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As a new promising carbonic nanomaterial with a lot of outstanding advantages, 
graphene quantum dots (GQDs) opened up a new field for the development of excellent 
sensors. Herein, the preparation of hydroxyl-functionalized graphene quantum dots 
(HGQDs) based thin film with different materials that are chitosan and 
cetyltrimethylammonium bromide (CTAB) have been described namely 
chitosan/hydroxyl-functionalized graphene quantum dots (Cs/HGQDs) thin film and 
cetyltrimethylammonium bromide/hydroxyl-functionalized graphene quantum dots 
(CTAB/HGQDs) thin film. The Cs/HGQDs and CTAB/HGQDs were deposited 
homogenously using the spin coating technique. The synthesized thin films were then 
characterized using Fourier transform infrared spectroscopy (FTIR) to confirm the 
existence of functional groups in the composites such as hydroxyl, carboxyl, and 
carboxylic acid. From the atomic force microscope (AFM) analysis, the addition of 
chitosan and CTAB increased the roughness of the thin films.  Meanwhile, the optical 
properties of the thin films were studied using UV-Vis absorption spectroscopy and 
photoluminescence (PL) spectroscopy. The absorbance peaks of Cs/HGQDs and 
CTAB/HGQDs thin films can be observed around the wavelength of 270 nm to 300 nm 
with optical band gap values of 3.80 eV and 4.16 eV, respectively. Moreover, the 
intensity of PL spectra for both thin films were noticed around the wavelength of 420 
nm to 450 nm. The development of optical sensors for heavy metal ions detection has 
been rapidly growing. However, the current methods suffer limitations which then led to 
the emergence of an outstanding technique called surface plasmon resonance (SPR) 
spectroscopy. In this study, the as developed thin films have been incorporated with SPR 
for the detection of ferric ion (Fe3+). The sensors produce positive responses upon 
exposure to Fe3+ of various concentration. At lower Fe3+ concentration, the 
CTAB/HGQDs thin film showed higher sensitivity equals to 29.886° ppm-1 compared to 
Cs/HGQDs with value of 0.114° ppm-1. Subsequently, the Langmuir isotherm model 
yielded higher binding affinity constant, K for CTAB/HGQDs thin film than Cs/HGQDs 
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thin film with values of 221.729 ppm-1 and 5.79 ppm-1, respectively. Thus, both thin films 
show potential for the detection of Fe3+. 
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Sebagai nanomaterial karbonik baru yang mempunyai harapan dengan banyak kelebihan 
luar biasa, titik kuantum grafin (GQDs) membuka bidang baru untuk kemajuan sensor 
yang sangat baik. Di sini, penyediaan filem tipis berasaskan titik kuantum grafin 
berfungsi hidroksil (HGQDs) dengan bahan berbeza iaitu kitosan dan 
setiltrimetilammonium bromida (CTAB) telah dinyatakan iaitu filem tipis kitosan/titik 
kuantum grafin berfungsi hidroksil (Cs/HGQDs) dan filem tipis setiltrimetilammonium 
bromida/titik kuantum grafin berfungsi hidroksil (CTAB/HGQDs). Cs/HGQDs dan 
CTAB/HGQDs telah diletakkan secara seragam menggunakan teknik lapisan spin. 
Filem-filem tipis yang telah disintesis kemudiannya dicirikan menggunakan 
spektroskopi transformasi Fourier inframerah (FTIR) untuk mengesahkan kewujudan 
kumpulan berfungsi dalam komposit seperti hidroksil, karboksil, dan asid karbosilik. 
Dari mikroskopi daya atom (AFM), penambahan kitosan dan CTAB meningkatkan 
kekasaran filem tipis. Sifat optik filem tipis dikaji menggunakan spektroskopi 
penyerapan UV-Vis dan spektroskopi fotoluminesens (PL). Puncak penyerapan bagi 
filem nipis Cs/HGQDs dan CTAB/HGQDs boleh diperhatikan sekitar panjang 
gelombang 270 nm hingga 300 nm dengan jurang jalur optik masing-masing bernilai 
3.797 eV dan 4.162 eV. Tambahan lagi, keamatan spektrum PL untuk kedua-dua filem 
tipis dapat diperhatikan sekitar panjang gelombang 420 nm hingga 450 nm. Selanjutnya, 
filem tipis juga digabungkan dengan sensor optik resonans plasmon permukaan (SPR) 
bagi pengesanan ion ferik (Fe3+). Sensor tersebut menghasilkan tindak balas positif 
setelah didedahkan kepada Fe3+. Pada kepekatan Fe3+ yang lebih rendah, filem tipis 
CTAB/HGQDs menunjukkan kepekaan yang lebih tinggi bersamaan dengan 29.886° 
ppm-1 berbanding Cs/HGQDs dengan nilai 0.114° ppm-1. Seterusnya, model isoterma 
Langmuir menghasilkan pemalar tarikan ikatan yang lebih tinggi, K untuk filem tipis 
CTAB/HGQDs berbanding Cs/HGQDs masing-masing bernilai 221.729 ppm-1 dan 5.79 
ppm-1. Oleh itu, kedua-dua filem tipis menunjukkan potensi tinggi untuk mengesan Fe3+. 
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CHAPTER 1

INTRODUCTION

1.1 Graphene Quantum Dots

Graphene quantum dots (GQDs) are zero-dimensional, nanometer-sized graphene 
fragments that possess the properties of both graphene and carbon dots (Bacon et al.,
2014; Mueller et al., 2010). Figure 1.1 shows the basic chemical structure of GQDs. The 
introduction of GQDs has overcome the limitation of its two-dimensional counterparts, 
graphene sheets that have zero band gap thus not feasible to be applied in optical and 
photonics field (Wang et al., 2018). Briefly, the band gap of graphene can be increased 
by quantum confinement effect when reducing the lateral dimensions of graphene into 
quantum dots. One of the remarkable properties of GQDs is the ability to tune its band 
gap and therefore to control the light absorbance and emission frequency. In this way, 
chemical and optical properties of GQDs can be adjusted depending on the desired 
applications (Das et al., 2016; Kim et al., 2012).

There are basically two ways for the synthesis of GQDs which are often called as top-
down and bottom-up methods. In one hand, top-down can be explained as cutting, 
breaking, or splitting of carbon materials such as graphene oxide, graphite rods, graphite 
powder, and carbon black. The examples of process in this method includes 
hydrothermal cutting, solvothermal cutting, microwave-assisted cutting, and so forth (Li 
et al., 2011; Peng et al., 2012; Pan et al., 2012). On the other hand, graphene moieties 
(i.e. citric acid, polycyclic aromatic hydrocarbon, etc.) that undergo organic process such 
as pyrolysis, carbonization, thermolysis, and reduction are called bottom-up method 
(Dong et al., 2012; Tang et al., 2012).

The most beneficial and unique properties of GQDs are that they are abundantly 
available since they are carbon material, low toxicity, highly soluble in various solvents, 
and can be modified with functional groups at their edges (Sun et al., 2013). Due to the 
outstanding optical, electrical, mechanical, and thermal properties of GQDs, it offers 
some unique merits for new applications and has been one of the popular choices to 
incorporate with various applications. Comparisons between different research studies 
for various semiconductor quantum dots have been made to highlight GQDs’ great 
potential in the field of photovoltaics, electronics, bio-imaging and optical sensors (Fan 
et al., 2015; Sun et al. 2013; Wang et al., 2015) .

In order to increase the hydrophilicity and biocompatibility of a GQDs, it can be 
functionalized with various functional groups that contain oxygen such as hydroxyl, 
carboxyl, and epoxy groups  (Hasanzadeh et al., 2016). Focusing on hydroxyl groups, 
some studies found that it helps to stabilize the surface of the molecule, enhance 
fluorescent yield, and helps in radiative recombination (Geethalakshmi et al., 2016). The
hydroxyl groups tend to form a bond with carbon atoms and contribute to make other 
molecules soluble in water. The functionalization of GQDs with hydroxyl group will 
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form hydroxyl-functionalized GQDs or named as HGQDs. Lately, GQDs-based 
materials were modified with nanoparticles, polymer, and other materials in order to 
enhance the conductivity, optical properties, and also to improve the deposition of GQDs 
on any surface forming a uniform and regular thin layer (Mirzaie et al., 2019; Ou et al., 
2015; Sadrolhosseini et al., 2018). In another words, GQDs could be modified with other 
composites for better sensing performance. 
 

 
Figure 1.1: Chemical structure of GQDs. (Hasanzadeh et al., 2016) 
 
 

1.2  Chitosan 
 
 

Chitosan (Cs) is the derivative of chitin where chitin is the second most important 
naturally occurring polysaccharide after cellulose. Chitosan is also defined as a 
copolymer of glucosamine and N-acetyl glucosamine which linked by β-1, 4 
glucosamine. The main sources of production of chitin are from the treatment of marine 
crustaceans’ shell such as shrimp and crab with the alkali sodium hydroxide. Moreover, 
it can also be found in the exoskeleton of insects and fungal cell wall (Thanou & 
Junginger, 2004). In order to modify chitin into chitosan, the acetyl group that attached 
to the nitrogen atom was replaced with hydrogen through hydrolysis, yielding a primary 
amine group. The comparison of chemical structure between chitin and chitosan is shown 
in Figure 1.2. 
 
 
Additionally, chitosan is widely used in drug delivery systems, separation of membranes, 
wastewater treatment, and biosensors due to its biocompatibility and biodegradability. 
Because of the presence of reactive hydroxyl and amino functional groups in chitosan, it 
displays good susceptibility to chemical modifications with a variety of nanomaterials. 
As a natural polysaccharide, chitosan has good adhesion, high water permeability, high 
solubility, abundantly available, low cost, high mechanical strength, and excellent film-
forming ability (Hasanzadeh et al., 2016; Suginta et al., 2013; Arena et al., 2017; Jiang 
& Wu, 2019). 

 
 

Due to the remarkable afore-mentioned advantages of chitosan, it has been selected as 
the most suitable biopolymer to combine with other materials in order to cater specific 
applications. Here, chitosan acted as a stabilizing and reducing agent and expected to 
chelate with the ferric ions. This combination of chemical and electrical properties of the 
element materials (i.e. chitosan and HGQDs) could positively lead to the development 
of new sensor. 

              

© C
OPYRIG

HT U
PM



 

3 
 

                  
Figure 1.2: Chemical structure of (a) chitin and (b) chitosan. (Thanou & Junginger, 

2004) 
 

 
1.3  Cetyltrimethylammonium Bromide 

 
 

Surfactant is a substance that helps to reduce the surface tension of a liquid in which it 
dissolves. Cetyltrimethylammonium bromide (CTAB) is an important positively charged 
surfactant that has a long tail of 16-carbon atoms and a head of ammonium group with 
three methyl groups attached. CTAB that is soluble in water, commonly used as a coating 
agent, stabilizing agent, passivating agent, structure-directing agent in the synthesis of 
inorganic materials, and also helps in the accumulation of target materials (Bi et al., 
2012; Liu et al., 2018; Mao et al,. 2014; Selvi et al., 2018; Yao et al., 2013). Besides, 
CTAB could also enhance the absorption of pollutants that is why it is commonly used 
in the wastewater treatment to facilitate the absorption and reaction with the pollutants 
(Jin et al., 2012).  
 
 
Above all afore-mentioned special properties of CTAB, the addition of CTAB to a 
material will enhance it sensing performance such as improve the sensitivity and the limit 
of detection. This is because CTAB improves the hyperchromicity and sensitization to 
the probe (Leng et al., 2016). Since CTAB is positively charged, it is highly attracted to 
negatively charged GQDs. Figure 1.3 shows the chemical structure of CTAB.  

 

 
Figure 1.3: Chemical structure of CTAB. (Lezaic et al., 2014) 

.  
 
1.4  Ferric Ions 

 
 

Iron is known as the cheapest and most-used metal in our lives. There are several 
oxidation states of iron existed in the environment such as +2, +3, +4, and +6. When 
losing 3 electrons, iron will form ferric ion (Fe3+). Fe3+ are mostly found in the 
environment, industrial, clinical, and biological fields while playing remarkable and 
versatile roles in many physiological and pathological processes. Among them are 
oxygen transport, enzyme catalysis, electron transport, and DNA and RNA synthesis 
(Abbaspour et al., 2014). 
 

(a) (b) 

© C
OPYRIG

HT U
PM



 

4 
 

 
Even though Fe3+ is important for living things, both too much or insufficient amount of 
it can bring disadvantages and very harmful to the consumers. Lack of Fe3+ ions can 
cause anemia, affect the synthesis of hemoglobin, and restricting the delivery of oxygen 
to cells which resulting in lethargy, low work performance, and decrease immunity 
(Zimmermann & Hurrell, 2007). On the other hand, excess amounts of Fe3+ ions in a 
living cell can cause severe disease such as hepatitis, organ disfunction, 
hemochromatosis, and even cancers (Chen et al., 2017; Zhou et al., 2013). With a vast 
development of the world in many various human activities, the possibility for improper 
disposal of the pollutants which include toxic metal ions into the environment also 
increases. 
 
 
Due to the awareness of this issues, the activities and efforts in the field of toxic metal 
ions sensing that include Fe3+ have been attracting researchers’ attention up until today 
(Li et al., 2013b). Moreover, sensitive and selective detection of Fe3+ is also highly due 
to the impact upon exposure mentioned above. Many modern technologies have been 
developed for the detection of Fe3+ and in this work, a method that allows rapid and 
simple detection of Fe3+ in solution was further investigated. 

 
 

1.5  Surface Plasmon Resonance 
 
 

Optical sensor is a device that able to convert light rays into a form that is readable by a 
measuring device. When there is interaction between materials and metal ions, optical 
sensors will give optical information for instance the absorbance, reflectance, fluorescent 
emission, change in the intensity, and quenching efficiency. The properties are often 
measured in the ultraviolet, visible, or near infrared ranges. The examples of commonly 
used optical sensor are fluorescence sensor, photoluminescence sensor, 
electrochemiluminescence sensor, colorimetric sensor, and surface plasmon resonance 
(SPR) sensor (Gao et al., 2018; Liu & Kim, 2015; Tang et al., 2019; Zhou et al., 2013). 
SPR is one of the well-known and versatile emerging optical methods that has been used 
over the past years in various biosensing and chemical sensing that also covers metal 
ions. The very first SPR phenomenon was observed by Wood in 1902 (Wood, 1902). 
SPR has been diligently studied and made vast advances in the development of 
technology and its application since the first demonstration of surface plasmon resonance 
for the learning of processes at the surfaces of metals and sensing of gases (Homola, 
2008). 
 
 
There are few approaches in SPR devices such as grating coupled systems, optical 
waveguide systems, optical fibres, and prism coupled system. Prism-based SPR is the 
most widely used approach in current SPR systems due to its sensitivity and simple usage 
(Löfås et al. 1991; Matsubara et al., 1988). Prism-based approach can be divided into 
two arrangements which are Otto configuration and Kretschmann configuration. 
Comparing both configurations, Kretschmann configuration is normally used in most 
SPR applications where a metal that carries a large number of electrons like silver, 
copper, gold, or aluminum is placed at the interface of two dielectric media. Gold is 
favorably used as metal film since it is the most stable and sensitive compared to others. 
When plane-polarized light hits the gold-coatekd film prism under total internal 
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reflection conditions, SPR will occur resulting in reflected beam that will be detected for 
processing. The diagram for Kretschmann configuration is presented in Figure 1.4. 
One of the most crucial parts in SPR sensor is the development of active layers or 
recognition element. The active layer is sandwiched between metal layer and cell. A lot 
of studies have been made to improve the sensitivity of SPR sensor for toxic metal ions 
detections and one of them is by introducing new active layer of different materials such 
as semiconductors, polymers, dyes, and so forth (Chen et al., 2008; Fen et al., 2012; 
Pelossof et al., 2012; Yu et al., 2004). SPR sensors are widely used because it allows 
label-free, real time detection and have a sensitive property besides facile preparation of 
sample, quick measurement capability, and cost-effective (Fen et al., 2012). The 
comparison of the advantages and disadvantages between several optical sensors for 
heavy metal ions are summarized in Table 1.1.  
 

 
Figure 1.4: Kretschmann configuration of SPR sensor. 

 
Table 1.1: The advantages and disadvantages of optical sensors. 

Optical sensors Advantages Disadvantages 
Fluorescent High sensitivity and 

selectivity; real-time 
measurement; good 

reproducibility 

High sensitivity and 
selectivity; real-time 
measurement; good 

reproducibility 
Electrochemiluminescence Good sensitivity and 

selectivity; stable; 
strong anti-

interference ability; 
wide detection range 

High cost; low 
compatibility; 

complicated preparation; 
frequent electrode fouling 

Photoluminescent High sensitivity and 
selectivity; real-time 
measurement; good 

reproducibility 

Low precision and 
accuracy; time 

consuming; limited 
application (small 

molecules) 
Colorimetric Good sensitivity; fast 

detection; inexpensive 
Low reproducibility; low 
stability; low selectivity 

SPR Very high sensitivity; 
simple; low cost; 

label-free 

Low selectivity 
(improving) 
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1.6  Problem Statements 
 
 

Nowadays, as a new promising carbonic material with plenty of excellent advantages, 
GQDs-based materials have been receiving researchers’ attention from the scientific 
community. A lot of studies have been conducted related to the preparation of various 
GQDs-based material via different methods to enhance the properties of the materials. 
This was done to cater desired and particular properties for specific applications such as 
for solar cells (Li et al., 2011; Tsai et al., 2016), photodetectors (Chiang et al., 2016; 
Haider et al., 2016), batteries (Park et al., 2016), bioimaging (Wu et al., 2018; Zhu et al., 
2011), and sensors (Benítez-Martínez & Valcárcel, 2014; Raeyani et al., 2018). The 
incorporation of GQDs with different composite materials is believed to give positive 
effect on the properties of the GQDs (Chinnusamy et al., 2018; Gobi et al., 2017; Jiang 
et al., 2019; Kausar, 2019). Although there are many works on the combination of 
GQDs-based material with other materials, there were still no study on the incorporation 
of GQDs with chitosan and CTAB. Therefore, in this study, the optical and structural 
properties of chitosan/HGQDs (Cs/HGQDs) and CTAB/HGQDs are explored, since it is 
believed that the properties of composite materials are better compared to the 
independent material. 
 
 
Prolonged exposure to toxic metal ions such as ferric ion can cause deleterious health 
effects in human. Thus, the increasing awareness on toxic metal ions pollution has led to 
the vast development and construction of sensing strategies using different materials to 
detect heavy metal ions. Up to now, many conventional methods have been widely used 
for the detection of metal ions such as anodic stripping voltammetry (Rosolina et al., 
2015), plasma atomic emission spectroscopy (Ochsenkuhn-Petropoulou & Ochsenkuhn, 
2001), and atomic absorption spectroscopy (Tarley et al., 2011). The methods are 
accurate and sensitive but they demand complicated sample preparation, expensive 
instruments, highly destructive, and time-consuming. Other modern methods than 
commonly used for toxic metal ions detection nowadays are electrochemical (Ting et al., 
2015), photoluminescence (Huang et al., 2013), fluorescent (Xia et al., 2017), 
electrochemiluminescence (Chen et al., 2016), and colorimetric (Gao et al., 2018). 
However, the main drawbacks of these methods are slow detection, low compatibility, 
low sensitivity and selectivity. In order to overcome the circumstances, surface plasmon 
resonance (SPR) sensor is the alternative to be used in this work because it is well-known 
as one of the best emerging sensor technology where it has a highly sensitive property, 
allows the label-free and real-time detection (Homola, 2003). Besides that, the 
advantages of SPR sensor are cost-effective, easy preparation of sample, quick 
measurement capability and no compulsion of reference solution (Fen & Yunus, 2011). 
To the best of our knowledge, there is no report on the incorporation of SPR sensor with 
GQDs-based material. Hence, in this study, SPR will be attempted to incorporate with 
Cs/HGQDs and CTAB/HGQDs thin films for the detection of Fe3+. 
 
 
1.7  Research Objectives 

 
 

The objectives of this study are summarized as follows: 
1. To study the optical and structural properties of HGQDs-based thin films after 

the addition of chitosan and CTAB. 
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2. To determine the potential sensing of Fe3+ using Cs/HGQDs and 
CTAB/HGQDs thin films using surface plasmon resonance spectroscopy. 

 
 
1.8  Thesis Outlines 

 
 

Chapter 1 consists of the introduction of the study. This chapter introduces and explains 
each important element in this study which are graphene quantum dots, chitosan, 
cetyltrimethylammonium bromide, ferric ion, and surface plasmon resonance optical 
sensor. Besides, this chapter contains the idea for the development of active layers using 
HGQDs-based composite material for Fe3+ sensing. The problems that are currently 
happening are also discussed in this chapter which proceed to the list of objectives of 
this research. 
 
 
Chapter 2 contains previous and present researches mostly related to the study. The 
findings of all the works were discussed further throughout this chapter and they were 
used as a guidance to develop active layers using HGQDs-based composite material. 
This chapter contain two section i.e. optical and structural properties of composite 
materials and sensing properties of composite materials. 

 
 

Chapter 3 introduces the methodology of sample preparation and characterization 
techniques used to observe and study the optical, structural, and sensing properties of all 
the samples in this study. The rigorous explanation on method starts from the preparation 
of chemical, preparation of thin film, and ends with the characterization of samples 
including sensing potential using surface plasmon resonance optical sensor. 

 
 

Chapter 4 demonstrates the experimental results obtained on the optical, structural, and 
sensing properties of the thin films. This chapter also covers and discusses the analysis 
of results acquired from all characterization thoroughly. 
 
 
Chapter 5 is the final chapter of the thesis which presents the conclusion of this study. 
Besides, all the findings are briefly summarized in this chapter in order to form a 
conclusion. The conclusion covers all the optical, structural, and sensing properties of 
the samples. The recommendation for improvements that can be done in the future work 
were also included in this chapter.  
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