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In urban areas, outdoor thermal comfort influences the performance of people 
and their work. Wind flow is affected by several parameters, such as the 
arrangement of buildings and the architecture of buildings with regard to shapes, 
height of buildings, and aspect ratio of street-canyon width. Modern design 
techniques will lead to the enhancement of many architectural buildings' thermal 
performance which may have an impact on Iraq Government’s criteria. While 
policies and design standards deal with key planning and there are no obvious 
guidelines in designing buildings that have effective energy performance. 
Moreover, the contemporary urban design pays no attention to the 
environmental solution in residential buildings which will lead to the production 
of a rather large calm zone of wind speed and the potential to increase the risk 
of pollutant exposure in many areas of outdoor places. Hence, the study aimed 
to determine the extent of the impacts of wind flow around the outdoor residential 
buildings at the pedestrian-level wind (PLW) in Iraq and to what extent can they 
be invested in finding healthy and comfortable living conditions , as well as, 
focusing to uncover the current practices in outdoor conditions  for existing 
residential buildings in terms of (arrangement, shape, height of the building, and 
street -canyon width) as well as, the patterns of wind flow behavior among 
occupants of different models. Consequently, a quantitative field study was 
conducted to evaluate the wind effects on outdoor spaces in Iraq residential 
buildings in a hot-dry climate to achieve a comfortable pedestrian thermal level. 
The field measurement had measured seven points using Digital Anemometer 
in Al-Salam residential building as a case study in Najaf city in summer (July). 
Computer simulation (Autodesk CFD) was used to simulate the existing complex 
building modeling with three wind velocities (1.2, 2.1, and 3.2 m/s) in the winter 
and summer conditions respectively, based on the meteorological data of Najaf 
to compare with the simulation results during the summer season obtained from 
the field measurements under similar conditions and same measured points so 
that the accuracy of the results could be acquired. In addition, the study 
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investigated the possibility of wind flow on 28 simulation models in Iraq 
residential buildings based on different parameters such the buildings’ 
arrangement, shape, height, and aspect ratio of street canyon by using Autodesk 
CFD simulation with high accuracy mesh and κ-ε turbulence model. The results 
of Autodesk CFD simulation and field measurements of the existing complex 
building of Al Salam Residential Complex showed approximately similar data 
and slight differences in the accurate value with the error percentage of 4.942 
%. The modified models with plants are also capable of improving wind flow in 
Iraq residential buildings through the use of trees with L-shaped arrangement 
and of different heights. Furthermore, it was observed from the simulation results 
of the 6 simulation models that the average wind speed in the staggered 
arrangement at 45° rotation angle is the best distribution which provides the most 
appropriate average wind speed. Meanwhile, L-shaped buildings with 45° 
rotation angle is the optimal shape that provides the most appropriate average 
speed and creates the best outdoor wind environment and the smallest calm 
zone. In respect of building height, the results confirmed the use of some 
solutions to make the gradient of the buildings’ height that allows the shortest 
one to be exposed to the wind first, while the highest to be the last being exposed 
to the wind, in order to avoid wall impact blockage. With regard to street-canyon 
width, wind velocity observed in Model 1 and Model 2 for (12 simulations) had 
accelerated with increasing street width and resulted in high velocity in some 
areas. The wind flow characteristics have been influenced by the approaching 
width of the street canyon and the height of building inside the street canyon. 
The study was also suggested to increase the inter-distance between the blocks 
or to reduce the height of the blocks so that the aspect ratio (H/W) is 0.5 between 
the buildings. The results of this study can be used in future design, concerning 
outdoor voids to provide comfortable thermal in outdoor spaces. In conclusion, 
the findings of this study contribute towards improving the designing process. 
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Di kawasan bandar, keselesaan terma luaran mempengaruhi proses kerja 
seseorang dan prestasi pekerjaan mereka. Aliran angin dipengaruhi oleh 
beberapa parameter, seperti susunan bangunan dan seni bina bangunan 
dengan memperhatikan bentuk, ketinggian bangunan, dan nisbah aspek lebar 
jalan-ngarai. Teknik reka bentuk moden akan membawa kepada peningkatan 
prestasi termal bangunan seni bina yang mungkin impak pada kriteria Kerajaan 
Iraq. Walaupun dasar dan standard reka bentuk menangani perancangan utama 
tidak ada garis panduan yang jelas dalam merancang bangunan yang 
mempunyai prestasi tenaga yang berkesan. Lebih-lebih lagi, reka bentuk bandar 
kontemporari tidak memperhatikan penyelesaian persekitaran di bangunan 
kediaman yang akan menyebabkan pengeluaran zon tenang yang cukup besar 
dengan kelajuan angin dan berpotensi meningkatkan risiko pendedahan 
pencemaran di banyak kawasan di luar. Oleh itu, kajian ini bertujuan untuk 
menentukan sejauh mana kesan aliran angin di sekitar bangunan kediaman luar 
di tingkat pejalan kaki di Iraq dan sejauh mana mereka dapat dilaburkan untuk 
mencari keadaan hidup yang sihat dan selesa, serta, fokus untuk menerokai 
amalan semasa dalam keadaan luaran untuk bangunan kediaman yang ada dari 
segi (susunan, bentuk, ketinggian bangunan, dan lebar jalan-ngarai) serta, pola 
tingkah laku aliran angin di kalangan penghuni model yang berbeza. Oleh itu, 
kajian kuantitatif dilakukan untuk menilai kesan angin pada ruang luar di 
bangunan kediaman Iraq dalam iklim kering-panas untuk mencapai tahap termal 
pejalan kaki yang selesa. Pengukuran lapangan telah mengukur tujuh titik 
menggunakan Digital Anemometer di bangunan kediaman Al-Salam sebagai 
kajian kes di kota Najaf pada musim panas (Julai). Simulasi komputer (Autodesk 
CFD) digunakan untuk mensimulasikan pemodelan bangunan kompleks yang 
ada dengan tiga halaju angin (1.2, 2.1, dan 3.2 m / s) masing-masing dalam 
keadaan musim sejuk dan musim panas, berdasarkan data meteorologi Najaf 
untuk dibandingkan dengan simulasi hasil semasa musim panas diperoleh dari 
pengukuran di lapangan dalam keadaan yang serupa dan titik pengukuran yang 
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sama sehingga ketepatan hasilnya dapat diperoleh. Di samping itu, kajian 
menyelidiki kemungkinan aliran angin pada 28 model simulasi di bangunan 
kediaman Iraq berdasarkan parameter yang berbeza seperti susunan 
bangunan, bentuk, ketinggian, dan nisbah aspek ngarai jalan dengan 
menggunakan simulasi Autodesk CFD dengan mesh ketepatan tinggi dan κ -ε 
model pergolakan. Hasil simulasi Autodesk CFD dan pengukuran lapangan dari 
bangunan kompleks Kompleks Kediaman Al Salam yang ada menunjukkan kira-
kira data yang serupa dan sedikit perbezaan dalam nilai tepat dengan peratusan 
ralat 4.942%. Model yang diubah suai dengan tanaman juga mampu 
meningkatkan aliran angin di bangunan kediaman Iraq melalui penggunaan 
pohon dengan susunan berbentuk L dan ketinggian yang berbeza. Selanjutnya, 
ia diperhatikan dari hasil simulasi dari 6 model simulasi bahawa kelajuan angin 
rata-rata dalam susunan berperingkat pada sudut putaran 45° adalah taburan 
terbaik yang memberikan kelajuan angin purata yang paling tepat. Sementara 
itu, bangunan berbentuk L dengan sudut putaran 45° adalah bentuk optimum 
yang memberikan kelajuan rata-rata yang paling sesuai dan mewujudkan 
persekitaran angin luar terbaik dan zon tenang terkecil. Mengenai ketinggian 
bangunan, hasilnya mengesahkan penggunaan beberapa penyelesaian untuk 
membuat kecerunan ketinggian bangunan yang memungkinkan yang terpendek 
terdedah kepada angin terlebih dahulu, sementara yang tertinggi menjadi yang 
terakhir terkena angin, di untuk mengelakkan penyumbatan hentaman dinding. 
Berkenaan dengan lebar jalan-ngarai, kecepatan angin yang diperhatikan pada 
Model 1 dan Model 2 untuk (12 simulasi) telah dipercepat dengan peningkatan 
lebar jalan dan menghasilkan halaju tinggi di beberapa daerah. Ciri-ciri aliran 
angin telah dipengaruhi oleh lebar canyon jalan dan ketinggian bangunan di 
dalam canyon jalan. Kajian ini juga disarankan untuk meningkatkan jarak antara 
blok atau mengurangkan ketinggian blok sehingga nisbah aspek (H / W) adalah 
0.5 antara bangunan. Hasil kajian ini dapat digunakan dalam rancangan masa 
depan, mengenai lompang luar untuk memberikan haba yang selesa di ruang 
luar. Kesimpulannya, penemuan kajian ini menyumbang ke arah peningkatan 
proses reka bentuk. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Research background  

It has been shown that rapid population development and fixed accessible land 
resources contribute towards urbanization, especially in modern cities, while 
designing intensive urban regions for the pedestrian comfort and natural 
ventilation is a substantial factor. In general, the shapes of building consist of 
three types, namely the high-rise, medium-rise, and low-rise buildings with 
complex forms. Hence, it is substantial to realize the pedestrian level wind (PLW) 
environment around these buildings’ shapes (Mittal et al., 2017). Various studies 
that result in the development of diverse designs, assisted to counter the impacts 
of climate component and supply the greatest potential.  

In urban areas, wind flow pattern is highly impactful upon the comfort level of 
pedestrians and natural ventilation. There are several parameters that affect the 
wind flow patterns like the arrangement of neighbouring buildings, the 
architecture of the buildings, terrain conditions of building’s location, and also 
wind direction (Mittal et al., 2017). Wind flow may be greatly affected due to 
location of the building which is in the urban cities, for instance, buildings can be 
used to induce wind movement in it, relying on the prevailing winds for the cities, 
or protect the site from undesired wind currents. Wind pressure is the major 
ventilation driving force in the case of hot climates and will cause the airflow to 
penetrate the buildings across their facades because of the pressure difference 
(Asfour, 2010). 

The arrangement of building has been presumed to be the major counter-
measure to enhance the outdoor conditions and wind flow by changing the 
building’s layout (building arrangement, height, and shape). Several studies had 
been performed to look for some solutions for particular or regular cases, such 
as simulating several wind flow effects which could happen near the buildings 
based on wind tunnel tests (Hong & Lin, 2018), examining the relationship 
between building’s density of actual residential buildings and the average wind 
velocities at pedestrian-level (Kubota et al., 2008); architectural design is also 
accepted as an influential way of easing thermal comfort, which provides a better 
outdoor environment(Ng et al., 2012).  

In terms of high buildings and street canyons, there is a big influence on the 
ground-level wind flow and air pollution within the urban fabric; nevertheless, 
wind flow interaction is frequently not taken into consideration when it comes to 
urban planning and urban development decisions (Abd Razak et al., 2013). 
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Consequently, increased air pollutants influence general health issues and raise 
the spread level of communicable diseases (Gao et al., 2009); air ventilation is 
a valuable process in urban pollutant drainage of residential buildings to acquire 
clean air. Particularly, outdoor air quality could be enhanced by the airflow as 
wind removes pollutants. Wind flow is highly related to the building's morphology 
and the mutual arrangement of buildings (Yu et al., 2017). 

In a study by (Kubota et al., 2008), there is a strong relationship between 
pedestrian-level wind environment and different building height found in 
residential areas. Ikegaya et al (2017) investigated the impact of different 
building height on wind velocity and revealed that the height difference of 
building blocks will improve the wind flow path at pedestrian level (Ikegaya et al., 
2017). High-rise buildings indicate the architectural building height ranging from 
35 to 100 meters based on (Emporis Standards, 2015a). In general, a high-rise 
building refers to a structure with 7- storeys or more (Beadle, 2001). The four 
categories of high-rise buildings, as prescribed by the national fire incident 
databases, are 7–12 storeys, 13–24 storeys, 25–49 storeys, and 50 storeys or 
more. While, the low-rise buildings indicate the architectural building of height 
below 35 meters and divided at systematic intervals into livable floors (Emporis 
Standards, 2015b; Gabbar, 2018) . Furthermore, there are two building patterns 
which are the multi-family housing and single-family housing in the housing 
manual of Iraq. Multi-family housing consists of high-rise buildings, mid-rise 
buildings, and low-rise buildings. According to internationally-applied rating, low-
rise buildings are determined to be of 3–4 storeys, mid-rise buildings to of 4–8 
storeys and high-rise buildings to be up to eight storeys (Goody et al., 2010; 
Keim, 2007) because they are not shown by the Iraq manual regarding their 
height limits (State Commission, 2010). 

Finally, Iraq cities are testifying a big expansion as a result of the increasing 
number of residents and the enhancement of economic circumstance. This 
expansion has resulted in domination of modern lands and alteration of their 
features, which participate in the aggravation of pollution crisis as streets prevail 
and buildings are at the expense of farming land. However, the issue is not only 
about land expansion; in fact, the issues that should be taken into consideration 
when building houses is taking the local environment data to decrease urban air 
pollution. During summer in Iraq, the average temperature (April to September) 
ranges between 40° C to beyond 50° C. The high-temperature domain through 
summer time is more energy-consuming (Waheb & Yaseen, 2018). Several 
researchers had proposed effective ways to improve thermal comfort depending 
on the landscape environment and building layout (Alchapar & Correa, 2016; 
Barakat et al., 2017). The impact of trees in thermal comfort is considered as 
more effective because it supplies more shades in which the amount of tree 
planting is appropriate to improve outdoor thermal comfort and decrease radiant 
temperature. Vegetation can clearly reduce the wind speed. In addition, it plays 
a good role upon strong winds during the winter and establishes a convenient 
wind environment at pedestrian level (Zhang et al., 2018).   
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1.2 Problems statement  

In urban area, a residential region is considered as one of the most essential 
living spaces and the wind environment of residential regions has a major 
importance in environmental urban areas and the construction of green lands. 
The existence of high-buildings near low-rise ones could change the wind 
environment and lead to uncomfortable wind conditions around high buildings 
(Ahuja et al., 2006). The air quality in street canyons at the pedestrian-level for 
low-level buildings and other high-rise buildings may be influenced by various 
factors, such as the wind speed, wind direction, street width, as well as the shape 
and height of the buildings. Nevertheless, there is still a research gap in studying 
the impact of residential building configurations on the outdoor thermal comfort 
in a hot arid climate within Iraq cites. Yet, the effect in grouping patterns, building 
geometries, height variation in low-rise, mid-rise buildings, and high-rise housing 
on outdoor thermal comfort is still not addressed in a statistical way in most of 
the Iraq cities (Hassan et al., 2019). 

There are several assessment researches that worked with high accuracy to 
define the acceptability of diverse residential projects to meet special housing 
requirements in Iraq (Table1). Studying these researches presents that they 
have reached several of the possible alternatives as stated by (Al-Hafith et al., 
2018)’ study. Despite that, no studies have yet to focus on evaluating the 
possible architectural methods, and all the studies did not fulfill the housing 
requirements in Iraq. 
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The symbols in the Table refer to the determined impact  (  ⃝) : A housing pattern 
that is positively affecting satisfies a housing requirement; Undetermined impact 
(─): The impact of housing pattern satisfying requirements had not been 
investigated by  the study. 

In Iraq, there is an urgent need for sustainable environment, where Iraq 
residential buildings are required to be promoted towards having the wind effects 
in order to be capable of providing a good wind comfort in urban spaces. In the 
20th century, a lot of parks, squares and gardens in Iraq have been constructed. 
Baghdad and many other cities in Iraq are among the locations with many parks 
built for the purpose of social integration to improve the thermal comfort at PLW 
and so that people can have more relaxing places. However, the currently 
existing parks do not play their role well in Iraq. This is reflected in user's 
interaction and limited to indoor spaces only. In addition, the responsible 
authorities do not make constructions and administrations, parks' maintenance, 
and enough efforts for open spaces (Rikabi & Ali, 2013). The present parks have 
insufficient space and number, and the facilities are not effective especially the 
children's facilities within the parks (not protected). Such thing will be reflected 
on community interaction (Rikabi & Ali, 2013). (Salih et al., 2018)’ study 
elaborated that there was a lack of open spaces resulting in lack of social 
interaction based on assessment study that supplying important information of 
outdoor spaces contributes to active social interaction and outdoor recreation in 
Baghdad- Iraq. Thus, the results proved that achieving green open space is 
fundamental to improve the aspects of wind comfort environment besides health 
in terms of mental, social and physical for residential area and the residents.  
This could be achieved by implementing appropriate criteria in that space which 
encourage social interactions between the citizens in the city. 

On the other hand, the outdoor climate will be altered by the building 
construction. Wind velocity, wind direction, daylight, air pollution, and radiation 
are all samples of physical appearances that specify the wind comfort and that 
are altered by the existing buildings (Blocken & Carmeliet, 2004). The change of 
these quantities depends on the size, shape, and orientation of the building and 
the building interaction with the encirclement buildings. Unsuitable outdoor 
thermal comfort may result in several problems regarding the well-being and 
health of humans as well as negatively affects commercial and social outdoor 
activities as a result of low wind speeds and high temperatures (Johansson & 
Emmanuel, 2006). The reduction of vegetation areas and the increasing number 
of buildings in a city will influence wind comfort in urban spaces which could 
affect the usage of outdoor space. People's expectations are different when 
staying outdoor instead of indoor, which means they anticipate variability in 
outdoor conditions, such as the modifications in wind direction and speed (Givoni 
et al., 2003). Pedestrian satisfaction level with wind comfort environment is one 
of the indications of the essential issue which sets the number of hours to spend 
into outdoor public areas. Nevertheless, it is hard to determine peoples’ 
satisfaction level with outdoor thermal comfort, as it may differ from one person 
to another which will result in changing satisfaction and perception of occupants 
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at PLW, particularly in hot dry climates. These indicators pose challenges to 
urban space designers and many researchers in finding the suitable ways to 
improve outdoor thermal comfort at pedestrian areas (Setaih et al., 2013). 

The significance of safe and comfortable wind conditions in the surroundings of 
buildings has been confirmed by many authors. Inconvenient wind environments 
have been assumed to be detrimental to the success of new constructions 
(Durgin & Chock, 1982). (Wise, 1970) reported regarding shops that are left 
without monitoring due to the stormy environment that frustrated the shoppers. 
In 1972, after being blown over by abrupt wind storms near a high-rise building. 
(Lawson & AD, 1977) declared a significant risk of wind conditions to be 
responsible for killing two old ladies. Iraq is considered one of the most 
influenced countries in the Middle East concerning the occurrences of strong 
dust as a result of climatic changes within the region which leaves a major impact 
on human health and more economic losses (Sissakian et al., 2013). Figure1 
presents the relation between the average monthly wind speed (m / s) and the 
frequency of dust storms (day) in Iraq during 1982-2011 (Salam Aljubouri, 2019). 
While, the predicted value of annual dust storms in 2013 was assessed to be 
300 days (UOF, 2006). According to the studies by (Bottema, 1993; Murakami 
et al., 1980), an unexpected increase in wind velocity could be enough to bring 
people out of balance and is considered quite dangerous for the infirm and the 
elderly at pedestrian level. (Ridha et al., 2018)’ study was focused on potential 
mitigation methods to improve the thermal comfort for urban area at PLW. The 
outdoor thermal comfort is affected especially in hot and arid climates by the 
satisfaction of the pedestrians in Iraq. 

 

Figure 1 : Presents the relation between the average monthly wind speed 
(m / s) and the frequency of dust storms (day) in Iraq during 1982-2011 
(Salam Aljubouri, 2019) 
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In arid climate, human thermal comfort has confronted with difficulties in urban 
areas without taking the pedestrians into consideration particularly in a hot 
season of summer. As asymmetrical canyons, high-rise buildings, the loss of 
shading feature, lack of vegetation, and the big spacing between buildings play 
an important part and this will lead to undesirable thermal comfort. Furthermore, 
there is a lack of classification and summary of the characteristics of residential 
areas in hot regions, and studies concerning the comparison of wind conditions 
between various layouts of residential regions are also limited in Iraq. Therefore, 
in current residential area planning, planners can carefully observe the time of 
construction to enhance wind environment in outdoor space. It is considered as 
one of the most important reasons that should be assessed for pedestrian wind 
conditions of residential areas in severe hot regions in Iraq. 

This research investigated the potentiality to enhance the wind flow in outdoor 
spaces in Iraq residential buildings. To investigate this potentiality, the research 
questions addressed in this study are as follows: 

Main research question: 
 
How to apply pedestrian level wind (PLW) to improve outdoor thermal conditions 
of residential buildings in the hot-dry climate of Iraq? 

Sub-research questions: 
 

a. How to apply optimal conditions in PLW by using CFD simulation to 
describe the wind flow around the existing residential buildings? 
 

b. What is the current Iraq practices of outdoor conditions in residential 
buildings (building’s arrangement, shape, height, and street-canyon 
width) and the relationship between building’s design and wind flow at 
PLW? 

 
 

1.3 Significance of study 

This study aimed to uncover the current practices of outdoor conditions in Iraq 
residential buildings (building’s arrangement, shape, height, and street-canyon 
width) and the patterns of wind flow behavior among occupants of different 
models. Consequently, the study tended to reveal the suitable wind comfort as 
shown in (Table 3) with pedestrian level which gives the required favorable 
conditions. Furthermore, the study looked into the ability of CFD simulation by 
studying the airflow behaviors in each design category. The findings of this study 
will also inform designers on the importance of the research recommendations 
in Iraq residential buildings to reach the optimal outdoor thermal comfort.  
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1.4 Aim of study 

The study aimed to determine the extent of the impacts of wind flow around the 
outdoor buildings and to what extent can they be invested in finding healthy and 
comfortable living conditions. 

1.5 Research objectives 

1- To evaluate the current wind flow for 7 points around an existing 
residential building in Iraq (Al-Salam residential building) by using field 
measurement and Autodesk CFD simulations and propose the  
recommendations to achieve suitable conditions in PLW as shown in 
Figure 2. 
 

2- To evaluate various practices that are commonly applied for residential 
buildings (building’s arrangement, shape, height, and street-canyon 
width) and their respective weaknesses and strengths. 

 
 

 

Figure 2 : Presents the locations of studied 7 points in Al Salam Residential 
building  
(Najaf urban Planning, 2019) 
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1.6 Scope and Limitations 

This research focused on the wind comfort in a hot-dry climate to achieve a 
comfortable pedestrian thermal level. The wind velocity was measured in 7 
points in Al-Salam residential building as a case study in Najaf- Iraq in summer 
(July) which represents the typical wind speed day according to Najaf 
meteorological data using a Digital Anemometer. The range of wind velocity 
measurements for meter per second is 0.40-30.00 m/s, Resolution 0.0, and the 
accuracy is ± (2.0%+0.5m/s). The wind velocity was also measured at 7 points 
by using Autodesk CFD simulation of three simulations cases in the existing 
complex building modeling via three wind velocities (1.2, 2.1, and 3.2) m/s in 
winter and summer conditions respectively. The κ-ε turbulence model was only 
used in simulating the wind flow around residential buildings. The Autodesk CFD 
simulation was performed on a high-resolution grid which can be useful for a 
more accurate analysis of outdoor wind at pedestrian level. Furthermore, the 
study investigated the possibility of wind flow in Iraq existing residential buildings 
based on different design parameters modeling of 28 simulation cases 
(building’s arrangement, shape, height, and street-canyon width). Finally, the 
thermal comfort performance was assessed depending on the wind velocity and 
restricted to the outdoor spaces at pedestrian level only. 

1.7 Research methodology 

The research used a quantitative research methodology by using the Field 
measurement (Digital Anemometer) and Computer simulation (Autodesk CFD 
simulation) to measure 7 points of Al-Salam residential building in a case study 
in Najaf- Iraq. The study methodology was then divided into three matters to 
answer the research questions as follows: 1- Field measurement in an existing 
complex building in summer (July), these results will provide the wind velocity 
data from the case study to evaluate the current outdoor thermal condition and 
compare it to CFD program results. 2- Computer simulation (CFD) will be used 
to simulate the existing complex building modeling with three wind velocities 
(1.2, 2.1, and 3.2 m/s) in winter and summer conditions respectively. In addition, 
the meteorological data of Najaf will be used for modeling preparation in CFD 
simulation program, to compared with the simulation results of that during 
summer as obtained from the field measurements under similar conditions and 
the same measured points to get more accurate results. 3- Simulation 
procedure: all simulation processes will be defined to investigate the possibility 
of wind flow in Iraq existing residential buildings based on different design 
parameter modeling of 28 simulation cases (building arrangement, shape, 
height, and street-canyon width) so as to obtain the experimental results of this 
study. The objectives will be achieved through CFD simulations, which 
respectively refer to the suitable conditions and influencing factors on 
sustainable building design such as wind velocity, wind direction, and aspect 
ratio; and also, CFD simulations which are considered as the main supporting 
method to achieve these objectives in this study. 
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1.8 Thesis structure 

This thesis comprises five chapters which are as follows: Chapter 1 is an 
introduction to the study and includes a background of wind flow, the research 
objectives, problem statement, and research methodology. Chapter 2 provides 
a critical analysis of relevant literature regarding wind flow effects on Iraq 
urbanization. This chapter discusses the wind flow, pedestrian-level wind, wind 
comfort criterion, wind forces, building arrangement, building shape, building 
height, and street-canyon width with density buildings, as well as the wind 
analysis methods, CFD software selection, and Flow Design software. Chapter 
3 characterizes the methodologies of field measurement and computer 
simulation CFD utilized in this research. Data analysis procedures, results, and 
discussion of the results are stated in chapter 4. Moreover, the results of 
simulations are discussed in a form of visual data such as figures, tables, and 
charts. Finally, Chapter 5 summarizes the whole thesis which includes its results 
and discussion of the conclusions based on the achieved results. The steps of 
the research framework are presented in Figure 3.  
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Figure 3 : Presenting the research framework 
 

1.9 Summary 

This chapter discusses relevant problems and issues with regard to the research 
questions, aims, objectives, the research methodology, and framework. Also, 
the thesis structure is shown in supplying a summarized description of the 
research procedures that were carried out. The next chapter will present a 
review of the wind flow theoretical background. 
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7 APPENDICES 

Appendix A 
 
 

Reynolds Number definition 
 
 
The definition of the Reynolds number is given by the following well-known 
formula: 

Re𝐿 =  
UL


 

 
 
U holds for a typical velocity, L is a typical length and  is kinematic viscosity. 
Its general form could be derived with help of dimensional analysis of the flow 
dynamics. For the case of viscose incompressible fluid-flow without presence of 
other volume forces the Reynolds number is the only relevant parameter defining 
quality of the flow under given boundary conditions. It determines presence of 
coherent structures in the flow and their behavior. And of course also the type of 
the flow: laminar or turbulent. 

Source: Uruba, V. (2018, August). On Reynolds number physical interpretation. 
In AIP Conference Proceedings (Vol. 2000, No. 1, p. 020019). AIP Publishing 
LLC. 
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Appendix B 
 
 

Coefficient of Determination (R2) 
 
 
The coefficient of determination (R2) summarizes the explanatory power of the 
regression model and is computed from the sums-of-squares terms. 

 
 

R2 describes the proportion of variance of the dependent variable explained by 
the regression model. If the regression model is “perfect”, SSE is zero, and R2 
is 1. If the regression model is a total failure, SSE is equal to SST, no variance 
is explained by regression, and R2 is zero.  

Sources:  
 

1- Steel, R. G. D.; Torrie, J. H. (1960). Principles and Procedures of 
Statistics with Special Reference to the Biological Sciences. McGraw 
Hill. 
 

2- Glantz, Stanton A.; Slinker, B. K. (1990). Primer of Applied Regression 
and Analysis of Variance. McGraw-Hill. ISBN 978-0-07-023407-9. 

 
3- Draper, N. R.; Smith, H. (1998). Applied Regression Analysis. Wiley-

Interscience. ISBN 978-0-471-17082-2. 
 

4- Devore, Jay L. (2011). Probability and Statistics for Engineering and the 
Sciences(8th ed.). Boston, MA: Cengage Learning. pp. 508–
510. ISBN 978-0-538-73352-6. 

 

 

https://en.wikipedia.org/wiki/McGraw_Hill
https://en.wikipedia.org/wiki/McGraw_Hill
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-07-023407-9
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-471-17082-2
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-538-73352-6
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Appendix C 
 
 

Percent Error Equation 
 
 
Percent error or percentage error expresses as a percentage the difference 
between an approximate or measured value and an exact or known value. It is 
used in science to report the difference between a measured or experimental 
value and a true or exact value. Here is how to calculate percent error, with an 
example calculation. 

Percent Error Formula 
 
Percent error is the difference between a the experimental or measured value 
minus the known or theoretical value, divided by the theoretical value and 
multiplied by 100%. 

percent error = [experimental value - theoretical value] / theoretical value * 
100% 
 

Percent Error Calculation Steps 
 

1. Subtract one value from another. The order does not matter if you are 
dropping the sign (taking the absolute value. Subtract the theoretical 
value from the experimental value if you are keeping negative signs. 
This value is your "error." 
 

2. Divide the error by the exact or ideal value (not your experimental or 
measured value). This will yield a decimal number. 

 
3. Convert the decimal number into a percentage by multiplying it by 100. 

 
4. Add a percent or % symbol to report your percent error value. 

 
 
Source: Bennett, Jeffrey; Briggs, William (2005), Using and Understanding 
Mathematics: A Quantitative Reasoning Approach (3rd ed.), Boston: Pearson. 
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