improve the stability region and the accuracy of the methods in (i),

6
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(v) to apply methods 2-point block BDF methods with off-step points using global
warming problem and home heating problem.

1.7 Scope and motivation of the study

This research focused on the development of 1-point and 2-point block BDF with off-
step point methods. Methods formed are verified using the first order stiff ODEs and
the implementation of Newton’s Iteration only tested for constant step size. From the
literature, many researchers stated that the off-step point included in the derivation
can improve the stability region and the accuracy of the methods. Therefore, these
hypotheses motivate us to conduct the research.

1.8 Outline of the thesis

This thesis consists of six chapters including this chapter as follows:

Chapter 1 of the thesis consists of introduction of ODEs and some basic theory which
include the definitions of stiff problems and properties of stability and convergence.

In chapters 2 present the review of previous research related in solving first order
ODEs using BDF method and block method with off-step points are presented.

Chapter 3 gives the details on the derivation of 1-point block BDF with off-step point
of order three and order four for solving first order stiff ODEs. The convergence and
A-stable analysis of the methods are explained. The numerical results are compared
with the existing methods.

In Chapter 4, the derivation of fifth and sixth order 2-point BBDF with off-step points
and the stabilities of the methods are discussed. Numerical results are compared with
related existing methods.

Chapter 5 is the application part of the thesis. In this chapter, the formulated methods
are tested on global warming problem and home heating problem.

The last chapter, Chapter 6 concludes the study and summarized the entire thesis.
This chapter includes some suggestion for future research.
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