
 
 

UNIVERSITI PUTRA MALAYSIA 
 

FREQUENCY RESPONSES OF TRANSFORMER WINDING 
DEFORMATIONS BASED ON FINITE ELEMENT MODELING UNDER 

TRANSIENT OVERVOLTAGE IMPULSES 
 

 
 
 
 
 
 
 
 
 

AVINASH SRIKANTA MURTHY 
 
 
 
 
 
 
 
 
 
 
 
 

FK 2021 25 



© C
OPYRIG

HT U
PM

FREQUENCY RESPONSES OF TRANSFORMER WINDING 

DEFORMATIONS BASED ON FINITE ELEMENT MODELING UNDER 

TRANSIENT OVERVOLTAGE IMPULSES 

By 

AVINASH SRIKANTA MURTHY 

Thesis Submitted to the School of Graduate Studies, Universiti Putra 

Malaysia, in Fulfilment of the Requirements for the  

Degree of Doctor of Philosophy 

November 2020 



© C
OPYRIG

HT U
PM

COPYRIGHT 

All material contained within the thesis, including without limitation text, logos, 

icons, photographs, and all other artwork, is copyright material of Universiti 

Putra Malaysia unless otherwise stated. Use may be made of any material 

contained within the thesis for non-commercial purposes from the copyright 

holder. Commercial use of material may only be made with the express, prior, 

written permission of Universiti Putra Malaysia. 

Copyright © Universiti Putra Malaysia 



© C
OPYRIG

HT U
PM

i 
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fulfilment of the requirement for the degree of Doctor of Philosophy 

FREQUENCY RESPONSES OF TRANSFORMER WINDING 

DEFORMATIONS BASED ON FINITE ELEMENT MODELING UNDER 

TRANSIENT OVERVOLTAGE IMPULSES 

By 

AVINASH SRIKANTA MURTHY 

November 2020 

Chairman :   Associate Professor Norhafiz bin Azis, PhD 

Faculty :   Engineering 

Frequency Response Analysis (FRA) is one of the best approaches to detect the 

mechanical integrity of transformer windings. FRA can be measured on-site or 

simulated based on the transformer’s design information. The calculations of 

Resistance (R), Inductance (L), Capacitance (C) and Conductance (G) parameters 

are essential to simulate the frequency responses based on transfer function and 

Multi-conductor Transmission Line (MTL) methods. These methods however 

could not provide detail conditions of the individual windings as well as the 

cause and effect of mechanical movements. The known causes such as the 

lightning strikes or switching events could lead to the amplification/attenuation 

of the overvoltages along the windings and subsequently result in abnormal 

voltage stresses. The electromagnetic fields could be generated and result in 

electromechanical effects which need to be classified. Hence, this project is 

carried out to address the stated issues. First, an alternative approach to extract 

transformer’s winding RLCG parameters based on Finite Element Method 

(FEM) was proposed. The C and G were computed based on Fast Multipole 

Method (FMM) and Method of Moment (MoM) through quasi-electrostatics 

approach. The AC resistances and inductances were computed based on MoM 

through quasi-magnetostatics approach. Maxwell's equations were used to 

compute the DC resistances and inductances. Based on the FEM computed 

parameters, the frequency response of the winding was simulated through the 

Bode plot function. The simulated frequency response by FEM model was 

compared with the simulated frequency response based on the MTL model and 
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the measured frequency response of HV winding for 33/11 kV transformer. 

Next, the resonant oscillations of HV layer and disc types windings for 11/0.415 

kV and 33/11 kV transformers under different cases of lightning and switching 

impulses were analyzed. The impulse overvoltage were applied to the HV 

winding and the resonant oscillations were simulated for each of the layers and 

discs with consideration on different placement configurations of an 

electrostatic shield. The effects of different magnitudes of standard lightning 

impulse on the mechanical displacements and deformations of HV windings of 

an 11/0.415 kV transformer were also examined based on FEM. The resultant 

electromagnetic forces acting in axial and radial directions were computed and 

induced to the winding structure. It is found that the simulated frequency 

response by FEM model is quite close to measured frequency response at low 

and mid frequency regions based on Root Mean Square Error (RMSE) and 

Absolute Sum of Logarithmic Error (ASLE). The voltage stresses along the 

windings are more linear and the resonant oscillations are the lowest once a 

floating shield is placed between the HV and LV windings of the 11/0.415 kV 

and 33/11 kV transformers under different cases of lightning and switching 

impulses based on error of the slope (SEb). It is observed that the outer column 

supports of the winding structure for 11/0.415 kV transformer experiences 

apparent electromechanical stresses and radial buckling deformations are 

observed. The life and lightning overvoltage impulse withstand capability of the 

winding is estimated to be 1 × 106 impulse cycles which is lower than the design 

life of 1 × 109 for the copper conductors based on fatigue life and Von-Mises 

criterion. 
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FREKUENSI SAMBUTAN UBAH BENTUK BELITAN PENGUBAH 

BERDASARKAN PERMODELAN UNSUR TERHINGGA DIBAWAH 

VOLTAN LAMPAU FANA DEDENYUT 

Oleh 

AVINASH SRIKANTA MURTHY 

November 2020 

Pengerusi :   Profesor Madya Norhafiz bin Azis, PhD 

Fakulti :   Kejuruteraan 

Analisis Respons Frekuensi (FRA) adalah salah satu pendekatan terbaik untuk 

mengesan integriti mekanikal belitan pengubah. FRA dapat diukur di lokasi 

atau disimulasikan berdasarkan maklumat reka bentuk pengubah. Pengiraan 

parameter Rintangan (R), Aruhan (L), Kapasiti (C) and Kekonduksian (G) 

sangat penting untuk mensimulasikan tindak balas frekuensi berdasarkan 

fungsi pemindahan dan kaedah Jalur Penghantaran Multi-konduktor 

(MTL).Kaedah ini bagaimanapun tidak dapat memberikan keadaan terperinci 

bagi belitan individu serta sebab dan akibat pergerakan mekanikal.Sebab-sebab 

yang diketahui seperti kilat atau peristiwa pensuisan boleh menyebabkan 

penguatan / pelemahan lebih tegangan di sepanjang belitan dan seterusnya 

mengakibatkan tekanan tegangan yang tidak normal.Medan elektromagnetik 

dapat dihasilkan dan menghasilkan kesan elektromekanik yang perlu 

dikelaskan. Oleh itu, projek ini dijalankan untuk mengatasi masalah yang 

dinyatakan.Pertama, pendekatan alternatif untuk mengekstrak parameter 

RLCG belitan pengubah berdasarkan Kaedah Unsur Terhingga (FEM) 

dicadangkan. C dan G dihitung berdasarkan Kaedah Pelbagai Cepat (FMM) dan 

Kaedah Momen (MoM) melalui pendekatan kuasi-elektrostatik. Rintangan dan 

aruhan AC dihitung berdasarkan MoM melalui pendekatan kuasi-

magnetostatik. Persamaan Maxwell digunakan untuk menghitung rintangan 

dan aruhan DC. Berdasarkan parameter dikira FEM, tindak balas frekuensi 

belitan disimulasikan melalui fungsi plot Bode. Tindak balas frekuensi simulasi 

oleh model FEM dibandingkan dengan tindak balas frekuensi simulasi 
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berdasarkan model MTL dan tindak balas frekuensi yang diukur dari belitan 

HV untuk transformer 33/11 kV. Seterusnya, ayunan resonan lapisan HV dan 

belitan jenis cakera untuk transformer 11/0.415 kV dan 33/11 kV di bawah kes 

berlainan kilat dan impuls pensuisan dianalisis. Impuls lebih tegangan 

dikenakan ke atas belitan HV dan ayunan resonan disimulasikan untuk setiap 

lapisan dan cakera dengan mempertimbangkan konfigurasi penempatan 

pelindung elektrostatik yang berbeza.Kesan pelbagai magnitud piawai kilat 

yang berbeza pada anjakan mekanik dan ubah bentuk belitan HV dari 

transformer 11 / 0.415 kV juga dikaji berdasarkan FEM. Daya elektromagnetik 

yang terhasil yang bertindak dalam arah paksi dan radial dihitung dan 

diinduksi ke struktur belitan. Didapati bahawa tindak balas frekuensi yang 

disimulasikan oleh model FEM cukup dekat dengan tindak balas frekuensi yang 

diukur pada kawasan frekuensi rendah dan pertengahan berdasarkan Root 

Mean Square Error (RMSE) dan Total Absolute of Logarithmic Error 

(ASLE).Tekanan tegangan di sepanjang belitan lebih linear dan ayunan resonan 

adalah yang paling rendah apabila perisai terapung diletakkan di antara belitan 

HV dan LV dari transformer 11/0.415 kV dan 33/11 kV di bawah kes berlainan 

kilat dan impuls pensuisan berdasarkan ralat cerun (SEb).Telah diperhatikan 

bahawa sokongan tiang luar struktur belitan untuk transformer 11/0.415 kV 

mengalami tekanan elektromekanik yang jelas dan ubah bentuk lengkungan 

radial diperhatikan. Jangka hayat dan ketahanan impuls lebih tegangan kilat 

belitan dianggarkan 1 × 106 kitaran impuls yang lebih rendah daripada 1 × 109 

hayat reka bentuk untuk konduktor tembaga berdasarkan jangka hayat 

keletihan dan kriteria Von-Mises. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

Nowadays, the demands for energy are increasing and interruption in any of 

the components in the electrical power system network can be costly. 

Transformers form an integral part of either the transmission or distribution 

network. The reliability of transformers has a crucial role on maintaining the 

continuity of the electrical power delivery. Condition monitoring of 

transformers is essential to ensure any issues can be detected early and thus 

reduce the probability of failures in-service.  

There are several parameters of transformers that can be monitored which 

include thermal, chemical, electrical and mechanical properties. Mechanical 

properties are known as one of the critical parameters for transformers whereby 

it could lead to sudden failures if no mitigation is carried out. Frequency 

Response Analysis (FRA) is known as one of the common approaches to analyze 

the mechanical integrities of transformer windings. It can be used to detect any 

movements or deformations in the windings. FRA analyzes the windings by 

representing the physical geometries of the windings as resistance (R), 

inductance (L) and capacitance (C) elements. Damages in transformer windings 

could change the RLC elements, which in turn lead to different responses along 

the frequency spectrums.  

Generally, the winding parameters are dependent upon the number of turns in 

the winding, size of the conductor and insulation thickness. Transfer function 

method is among the conventional numerical approaches that can be used to 

analyze FRA [1], [2]. This method has also been used to analyze various types of 

deformations in transformer windings which include the radial deformation, 

axial displacement, axial bending and disc space variation [3]–[5]. Other 

numerical approaches that have been used to carry out FRA on transformers 

windings are Multi-Conductor Transmission Line (MTL) method and lumped 

circuit modeling [6]–[8]. These numerical methods however have their own 

limitations especially on giving detail conditions of the individual windings. 

Furthermore, the study of winding deformation causes are still limited and 

require further investigation. 
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1.2 Problem Statement 

The numerical methods have limitations especially on determining the faults 

causes and its corresponding detail mechanical windings damages. The FRA is 

the most utilized condition monitoring technique to determine the physical 

health of the winding structure. MTL, TF, lumped circuit and duality-based 

models were commonly used for simulation of transformer winding to simulate 

the frequency response. However, these methods could not accurately represent 

the actual winding due to the simplifications during the modeling stage. Finite 

Element Modeling (FEM) could provide much clear insight into the FRA of 

transformer windings as compared to existing numerical methods. The FEM 

model usually applies magnetostatic and electrostatic solvers to determine the 

inductance and capacitance matrices based on Maxwell’s equations [9]–[11]. 

Eddy current solver is typically used to calculate the frequency-dependent 

resistances of the winding model [12]. The parameter calculation of the detailed 

3D model of the winding requires longer simulation time [13]. However, 

accurate modeling of the transformer winding structure by optimizing the 

required computational power is still a challenge. Nevertheless, there is no 

specific technique entirely based on FEM available to simulate FRA. Therefore, 

an alternative FEM computation method is required to reduce the simulation 

time and at the same time maintain the reliability of the outputs. 

Switching and lightning surges are among the faults that could possibly cause 

the deformation of transformers windings [7], [14]–[16]. Once the windings are 

subjected to external voltage surge impulses, voltage stresses can initiate and 

propagate in the winding insulations and result in the degradation process [17]. 

The repeated exposure of the overvoltage surges could accelerate the 

degradation of the insulation which in turn could lead to failures of windings in 

transformers [18], [19]. The effect of oscillatory impulse is more severe than 

lightning, chopped lightning and switching impulses [20]. However, further 

analyses on this phenomena are limited especially on the overvoltages 

distribution along windings and its corresponding mitigation approaches. 

Several approaches have been proposed to mitigate the overvoltage issues on 

transformers by the placement of surge arrestors, arcing gaps and shielded 

overhead Medium Voltage (MV)/LV lines. However, there is no much focus on 

improving the withstand capability of transformers under the lightning and 

switching surges has been considered. The placement of the electrostatic shield 

as recommended by IEC 60076-3 and IEC 60076-4 at predetermined locations in 

the winding geometry could mitigate the effect of the transient voltages and 

improve the linearity of the voltage distributions [24–30]. An electrostatic shield 

can be used to increase the series capacitance which in turn could increase the 
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uniformity of the voltage and dielectric stress distributions in the windings. 

Currently, the study on the shield placements' impact on the resonant surge 

distributions in the transformer windings are still lacking and needs further 

investigation. Hence it is a critical aspect of the research in order to evaluate this 

aspect to maintain the reliability of transformers.  

In addition, failures could be mechanical in nature due to deformations in the 

transformer windings. As the lightning strike on the power line, the transformer 

winding could be subjected to resulting electromagnetic force. This condition 

could instigate apparent electromechanical effects on the winding structure. 

Monitoring the electromechanical effects through the electromagnetic forces in 

axial and radial directions assists to minimize the mechanical failure in 

transformer windings. Previous studies have computed the axial and radial 

forces under short circuit and inrush currents through analytical methods 

[26][27]. However, the study on the mechanical damages and the level of 

winding deformations under transient overvoltage impulses are still limited. To 

date, there are no clear guidelines especially to identify the severity levels of 

transformer winding deformations.  

1.3 Research aim and objectives 

The aim of this research is to evaluate the impact of transient overvoltage 

impulses on the frequency responses and electromechanical behaviors of 

transformer’s winding deformations based on FEM approach. In order to 

achieve the above aim, several objectives have been identified. 

1. To develop an approach to extract RLC parameters of the transformer

windings based on FEM method for computation of FRA.

2. To investigate the overvoltage transients in transformer windings

under standard/chopped lightning and standard/oscillating switching

impulses and its mitigation through shield placements.

3. To examine the electromechanical effects on transformer windings

under different magnitudes of lightning impulses based on FEM

method.
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1.4 Scope of Study 

The present study considers various assumptions to achieve the individual 

objectives: 

1. For the first objective, a Dyn11 transformer used in the study has the 

power and voltage ratings of 30 MVA and 33/11 kV of which only one 

phase of the HV winding is considered for the FEM simulation. The 

FEM model of the distribution transformer used for validation 

considers eight discs with six conductors and thirty turns of the total 

ninty-six discs of the HV winding for the RLC parameters extraction 

due to the limitation of the high-speed computation capabilities. 

Therefore, the eight discs with the computed RLC parameters were 

stacked twelve times in series to form the complete HV winding of one 

phase. The FRA test circuit simulated by Ansys Simplorer is based on 

end-to-end short circuit configuration. 

 

2. For the second objective, the first of the two transformer case studies 

considered is a Dyn11 transformer with power and voltage ratings of 

160 kVA and 11/0.415 kV with layered helical HV winding and foil LV 

winding. The second transformer is a Dyn11 transformer consists of 

disc HV winding and layered helical LV winding with power and 

voltage ratings of 33/11 kV and 30 MVA. The study considers the 

individual HV conductor specifications for the calculation of initial 

voltage distribution. The allowance considered in the actual height of 

the HV winding could not be considered for the purpose of validation 

due to the lack of information on the distribution of allowance in the 

winding geometry. The shield used in the mitigation of overvoltage 

surges in the windings is aluminium conductor of thickness 0.075 mm. 

The eddy current loss was neglected for both transformers under 

study since the calculated value of eddy current loss were found to be 

low as compared to the calculated total loss. The mutual coupling 

between HV and LV windings was not considered in the transient 

voltage study. 

 

3. For the third objective, the HV winding in 11/0.415 kV distribution 

transformer is considered for the electromechanical analysis under the 

lightning impulses. It is due to the transformers are tested in 

laboratories under standard lightning impulses as part of the routine 

acceptance tests to establish a minimum level as per IEEE Std C57.98-

2011. A Dyn11 transformer with power and voltage ratings of 160 kVA 
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and 11/0.415 kV with layered helical HV winding is considered in the 

study. 

1.5 Contribution of the research 

The details of the contributions of this research study are as follows: 

1. The current study applies FEM entirely to extract the RLC parameters

for FRA simulation. Besides, an alternative FEM approach based on

Ansys Q3D was introduced to obtain the RLC parameters which is

much faster than the FEM method based on Ansys Maxwell. The 3-D

model can be modeled close to the actual geometry to study the

various types of structural deformations in the transformer windings.

2. The study on the overvoltage surge distribution mitigation for two

different types of transformers could assist the design engineers to

identify the optimized location of electrostatic shield placement to

minimize the adverse effect of voltage stresses on the winding

conductors.

3. The FEM simulation can be applied as an alternative non-invasive

technique to monitor the electromagnetic force, location, type of the

damage and estimates the remaining life of the winding due to

overvoltage impulses. This information provide the field engineers

with much insight especially on the root cause assessment.

1.6 Organization of the report 

The report is organized in five chapters to achieve the objectives mentioned. The 

chapter one provides the general background of the current research. The 

problem statement, objectives of the study and the assumptions are discussed 

briefly.  

The chapter two begins with the review of the previous works that discuss the 

different methods of calculation of RLC parameters of the transformer winding 

and subsequent generation of FRA response. Then the previous conducted 

studies on the overvoltage surges existing in the power system and their adverse 

effects along the winding layers are discussed. In addition, the methods to 
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mitigate the voltage stress along the windings are explained. Finally at the end 

of chapter two, the concept of the electromechanical effect on the transformer 

windings generated due to electromagnetic forces is discussed based on 

previous studies. 

In chapter three, the methodology to approach the research objectives are 

explained in detail. At first, the novel method that is introduced to calculate the 

RLC parameters is presented. The subsequent simulation of FRA response is 

explained in detail. Then, the analytical model to study the overvoltage surge 

behavior of two different transformer cases are analyzed. The procedure to 

investigate the appropriate location of shield placement is explained. Finally, 

the procedure to calculate the electromagnetic forces generated due to various 

magnitudes of impulse surges and the resultant deformation of the winding 

structure are discussed in detail. 

The chapter four discusses the results of the research study. First, the FRA 

response simulated based on MoM and FEM based on Ansys Q3D is compared 

with the measured response and the response simulated based on MTL method. 

Then, the overvoltage surge behavior of SLI, CLI, SSI and OSI impulses on the 

HV winding of a 11/0.415 kV and 33/11 KV transformers are presented. The 

optimized location of shield placement is simulated and is compared based on 

the results of Error of Slope (SEb). Finally, the structural deformation due to 

various magnitudes of SLI are presented for the HV winding of 11/0.415 kV 

transformer. Besides, the results of fatigue life estimation and the classification 

of the deformations are discussed. 

Finally the chapter five summarizes the conclusion of the research study along 

with the recommendations of the future works. 
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