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In recent years there has been an increased interest in scavenging energy using
alternative sources. One of these sources is vibration which can be harvested and
converted to electrical energy. Piezoelectric materials can be used to capture
vibration, motion or acoustic noise, to be converted into electrical output. Due to the
never-ending human attitude towards technology for improving the mechanical
properties and operation of the structures, GPL reinforcements gain the attention of
scientists for providing an enthusiastic enhancement in the design of the existing
composite structures. This study presents the electrical response of piezoelectric for
two different components (microdisk and cantilever beam). In the first part of this
research, the frequency analysis of a Graphene Nanoplatelets Reinforced Composite
(GPLRC) microdisk is investigated for three different boundary conditions (simply-
simply, simply-clamped and clamped-clamped). The issue rises since at nanoscale
no experimental work has been done before. To overcome this problem, nonlocal
strain gradient theory (NSGT) is employed which introduces two size-dependent
length scale (1) and nonlocal (u). The present study is done in the framework of
numerical based generalized differential quadrature method (GDQM). The stresses
and strains are obtained using the higher-order shear deformable theory (HOSDT).
The rule of the mixture is employed to obtain varying mass density and Poisson’s
ratio, while the module of elasticity is computed by a modified Halpin-Tsai model.
Governing equations and boundary conditions of the GPLRC microdisk covered
with the piezoelectric layer are obtained by implementing Hamilton’s principle.
Regarding perfect bonding between the piezoelectric layer and core, the
compatibility conditions are derived. Also, due to the existence of the piezoelectric
layer, Maxwell's equation is derived. MATLAB software is used and results show
that the ratio of the outer to the inner radius (R,/R;), ratios of length scale and
nonlocal to thickness (I/h and u/h), the ratio of piezoelectric to core thickness
(h,/h), applied voltage, and GPL weight fraction (gerL) have a significant influence



on the frequency characteristics of the GPLRC micro-disk. Another important
consequence is that as well as the nonlinear indirect effects of applied voltage on the
natural frequency of the GPLRC micro-disk covered with piezoelectric for each
specific value of R, /R;, the impact of the R, /R; on the natural frequency is indirect.
In addition, four different patterns of GPL distribution in the microdisk are
investigated. For all patterns, the relation between gepL parameter and critical voltage
is linear. It was also found that when the boundary conditions of S-S is considered,
patterns 4 and 1 have not shown any significant effect on the critical voltage of the
structure. A useful suggestion of this research is that, for designing the GPLRC
circular microplate at the low value of the R, /R;, more attention should be given to
the gepL and R, /R;, simultaneously.

For the second component, a cantilever beam with one fixed end which is covered
with a piezoelectric layer is studied under two different vibrational sources. The
effect of thickness ratio of the piezoelectric layer, different geometric shapes
(trapezoidal, rectangular and triangular) of the beam and a tip mass on output voltage
in both sources of vibration is carried using COMSOL Multiphysics. For the case of
vibration under body load, a swept sine excitation source of 200 mV which creates
a harmonic body load is investigated. The simulation is carried on in a frequency
range of 0-800 Hz. The highest voltage output has been achieved by the triangular
shape (14.4 V) of the beam and the lowest value belongs to the trapezium (3.3 V).
For the effect of the thickness ratio of the piezoelectric layer to the base (Rp/Rp), the
best result is achieved when the piezoelectric layer and the base layer have the same
thickness. The simulation is continued with the second source of vibration which is
coming from rain droplets and acts as a point load on the surface of the beam.
Different rain droplets with various range of radius size, speed and impact force are
used in the study. Besides, three different impact point along the beam was selected
and the findings reveal that the closer the impact point to the free end of the beam
the higher the output voltage generated. The highest voltage output occurs for the
triangular beam where the droplet has a diameter of 5 mm and a terminal velocity of
9 m/s. It was found that by changing the shape of the beam from rectangular to
triangular the voltage output had been more than doubled (increased from 5.7 V to
14.4 V). Attaching a tip mass on the cantilever beam results in decreasing the voltage
output but it increases the duration of oscillation. In conclusion, the piezoelectric
specimen which is cut into a triangular shape results in a significant increase in the
output voltage compared to other geometrical shapes upon the impact of rain
droplets. However, to utilize this more effectively in real applications there must be
arrays of these specimens to cover a larger surface area; therefore, resulting in great
power.
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Dalam tahun-tahun kebelakangan ini, ada peningkatan minat untuk mengumpul
tenaga menggunakan sumber alternatif. Salah satu sumbernya ialah getaran yang
dapat diambil dan ditukarkan menjadi tenaga elektrik. Bahan piezoelektrik dapat
digunakan untuk menangkap getaran, gerakan atau suara akustik, untuk diubah
menjadi output elektrik oleh kerana sikap mausia ferhadap teknologi yang tidak
pernah putus-putus untuk meningkatkan sifat mekanik dan operasi struktur.
Pengukuhan GPL mendapat perhatian para saintis kerana memberikan peningkatan
yang memberasangkan dalam reka bentuk struktur komposit yang sedia ada. Kajian
ini menunjukkan tindak balas elektrik piezoelektrik untuk dua komponen yang
berbeza (cakera mikro dan rasuk kantilever). Pada bahagian pertama penyelidikan
ini, analisis frekuensi mikrodisk Graphene Nanoplatelets Reinforced Composite
(GPLRC) disiasat untuk tiga keadaan sempadan yang berbeza (sederhana-sederhana,
hanya diapit dan diapit-diapit). Masalahnya adalah, kerana ini dilakukan pada skala
nano belum ada kerja eksperimen yang dilakukan sebelumnya. Untuk mengatasi
masalah ini, teori kecerunan regangan nonlokal (NSGT) digunakan yang
memperkenalkan dua skala panjang bergantung pada ukuran (1) dan nonlokal ().
Kajian ini dilakukan dalam rangka kaedah kuadratur pembezaan generalisasi
berdasarkan berangka (GDQM). Tekanan dan ketegangan diperoleh menggunakan
teori ubah bentuk ricih tertib tinggi (HOSDT). Peraturan campuran digunakan untuk
memperoleh kepadatan jisim dan nisbah Poisson yang berbeza-beza, sedangkan
modul keanjalan dihitung dengan model Halpin-Tsai yang diubahsuai. Persamaan
dan keadaan sempadan mikrodisk GPLRC yang ditutup dengan lapisan piezoelektrik
diperoleh dengan menerapkan prinsip Hamilton. Mengenai ikatan sempurna antara
lapisan dan teras piezoelektrik, syarat keserasian diperoleh. Juga, kerana wujudnya
lapisan piezoelektrik, persamaan Maxwell diturunkan. Perisian MATLAB
digunakan dan hasilnya menunjukkan bahawa nisbah jejari luaran ke dalam (R, /R;),
nisbah skala panjang dan ketebalan tidak lokal ke (I/h and u/h) nisbah ketebalan



piezoelektrik ke teras (h,/h), voltan gunaan, dan pecahan berat GPL (gcrL)
mempunyai pengaruh yang signifikan terhadap ciri frekuensi cakera mikro GPLRC.
Satu akibat penting lain adalah bahawa selain kesan tidak langsung voltan gunaan
pada frekuensi semula jadi cakera mikro GPLRC yang ditutup dengan piezoelektrik
untuk setiap nilai tertentu R,/R;, kesan R,/R; pada frekuensi semula jadi tidak
langsung. Sebagai tambahan, empat corak taburan GPL yang berbeza dalam cakera
mikro disiasat. Untuk semua corak, hubungan antara parameter gerL dan voltan
kritikal adalah linear. la juga didapati bahawa apabila keadaan batas S-S
dipertimbangkan, corak 4 dan 1 tidak menunjukkan kesan yang signifikan terhadap
voltan Kritikal struktur. Cadangan berguna dari penyelidikan ini adalah bahawa,
untuk merancang plat mikro pekeliling GPLRC pada nilai rendah R, /R;, perhatian
lebih harus diberikan kepada gepL dan R, /R;, Secara serentak.

Untuk komponen kedua, rasuk kantilever dengan satu hujung tetap yang ditutup
dengan lapisan piezoelektrik dikaji di bawah dua sumber getaran yang berbeza.
Kesan nisbah ketebalan lapisan piezoelektrik, bentuk geometri yang berbeza
(trapezoid, segi empat tepat dan segitiga) rasuk dan jisim hujung pada voltan
keluaran di kedua-dua sumber getaran dibawa menggunakan COMSOL
Multiphysics. Untuk kes getaran di bawah beban badan, sumber pengujaan sinus
menyapu 200 mV yang membuat beban badan harmonik disiasat. Simulasi
dijalankan dalam julat frekuensi 0-800 Hz. Output voltan tertinggi telah dicapai
dengan bentuk segitiga (14.4 V) rasuk dan nilai terendah tergolong dalam trapezium
(3.3 V). Untuk kesan nisbah ketebalan lapisan piezoelektrik ke dasar (Rp/Rb), hasil
terbaik dicapai apabila lapisan piezoelektrik dan lapisan dasar mempunyai ketebalan
yang sama. Simulasi diteruskan dengan sumber getaran kedua yang berasal dari
titisan hujan dan bertindak sebagai muatan titik pada permukaan rasuk. Titisan hujan
yang berbeza dengan pelbagai ukuran ukuran, kelajuan dan kekuatan hentaman
digunakan dalam kajian ini. Di samping itu, tiga titik hentaman yang berbeza di
sepanjang rasuk dipilih dan penemuan menunjukkan bahawa, semakin dekat titik
hentaman ke hujung rasuk bebas, semakin tinggi voltan keluaran yang dihasilkan.
Output voltan tertinggi berlaku untuk rasuk segitiga di mana titisan mempunyai
diameter 5 mm dan halaju terminal 9 m/s. Didapati bahawa dengan mengubah bentuk
rasuk dari segi empat tepat menjadi segitiga output voltan telah meningkat dua kali
ganda (meningkat dari 5.7 V menjadi 14.4 V). Melampirkan jisim hujung pada rasuk
kantilever akan menurunkan output voltan tetapi meningkatkan jangka masa ayunan.
Kesimpulannya, spesimen piezoelektrik yang dipotong menjadi bentuk segitiga
menghasilkan peningkatan voltan keluaran yang ketara dibandingkan dengan bentuk
geometri lain pada kesan titisan hujan. Walau bagaimanapun, untuk menggunakan
ini dengan lebih berkesan dalam aplikasi sebenar mesti ada susunan spesimen ini
untuk menutup luas permukaan yang lebih besar; oleh itu, menghasilkan kuasa yang
besar.
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CHAPTER 1

INTRODUCTION

1.1 Background

Over the past few years, the demand for renewable energy sources has significantly
increased. Renewable energy sources are extensively used due to some of the
disadvantages of fossil fuels such as, environmental damage, territorial imbalances
and fossil fuel depletion which caused this global shift towards clean energy
(Afsharzade et al., 2016; Candela et al., 2007; Di Dio et al., 2007; Shamsadini Lori
& Leman, 2016). One of the potential sources of renewable energy that draws the
researcher’s attention is rain. Rain is a natural phenomenon that exists and occurs in
day-to-day life. The potential energy that the raindrops carry out at high altitude is
converted to Kinetic energy upon impact on any surface which creates vibration. This
vibration, even though might be weak but at large volume, can be harvested and can
be used efficiently (Vatansever et al., 2011). There are of course some limitations to
this idea since this method of harvesting relies strongly on frequency and volume of
rainfall. Those regions, which have heavy rainy seasons, are suitable for this method.
Malaysia is one of the countries which is located in equatorial and because of that it
receives massive rainfall throughout the year (Mohtar et al., 2015). This makes it
suitable to apply this technology especially in remote areas where the accessibility
to electricity is difficult. It is seen that the demand has increased rapidly in self-
powered electronic devices such as wireless sensors, industrial automation, and
electronic devices.

Currently, three methods are being used to convert the mechanical energy from
vibration into electrical energy namely as electromagnetic induction (Sari et al.,
2007), electrostatic induction (Asanuma et al., 2013; Richards et al., 2004) and
piezoelectric effect (Jackson et al., 2014; Lanbo et al., 2014). The studies on
piezoelectric materials have been most widely investigated since they provide higher
density and can be readily integrated into a system (Steven R Anton & Sodano, 2007,
Li et al., 2014; S Roundy & Wright, 2004).

Reinforced laminated composites are increasingly used in various applications due
to its outstanding features, namely high tensile strength, high modulus, and
lightweight (Habibi et al., 2018; Habibi et al., 2016; Habibi, Hashemi et al., 2018).
Sun & Zhao (2018) compared the fracture behavior of the functionally graded (FG)
cemented carbide reinforced with and without the graphene nanoplatelet (GPL).
They claimed that the property of GPLs in the nanocomposites is worked as a stopper
for micro cracks. Besides, with the aid of an experimental study, Rafiee et al. (2009)
reported that the composite structures which are reinforced with GPL agree with
much stronger than the reinforced structures with single-walled carbon nanotube
(SWCNT), double-walled carbon nanotube (DWCNT), and multi-walled carbon
nanotube (MWCN). In their result presented the effect of different kinds of
reinforcement to improving the vibrational behavior of the micro circular shell.
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Gholami et al. (2018) focused on the modeling and instability analysis of the FG
circular micro-shell based on a more applicable gradient elasticity theory which it
can consider the size effect and high order parameters and that was a novelty in this
field. They showed that the size effect and radius to thickness parameters could play
an important role in the nonlinear instability of the microstructure. Mohammadimehr
et al. (2018) presented static and dynamic stability of the circular composite plate
which they solved this problem with the aid of first-order shear deformation (FSD)
theory and general differential quadrature (GDQ) method.

Therefore, this study was conducted to investigate the frequency characteristics of a
graphene nanoplatelet composite (GPLRC) as well as the critical voltage for circular
micro-disk. Also, the effect of covering graphene with a layer of piezoelectric and
its electrical properties are analyzed. These results are used in a bigger scale for the
application of harvesting energy from raindrops. It is shown by simulation that how
by varying design configurations an optimum output can be obtained.

1.2 Problem Statements

Due to the never-ending need of technology for improving the mechanical properties
(Habibi et al., 2018; Habibi et al., 2016) and operation of the structures (Habibi et
al., 2017), GPL reinforcements gain the attention of scientists for providing an
enthusiastic enhancement in design of the applicable composite structures (Ebrahimi
et al., 2018; Esmailpoor Hajilak et al., 2019a; Habibi et al., 2019b; Pourjabari et al.,
2019a).

In the field of the vibrational and buckling characteristics of the piezoelectric circular
micro/nanoplate, Wang et al. (2017) focused on the nonlinear dynamic responses of
the size-dependent circular plate which is actuated with piezoelectric part and
considered a thermal environment. They showed that nonlinear geometric effects on
the dynamic responses are more significant. Mahinzare et al. (2019) presented a
vibration response of an effected size functionally graded material (FGM) circular
plate with the aid of nonlocal strain gradient theory (NSGT), first-order shear
deformation theory (FSDT), Hamilton’s principle, and the differential quadrature
(DQ) method. They considered rotation, thermal, and electro—elastic impact in their
mathematical modeling. They found that rotational speed plays an important role in
the vibration characteristics of the nanostructure. In another work, Mahinzare et al.
(2018) played the attention on the vibrational behaviors of the rotating two-
directional FG piezoelectric size-dependent circular plate based on the FSDT, DQM,
and Hamilton’s principle. They showed that the dynamic behavior of the plate is
depended on the externally applied voltage and rotating loads. Shojaeefard et al.
(2018) illustrated the natural frequency of a rotating tapered size-dependent circular
plate based on the DQM, and Hamilton’s principle. They modeled the material of
the structure as 2D-FGM. They found out the critical angular velocity for the
structure in diffract conditions. To the best of authors’ knowledge, frequency
analysis of a GPLRC microdisk covered with a piezoelectric layer based on NSGT
has not been issued in the published literature. In this study, modified Halpin-Tsai



micromechanics is employed to approximate effective elastic properties. A
numerical solution to differential governing equations is presented in the case of
various boundary conditions. Special attentions are given to explore the effects of
the R, /R;, I/h, u/h, h/hp, applied voltage and g;p; on the frequency characteristics
of a GPLRC micro-disk covered with piezoelectric layer.

In terms of harvesting energy from potential energy possessed in rain droplets, many
types of research have been over the past decade. In a study done in Italy made a
comparison between the two most commonly used piezoelectric material (PZT and
PVDF) with a simple cantilever beam with one fix end. Various droplets have been
used and it was concluded that PZT material generates a higher amount of output
voltage compared to PVDF (Vatansever et al., 2011). In another research, they (Viola
etal., 2014) used a rectangular membrane made of PVDF which was clamped at four
edges and a droplet was released on the center. Their findings show that a membrane
is not a suitable design for harvesting energy from rain droplets compared to
cantilever since the output power was extremely low. Wong et al. (2014) used a
cantilever beam with fixing the two ends (cantilever bridge) while using two
different materials (PVDF, PZT). Their findings were in parallel with previous
literature and proved that PZT provides a higher output. However, a cantilever beam
with one fix end gives a more promising result compared to cantilever bridge. An
experiment conducted by Wu et al. (2014) tried to achieve the best efficiency by
varying the thickness of the cantilever and they have the best thickness for cantilever
but not the ratio to the base beam.

Many of these researchers limited their study on mainly three basic designs
(cantilever, cantilever bridge, and membrane) for two different widely used
piezoelectric material (PVDF, PZT) until recently were new designs are suggested
and investigated. An investigation by Viola (2018) on implementing a floating disk
was a new approach. Three sets of the experiment (single cantilever, disk supported
by two cantilevers, disk supported by four cantilevers) were conducted and the
results were compared. It was found that in the case of one single droplet the single
cantilever without the disk generates a higher output voltage. In another research, the
cantilever has been modified to the spoon shape cantilever (Doria et al., 2019). This
design achieved a slightly higher output. They investigated further the effect of
wetness on the efficiency of the system and according to their finding a wet surface
can produce an output voltage up to three times more than a dry surface.

In this research, a new way of harvesting energy from raindrops by employing
piezoelectric material is modeled and simulated. This new approach not only brings
more durability to the system because of implementing copper as the base material
but also generates higher voltage output due to the truncated shape of the beam.

1.3 Research Objective

This research aims to investigate and evaluate the effects of using piezoelectric
material combined with graphene Nanoplatelets reinforced composite (GPLRC).
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Also, one practical application of it which is harvesting energy using raindrop is
analyzed and a new design is proposed. Towards achieving the main objective, the
related aims associated are identified as follows:

14

. To investigate frequency characteristics of a GPL reinforced composite

microdisk covered with piezoelectric layer;

. To find the critical voltage for different patterns of GPL reinforced composite

microdisk covered with a piezoelectric layer;

. To obtain the optimal piezoelectric cantilever beam harvester under body

load vibration;

. To enhance the current method of harvesting energy from raindrop by

implementing a new shape configuration.

Significance of the Study

The main objective of this project is to develop the potential of the smart material
application using PZT incorporated with GPLRC from the impact of the raindrop
that enables to harvest energy-based numerical model.

The significant of the study are briefly explained as follows:

1.5

. This research works on the frequency analysis of a graphene nanoplatelets

composite (GPLRC) microdisk which is integrated with a piezoelectric layer
in the framework of numerical approach;

. The findings of this research give a useful suggestion for designing of the

GPLRC circular microplate;

. The modified cantilever beam with a layer of piezoelectric is simulated under

two types of excitation from different sources to find the optimum design;

. This research exposes the potentials of using piezoelectric material as a self-

powered sensor in remote areas of Malaysia by proposing a new design
configuration.

Scope and Limitations of the Study

The scope of this study is focused on two main topics:

1. A numerical approach for finding the electrical characteristics (voltage and

frequency) based on the generalized differential quadrature method (GDQM)
is presented. To derive the equations related to motion, nonlocal strain
gradient theory is used. In deriving some of the equations as well as designing
the shape of the circular micro-disk layered with piezoelectric MATLAB and
ABAQUS software’s are used respectively. One of the limitations could be



regarding a perfect bonding between the piezoelectric layer and core which
the compatibility conditions for that are derived.

2. A complete and detailed review is done on studying the possible factors
which may have any effect on harvesting raindrop using a piezoelectric
material. The focus is narrowed down to the impact of a raindrop on the
surface of the material. The most well-known piezoelectric material, which
is widely used, is PZT (Lead Zirconate Titanate) is used but due to its nature
which is extremely brittleness, it causes some limitations. To overcome this
copper is used as the base material and the simulation is done with the aid of
COMSOL Multi-Physics software.

1.6 Structure of the Thesis

This thesis is structured into 5 chapters by the thesis format of Universiti Putra
Malaysia. The details of the thesis structure are presented as follows:

Chapter 1

Problem statements and objectives are presented in this chapter. The significance of
the research work and the scope of research are also presented in this chapter.

Chapter 2

This chapter presents a comprehensive literature review on the areas related to the
topic of this research. Besides, the research gaps obtained from the review were also
clarified within the chapter.

Chapter 3

The methodology used in this research for the preparation of materials, modeling and
simulation procedures is presented in this chapter.

Chapter 4

This chapter starts with showing the validations and making a comparison with
previous literature. After that, the data analysis is done and discussed in three
sections. In the first section the effect of parameters such as ratio of the outer to the
inner radius (R, /R;), ratios of length scale and nonlocal to thickness (I/h and p/h),
the ratio of piezoelectric to core thickness (hy/h), microdisk pattern, and GPL weight
fraction (ggp1) On critical voltage is shown and discussed. In the second section, the
effect of various geometry and tip mass on the voltage output of a cantilever beam
supported at one end under body load excitation is presented. In the last part of this



chapter, the impact force of various rain droplets is calculated and the corresponding
output voltage for each one is presented.

Chapter 5

This chapter presents the overall conclusions from the whole study as well as future
recommendations for further improvement of this study.
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The governing equations of the GPLRC microdisk are given as follows:
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The GDQ form of the governing equations of the GPLRC microdisk are given as
below:
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