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Basal stem rot (BSR) caused by Ganoderma boninense (G. boninense) fungus is one of 
the most destructive diseases of oil palm plantations in Southeast Asia that resulted in 
losses up to USD500 million annually. Besides mature trees, seedlings are also 
susceptible to G. boninense infection after being transplanted into a plantation. 
Therefore, early detection, timely prevention and control are crucial because trees with 
less than 20% infection can still be treated. This study focuses on early detection of G. 
boninense in oil palm seedlings based on the physical growth of seedlings, spectral 
reflectance of leaves and machine learning classification. Twenty-eight oil palm 
seedlings aged five months old were used whereby 15 of them were inoculated with the 
G. boninense pathogen. The physical growth of the seedlings was monitored for every 
two weeks, and parameters recorded were fronds count, chlorophyll content, height, and 
girth. The physical growth did not provide any significant differences between the 
uninoculated (H) and inoculated (U) seedlings throughout the study, which indicate no 
BSR symptoms had appeared; however, the H obtained marginally higher measurements 
in most weeks. After 20 weeks of inoculation, spectral reflectance oil palm leaflets taken 
from fronds 1 (F1) and 2 (F2) were obtained using Cubert FireflEYE S185 hyperspectral 
camera with wavelength ranging from 450 to 950 nm. The differences between H and U 
were observed in the NIR and red-edge spectrum for reflectance and first derivative 
spectra, respectively. Thirty-five bands were found significant for reflectance and 14 
bands for first derivative spectra. The bands were later used as input parameters to 
develop F1, F2, a combination of F1 and F2 (F12), F1 derivative (F1dev), F2 derivative 
(F2dev), and F12 derivative (F12dev) classification models, i.e., decision trees, 
discriminant analysis, logistic regression, naïve Bayes, support vector machine (SVM), 
k-nearest neighbor, and ensemble. These bands were optimised according to the 
classification accuracy achieved by the models. The result showed that the acceptable 
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ii 
 

number of bands to develop classification models was 11 bands which obtained 
accuracies of 100% (F1), 92% (F2), 95% (F12), 97% (F1dev), 90% (F2dev) and 93% 
(F12dev) which considered the highest of its classes. Overall, 11 bands of F12 provided 
near good linear SVM model with 95% accuracy and a kappa value of 0.9; it was 
considered the best model since it did not require complex pre-processing to separate F1 
and F2. This information is useful in aerial-view applications when applying an 
unmanned aerial vehicle (UAV) for image acquisition since both fronds can be clearly 
seen from the top-view image hence could expedite the detection of the BSR disease. 
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Pengerusi : Siti Khairunniza binti Bejo, PhD 
Fakulti : Kejuruteraan 

Reput pangkal batang (BSR) yang berpunca daripada kulat Ganoderma boninense (G. 
boninense) adalah salah satu penyakit yang paling bahaya pada ladang kelapa sawit di 
Asia Tenggara yang mengakibatkan kerugian hingga USD500 juta setiap tahun. Selain 
pokok matang, anak pokok juga berpotensi untuk terkena jangkitan G. boninense 
setelah dipindahkan ke ladang komersial. Kajian intensif telah dilakukan untuk mencari 
teknik yang mudah untuk mengesan tahap jangkitan awal, dan potensi untuk 
menggabungkan imej dengan maklumat spektral telah dikenalpasti dengan 
menggunakan penginderaan jauh hiperspektral. Sebelum imej hiperspektral diperoleh, 
pertumbuhan fizikal anak pokok kelapa sawit dipantau sepanjang 20 minggu inokulasi 
dengan patogen G. boninense kerana jangkitan G. boninense boleh memberi kesan 
pada pertumbuhan fizikal kelapa sawit apabila jangkitan semakin parah. Parameter 
fizikal yang telah direkodkan adalah bilangan pelepah, kandungan klorofil daun, tinggi 
anak pokok dan lilitan batang. Hasil kajian menunjukkan bahawa secara purata, anak 
pokok yang tidak diinokulasi (H) lebih tinggi 2.30 cm, lebih lebar 1.35 mm dan 
mempunyai lebih banyak pelepah daripada anak pokok yang diinokulasi (U). 
Bagaimanapun, parameter ini tidak memberikan perbezaan yang signifikan secara 
statistik di antara H dan U, walaupun anak pokok H memperoleh bacaan yang lebih 
tinggi pada kebanyakan minggu. Pada 20 minggu inokulasi, imej hiperspektral anak 
pokok diperoleh untuk mengkaji pantulan spektral daun daripada pelepah nombor satu 
(F1) dan dua (F2) pada keadaan H dan U. Penyingkiran kebisingan dilakukan untuk 
membersihkan 558 dan 564 pantulan spektra daripada F1 dan F2, masing-masing 
daripada data yang tidak diingini. Pantulan spektra kemudian dipuratakan dan diplot di 
mana perbezaan antara H dan U dilihat jelas dalam spektrum inframerah dekat (NIR) 
untuk spektra pantulan dan rantau tepi merah untuk spektra terbitan pertama. 
Berdasarkan purata spektra, sejumlah 35 dan 14 jalur dikenalpasti signifikan secara 
statistik untuk F1, F2 dan gabungan F1 dan F2 (F12) dalam pantulan dan turunan 
pertama, masing-masing. Jalur signifikan yang telah dikenalpasti digunakan sebagai 
parameter input untuk menbangunkan model klasifikasi mesin pembelajaran. Model 
klasifikasi yang terlibat adalah pokok keputusan, analisis diskriminan, regresi logistik, 
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naïve Bayes, mesin vektor sokongan (SVM), k-nearest neighbor, dan ensemble. Jumlah 
jalur signifikan ini dioptimumkan berdasarkan ketepatan klasifikasi yang dicapai oleh 
model. Hasilnya, bilangan jalur signifikan untuk pantulan yang dioptimumkan adalah 
18, 14, 11 dan 9 jalur, sementara turunan pertama adalah band 11, 10 dan 7 jalur. 
Model yang dikembangkan menggunakan 11 jalur memperoleh ketepatan 100% (F1), 
92% (F2), 95% (F12), 97% (F1dev), 90% (F2dev) dan 93% (F12dev) yang dianggap paling 
tinggi dalam data tersebut. Selanjutnya, 9 jalur daripada F1 menghasilkan ketepatan 
yang dapat diterima iaitu 99% dengan nilai Kappa 0.99 ketika menggunakan Pokok 
halus, Pokok sederhana, Pokok kasar, dan Regresi linear. Walau bagaimanapun, ia 
memerlukan pra-proses yang kompleks untuk memisahkan F1 dari pelepah lain, yang 
akan meningkatkan masa pengkomputeran. Oleh itu, 11 jalur daripada F12 dapat 
memberikan model klasifikasi yang hampir baik dengan ketepatan 95% dan nilai 
Kappa 0.9 menggunakan mesin vektor sokongan (SVM) linear dan SVM kuadratik. 
Walaupun begitu, penggunaan F12 dapat mengurangi waktu pra-proses kerana tidak 
perlu memisahkan antara F1 dan F2. Maklumat ini berguna dalam aplikasi pandangan 
udara ketika menggunakan kenderaan udara tanpa pemandu (UAV) untuk pemerolehan 
gambar kerana kedua pelepah dapat dilihat dengan jelas dari gambar pandangan atas 
sehingga dapat mempercepat pengesanan penyakit BSR. 
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CHAPTER 1 

 

 

1INTRODUCTION 

 

 

1.1 Research background 

 

 

Oil palm (Elaeis guineensis) is a palm species that has been extensively planted in 

Southeast Asia, primarily in Indonesia and Malaysia, to fulfil the global demand for 

vegetable oil due to increasing population, income, and growing biofuel market. In 

Malaysia, oil palm is the main commodity crop that has significantly contributed to the 

economic development and stability of the country. Furthermore, exports of palm-based 

products such as palm oil, palm kernel oil, palm kernel cake and palm-based 

oleochemicals rose by 12.1% to 27.88 million tonnes as compared to the previous year 

(MPOB, 2019), maintaining Malaysia as the second-largest exporter in the world. 

 

 

Malaysia falls under the tropical rainforest climate, which is typically hot, rainy, and very 

humid. The average temperature ranges from 24 to 32°C with an annual rainfall of around 

2000 mm, which is favourable for oil palm growth. The land is also biophysically suitable 

for oil palm cultivation (Pirker and Mosnier, 2015). As a result, the area planted with oil 

palms in Malaysia continues to grow annually, with the latest total of 5.9 million hectares 

(MPOB, 2019). These plantations accounted for 32% of the world palm oil production, 

which denoted 38% of world exports (Breslin and Nesadurai, 2020). Besides climate and 

land suitability, the development of Malaysia's oil palm industry is also driven by 

government policies, government-private sector network cooperation, and technology 

advancement (Rasiah and Shahrin, 2006). 

 

 

Nevertheless, the production of oil palm in Southeast Asia has been affected by a never-

ending basal stem rot (BSR) disease caused by the Ganoderma boninense (G. boninense) 

pathogen. The BSR disease once infected only mature trees; however, a recent study by 

Sanderson (2005) has reported that seedlings are also susceptible to the infection where 

the symptoms appear earlier and more severe. The disease affects a plantation by 

reducing the number of standing trees and the weight of fresh fruit bunches (FFB) (Flood 

et al., 2000). According to Subagio and Foster (2003), the FFB yield decreased by an 

average of 0.16 t ha-1 for every dead palm or 35% when half of the planted trees died. 

Meanwhile, Malaysia has reported annual losses of up to RM 1.5 billion due to this 

disease, making BSR the most economically devastating disease. Based on the BSR 

incident rate, the total area affected in 2020 was estimated to be 443,440 hectares, 

equivalent to 65.6 million oil palms, which is worrying if preventive measures are not 

implemented (Roslan and Idris, 2012). 

 

 

G. boninense is a white-rot fungus that cultivates within oil palm stem through uninjured 

roots while producing enzymes that could degrade the woody tissues, cellulose, and 

lignin layers of the stem (Paterson, 2007). It also affects the xylem, causing a major water 

and nutrient distribution problem to the top part of the tree, making the symptoms appear 
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similar to water stress and nutrient deficiency (Turner and Gillbanks, 1974; Shu’ud et 

al., 2007; Paterson, 2007). Nutrient deficiency could cause poor production of new leaves 

resulting in yellowing and browning of older leaves. In severe cases, there is no 

development of new leaves and fresh bunches, which leads to growth inhibition and yield 

reduction. According to Idris et al. (2006), G. boninense infection could cause 80% of 

the affected trees to die and 25% to 40% FFB yield losses. However, the trees with an 

infection of less than 20% can still be treated (Meor et al., 2009). Therefore, it is crucial 

to detect the BSR disease at an early stage. 

 

 

The earliest visual symptom of G. boninense infection in oil palm seedlings can be seen 

in the presence of fruiting bodies at the seedling’s bole. Meanwhile, the medium 

symptoms are partial yellowing of leaves or mottling of basal fronds to form necrosis, 

indicating that over 50% of the stem base has been internally damaged (Naher et al., 

2015). However, the fruiting body at the infected bole may present or may not present 

before or after developing foliar symptoms (Sariah et al., 1994; Idris et al., 2006), making 

visual identification complicated and confusing. In short, the disease could change the 

physical appearance and growth of oil palm seedlings, especially in terms of frond count, 

height, girth, and chlorophyll content of leaves (Naidu et al., 2018). These are all due to 

the inability to perform normal photosynthesis due to foliar symptoms and water 

deficiency (Haniff et al., 2005). 

 

 

Hyperspectral imaging is a passive sensor that measures the light reflected from each 

pixel of a scene in narrow and contiguous electromagnetic wavelengths. Every pixel in 

the hyperspectral image contains a complete spectral reflectance equal to the number of 

wavebands. Such reflection provides enough information to classify and analyse existing 

materials within the image that makes it possible to detect plant disease remotely (Susič 

et al., 2018). The recorded spectral reflectance normally represents chlorophyll content, 

cell structure and water content of leaves (Khosrokhani et al., 2016) that are important 

for determining plant health status. This device can cover a large-scale plantation in a 

single flight to collect information faster and thoroughly than the field workers. Shafri et 

al. (2011) stated that the rationale of using high dimensionality data is to improve the 

efficacy of discrimination between more specific features and classes.  

 

 

Some applications of hyperspectral imaging for early identification, rapid evaluation and 

visualisation were demonstrated by Bravo et al. (2003), Bauriegel et al. (2011), 

Hillnhütter et al. (2011), Kumar et al. (2012), Calderón et al. (2013), Lowe et al. (2017), 

Kuska et al. (2015), Moghadam et al. (2017), Xie et al. (2017), Kong et al. (2018) and 

Bohnenkamp et al. (2019). These researchers used the acquired hyperspectral images and 

extracted spectral information to study the disease infection in plants. The results 

generated a high degree of accuracy, which verified the capability of this technique for 

the early detection of plant disease. 

 

 

1.2 Problem statement 

 

 

To date, there is no convenient method has been developed for the early detection of 

BSR disease. The common practice in plantations is manual detection through visual 
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examination of physical symptoms that are considered as low accuracy, inconsistent 

result, time-consuming and labour-intensive due to human dependency. Another major 

downside of manual detection is the lack of standard physical symptoms coupled with 

error-prone methods, which have led to contradictory assessment (Izzati et al., 2008; Kok 

et al., 2013; Naidu et al., 2018). In contrast, laboratory-based methods are reliable for 

early disease detection. However, it is only applicable to small scale samples since it 

comprises stem collection and tedious laboratory procedures (Naher et al., 2013). 

Meanwhile, a spectroscopy device can detect an early stage of BSR disease in oil palm 

seedlings using reflectance spectra of leaves (Shafri and Anuar, 2008; Shafri and 

Hamdan, 2009; Shafri et al., 2011; Izzuddin et al., 2017). However, this device can only 

take one reading per time for a tiny leaf area, thus increasing data collection duration and 

impractical for large scale plantations.  

 

 

Based on previous studies, it can be concluded that hyperspectral imaging is feasible to 

be used for early detection of BSR; yet no study has been conducted for oil palm 

seedlings. Oil palm seedlings at the age of 12 – 48 months old are susceptible to G. 

boninense infection after being transferred and planted in a plantation (Sanderson, 2005). 

Early detection of infection is crucial to ensure sufficient treatment time, which prevents 

the disease from spreading. The hyperspectral imaging studies available at this time were 

carried out in oil palm plantations using vegetation indices and conventional 

classification methods (Shafri and Hamdan, 2009; Shafri and Mohanad, 2009; Shafri et 

al., 2012; Izzuddin et al., 2015; Izzuddin et al., 2018). The results obtained by Shafri and 

Mohanad (2009), Shafri and Hamdan (2009), and Shafri et al. (2012) showed a positive 

correlation of over 80% between reflectance spectra of leaves and BSR status of oil palm 

trees. These studies supported the potential use of hyperspectral imaging in collecting 

spectral information to distinguish between healthy and G. boninense infected oil palm 

seedlings. 

 

 

1.3 Objectives 

 

 

The general objective of this research is to detect an early stage of G. boninense in oil 

palm seedlings based on the growth of seedlings, spectral reflectance of leaves and 

machine learning classification.  

 

 

The specific objectives of this research are: 

 
1. To examine the effects of G. boninense infection on the physical growth of oil palm 

seedlings.  

 

2. To assess the spectral reflectance of leaves taken from different fronds number at 

the uninoculated (H) and inoculated (U) condition.  

 

3. To identify the best classification models for early detection of G. boninense using 

machine learning techniques. 
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