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the requirement for the degree of Master of Science 

INTERFACIAL ANALYSIS OF CARBON NANOTUBES-REINFORCED AND 
GRAPHENE-REINFORCED Sn-1.0Ag-0.5Cu SOLDER ON ELECTROLESS 

NICKEL/ IMMERSION SILVER SURFACE FINISH 

By 

VIDYATHARRAN A/L KRISHNA 

November 2020 

Chairperson : Azmah Hanim binti Mohamed Ariff, PhD 
Faculty : Engineering 

Interconnection material examination of composite solder materials and general 
comparison of the joints with the solder alloy are fundamental to search for more 
comparable and dependable alternative to the solder candidate. In this investigation, 
SAC105 carries two reinforced parameters, carbon nanotubes (CNTs) and graphene 
nanosheets (GNS), alongside with two different surface finish, electroless nickel/ 
immersion silver (ENImAg) and copper substrate. This is because the plain SAC105 
facing extreme deterioration of IMC formation and weak mechanical strength 
compared with reinforced SAC105. Thus, evaluation of the intermetallic compound 
formation and shear strength properties of ENImAg-based Sn-1.0Ag-0.5Cu solder were 
carried with the addition of carbon nanotubes reinforced solder systems (Sn-1Ag-
0.5Cu-xCNT; x = 0.01, 0.05, and 0.1 wt%), and graphene nanosheets reinforced solder 
systems (Sn-1Ag-0.5Cu-xGNS; x = 0.01, 0.05, and 0.1 wt%), which were completely 
mixed over the powder metallurgy process. Reflow on the electroless nickel/immersion 
silver (ENImAg) and copper surface finish were carried at an optimum temperature of 
260°C, to analyze the characterization of the intermetallic compound growth and solder 
joint microstructure among the plain and composite solders with multi surface finishes. 
By the same token, a single-lap solder joint system was experimented to assess the shear 
strength of all the solder samples using similar reflow temperature used for the solder 
joint characterization. In general, the GNSs and CNTs increased the melting point. The 
highest melting temperatures received from the DSC scan are 233.44°C for 0.1GNSs 
composite solder and 232.27°C for 0.1CNTs composite solder. Besides that, the 
wetting angle shown by GNS-based solders reduced more than CNT-based solders. 
From the IMC thickness result obtained, a slight change within the total intermetallic 
compound layer growth was detected in the solder joints, where the thinnest IMC 
thicknesses are 3.35 μm and 2.53 μm recorded for the SAC105-0.1GNS with copper 
board and SAC105-0.1GNS with ENImAg board respectively among the overall 
solders compositions, whereas the 0.01CNT-base solders shows the thinnest between 
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the other CNT compositions, which is 3.61 μm and 2.65 μm for Cu substrate and 
ENImAg substrate individually. On the contrary, the shear strength properties shown 
by SAC105-0.01GNS is the best among the rest of the single-lap solder joints board, 
which is 11.2MPa for Cu-based substrate and 12.11MPa for ENImAg-based substrate. 
As conclusion, adding the reinforcements to the plain solder improved the wettability, 
microstructural growth and shear properties, especially with GNS reinforcement 
samples. Meanwhile, ENImAg surface finish improve the reliability of the solders 
more than Cu surface finish. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk Ijazah Sarjana Sains 

ANALISIS ANTARAMUKA LOGAM PATERI Sn-1.0Ag-0.5Cu DIPERKUAT 
DENGAN NANOTIUB KARBON DAN GRAFEN DI ATAS KEMASAN 

PERMUKAAN NIKEL TANPA ELEKTRIK/ REDAMAN PERAK 

Oleh 

VIDYATHARRAN A/L KRISHNA 

November 2020 

Pengerusi : Azmah Hanim Mohamed Ariff, PhD 
Fakulti : Kejuruteraan 

Pemeriksaan bahan sambungan bahan pateri komposit dan perbandingan umum 
sambungan dengan aloi pateri adalah asas untuk mencari alternatif yang lebih setanding 
dan boleh dipercayai di antara calon pemateri. Dalam penyelidikan ini, SAC105 
membawa dua parameter bertetulang, karbon tiub nano (CNT) dan lembaran kepingan 
nano grafen (GNS) dengan dua kemasan permukaan yang berbeza, penyaduran nikel 
tanpa elektrik/ redaman perak (ENImAg) dan substrat tembaga. Ini disebabkan oleh 
sifat SAC105 yang polos menyebabkan kemerosotan formasi IMC yang teruk dan 
kekuatan mekanik yang lemah berbanding dengan SAC105 yang diperkuat. Penilaian 
pembentukan sebatian antara logam dan sifat kekuatan ricih dari aloi pateri Sn-1.0Ag-
0.5Cu dikaji dengan sistem pateri bertetulang karbon tiub nano (Sn-1Ag-0.5Cu-xCNT; 
x = 0.01, 0.05, and 0.1 wt%), dan sistem pateri bertetulang lembaran kepingan nano 
grafen (Sn-1Ag-0.5Cu-xGNS; x = 0.01, 0.05, and 0.1 wt%) telah dibuat semasa proses 
kaji logam serbuk. Aliran semula pada papan penyaduran nikel tanpa elektrik/redaman 
perak (ENImAg) dan permukaan permukaan tembaga dilakukan pada suhu optimum 
260°C, untuk menganalisis ciri pertumbuhan sebatian antara logam dan pateri struktur 
mikro sendi pateri di antara yang polos dan komposit dengan pelbagai kemasan 
permukaan. Dengan cara yang sama, sistem sendi pateri satu putaran dieksperimen 
untuk menilai kekuatan ricih semua sampel pateri menggunakan suhu balikan yang 
sama yang digunakan untuk pencirikan sendi pateri. Secara umum, GNS dan CNT 
meningkatkan titik lebur. Suhu lebur tertinggi yang diterima dari imbasan DSC ialah 
233.44°C untuk pateri komposit 0.1GNSs dan 232.27°C untuk pateri komposit 
0.1CNTs. Selain itu, pateri berasaskan GNS mengurangkan sudut pembasahan lebih 
banyak berbanding pateri berasaskan CNT. Daripada hasil ketebalan IMC yang 
diperoleh, sedikit perubahan dalam pertumbuhan lapisan kompaun antara bahan 
dikesan pada sendi pateri, iaitu ketebalan IMC paling tipis adalah 3.35 μm dan 2.53 μm 
dicatat untuk SAC105-0.1GNS dengan papan tembaga dan SAC105-0.1GNS dengan 
papan ENImAg masing-masing antara komposisi pateri keseluruhan, sedangkan pateri 
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asas 0.01CNT menunjukkan yang paling nipis antara komposisi CNT yang lain, iaitu 
3.61 μm dan 2.65 μm untuk substrat Cu dan substrat ENImAg secara 
individu. Sebaliknya, sifat kekuatan ricih yang ditunjukkan oleh SAC105-0.01GNS 
adalah yang terbaik di antara papan sambungan pateri satu putaran yang lain, iaitu 
11.2MPa untuk substrat berasaskan Cu dan 12.11MPa untuk substrat berasaskan 
ENImAg. Sebagai kesimpulan, penambahan tetulang pada pateri polos meningkatkan 
kebasahan, pertumbuhan mikro dan sifat ricih, terutamanya pada tetulang 
GNS. Sementara itu, kemasan permukaan ENImAg memperkaya kebolehpercayaan 
pateri lebih daripada permukaan Cu. 
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1 

CHAPTER 1 

 INTRODUCTION 

1.1 Background of Research 

In the world of electronics and gadgets, solder joint functions as a connecting bridge 
between the circuit board and electrical components. Since the solder joints have its 
own breakable characteristics, the features of the intermetallic compounds (IMCs) 
created during soldering is very important in order to have a lead on achieving the most 
desirable lead-free solder (Shangguan, 2005). On account of this, solutions have been 
carried out to overcome the extreme growth of IMC layers. As electrical system keeps 
advancing and miniaturizing in trend, the need of high robustness and stability is 
increase as well, thus the interconnection of a solder face difficulties in terms of solder 
joint reliability. Besides that, suggestions for a suitable solder to replace the lead (Pb) 
solders ought to require equal or more advanced reliability compare to Sn-Pb solder (Al 
Athamneh et al., 2020; Chen et al., 2016).  

Currently, since conventional lead-free solder technology cannot assure the required 
joint reliability, scholars have highlighted the addition of elements in lead-free solders. 
The aim in mind is to enhance in the characterization of interconnection joints. With 
the addition of reinforcements into a conventional solder, it results in better reliability 
can be attained. As a result, there are few reinforcements capable of improving the 
properties of interconnection joints, especially mixture of carbon-based elements on the 
solder alloy, which can provide a more homogenous distribution among the particles 
(Chen et al., 2016; El-Daly et al., 2014a). Additionally, carbon nanotubes (CNTs) and 
graphene nanosheets (GNSs) are attracting the attention of many researchers to explore 
in the solder field. 

Moreover, another significant cause that affects the reliability of solder joints is the 
Printed Circuit Board (PCB) surface finish as it provides a vital interface during the 
assemblies between electronic component and the PCB substrate. Functional coatings 
of solder mask over bare copper (SMOBC) type are generally used for PCB surface 
finish. SMOBC has two main purposes: to protect the copper circuit and to provide 
more efficient solderable surface for the components and the board during soldering 
(Siewiorek et al., 2013). Among all the multi surface finishes, electroless 
nickel/immersion silver (ENImAg) has an outstanding reliability and gaining 
momentum in scientific investigations. 
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1.2 Problem Statement 

Evolution has taken place in the technologies of this world and provides a great 
beneficiary and innovation. Electronics and gadgets productions are one of the main 
source of this advancement as it became more efficient, easier to handle and 
miniaturized in this current year. Hence, longer consistency of components in 
electronics packaging links to more progressive reliability for solder joints (Yoon et al., 
2005). 

When it comes to low-melting point, good wetting properties and low-cost solder, 
eutectic tin-lead solder alloy is preferable and broadly used in electronic packaging 
industry for the past years (Chen et al., 2005). Yet, the utilization of lead in electronics 
packaging has been to a great extent constrained on the grounds that it is toxic in nature 
and hazardous to people's health. Thus, legislation to ban lead and supporting the 
practice of ecological compounds were established (Khodabakhshi et al., 2017). 

Solder joints are in control for electrical continuity, heat conduction, mechanical 
attachment and withstand other external forces depending on the microstructural 
characteristics. Regarding the production of good quality interconnects, interfacial IMC 
layer formed in the middle of the solder alloy and surface finish should maintain 
certain properties (Branzei et al., 2012). It is recalled that, as IMC thickness increases 
in solder interconnection, the tendency of a solder to become weaker and coarsen is 
high due to the brittle nature of IMC. Even though lead solders achieve thinner IMCs to 
meet the requirements of a desirable solder, none of the existing lead-free solders have 
established to be suitable to substitute the lead-based solders due to the defects 
developed from disadvantageous IMC growth and weak mechanical properties. 

Lately, studies have shown that implanting a secondary phase’s reinforcement for lead-
free solders develop outstanding properties for the interconnection joints, where it can 
enhance life span, more homogenous and resist harsh conditions (Nai et al., 2006a). 
Among various reinforcements, carbon-based material (e.g., carbon nanotube and 
graphene nanosheet) have attracted a wide number of scholars due to outstanding 
chemical and physical characteristics. Based on a research done by Kumar et al. 
(2008b), carbon nanotubes (CNTs) can enhance the melting properties and mechanical 
strength of SAC solders. Liu et al., (2013) highlighted that the existence of graphene 
nanosheets (GNSs) as reinforcement can efficiently decrease the coefficient of thermal 
expansion (CTE), enhance the Ultimate Tensile Strength (UTS) and microhardness. 

However, these particular reinforcements have poor wetting properties in SAC solder 
matrix and frequently noticed to be excluded from molten solder during soldering. To 
avoid this issue, the addition of metal nanoparticles such as Au, Ag and Ni in the 
composite solder improves the IMCs during reflow process (Chen et al., 2016). 
Mokhtari et al. (2012) experimented about the combination of silica nanoparticles with 
an Au layer, the result highlights that the nanoparticle reinforcement is able to be 
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wetted by molten solder. Similarly, the effect of Ni addition in CNTs increased the 
microstructural and mechanical properties of solder joint (Yang et al., 2014). 
 
 
Therefore, altering surface finish in a solder resulting an enhancement in the reliability 
and mechanical properties of the solder joint. Based on Zeng et al. (2002) 
investigations, Ni coating on Cu plate offers a flat and uniform surface, particularly on 
a rough surface. Then, when applied along with Au-finish, it sustains good wettability 
even after multiple reflows and delivers great strength due to higher mechanical 
strength and fatigue resistance than Cu. Unfortunately, due to the expensive cost of Au, 
it is suggested to be replaced with an element that has almost similar properties but 
with lower price value (Lentz & Assembly, 2018). 
 
 
Recent survey shows many researchers have investigated the advancement of lead-free 
solders through CNTs and GNSs reinforcement with multi surface finishes in SAC 
solder nominees. However, no experiment has yet to be carried on the reinforcements 
mentioned with electroless nickel/immersion silver (ENImAg) surface finish for 
SAC105. Thus, this investigation will be conducted to compare and improve the basic 
properties of SAC105 solder and its reliability. 
 
 
1.3 Importance of Study 
 
A lifecycle period of solder joints interconnection has brought about huge discussions 
on the matter of advancement of lead-free solder. While the size of electronic 
components gets smaller and more efficient, the stress force initiated from surrounding 
factors during operational period of the components increases. Thus, advancement in 
this field of knowledge must be highlighted to face the current specifications in the 
microelectronic industries. 
 
 
Relating to this, studies have shown that the most preferred solder candidate to replace 
lead solders are Sn-Ag-Cu (SAC) solders. Moreover, Sn-1.0Ag-0.5Cu (SAC105) has 
comparatively high melting temperature of 235°C. For this step, soldering is considered 
as one of the most efficient ways to reducing the exposure old-soldered joints with 
thermally challenged components, thus improving its lifespan. Besides that, since 
SAC105 can withstand relatively high temperature, this interconnection joint can be 
operated in extreme conditions and high temperature applications.  
 
 
Even though, SAC105 solders have the necessary properties to be a candidate for lead-
free soldering, lead solders are still desired compared with the conventional SAC105 
solder due to its low reliability in intermetallic growth and mechanical strength. Thus, 
this study is focused on experimentation and reports on electronic application towards 
the improvements SAC105, with the assistance of carbon nanotubes (CNTs) and 
graphene nanosheets (GNSs) as reinforcement, and electroless nickel/immersion silver 
(ENImAg) as surface finish. 
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1.4 Objectives 
 

i. To investigate the intermetallic morphology of plain Sn-1.0Ag-0.5Cu 
(SAC105) solder alloy and SAC105-xCNT/GNS (x = 0.01, 0.05 and 0.1 
wt%) composite solders with Cu and ENImAg as surface finish. 
 

ii. To analyze the shear strength of plain Sn-1.0Ag-0.5Cu (SAC105) solder 
alloy and SAC105-xCNT/GNS (x = 0.01, 0.05 and 0.1 wt%) composite 
solders with Cu and ENImAg as surface finish. 

 
 
1.5 Scope of Study 
 
The intermetallic growth and shear strength properties of the solder joints are very 
significant in relation when it comes to reliability of solder. Therefore, SAC105 
reinforced with CNT/GNS were reflowed at 260°C with ENImAg and bare Cu as 
surface finish. This method is conducted for both the IMC growth test and shear 
strength analysis, then the results of the composite solders with two different substrates 
(bare Cu and ENImAg) were compared as-reflowed to ensure the difference in growth 
of IMC interface and shear strength properties. 
 
 
1.6 Outline 
 
Chapter one of this research included background studies, problem statement, research 
objectives and importance of the study. Besides that, the technique and substrates used 
for the comparison are included in the scope of study. The second chapter of this thesis 
explains significant reviews of related studies and latest advancement applied and 
investigated regarding this field. Anything related to lead-free solders are elaborated in 
this section with the purpose of verifying how this interconnection joints will be 
evaluated and characterized in this study. 
 
 
Interpretation from the investigation done via particular steps and procedures for the 
data collection process are explained in the third chapter. Accordingly, discussion 
about sample preparation, usage of equipment, and steps taken to collect data are 
described here. Other than that, formula used for the measurement of IMC growth layer 
and shear strength data are also presented.  
 
 
Results interpreted and discussion about the changes occurred in the lead-free solder 
from this research are shown in Chapter Four of this study. Reasons why a lead-free 
solder with these particular compositions reacted as such are well explained in this 
chapter. 
 
 
Lastly, Chapter Five conclude the entire work of this study, recommendation for the 
upcoming scholars, and provides also references.  
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APPENDICES 

 

APPENDIX A 

 

Wetting Angle Data for Cu substrate 
 

S/N SAC105 SAC105-
0.01GNS 

SAC105-
0.05GNS 

SAC105-
0.1GNS 

SAC105-
0.01CNT 

SAC105-
0.05CNT 

SAC105-
0.1CNT 

1 57.53 44.53 21.15 15.23 27.84 30.95 32.3 

2 61.9 47.96 18.46 13.09 14.39 32.64 27.92 

3 47.51 36.52 26.53 19.41 22.97 25.57 34.49 

4 43.1 35.03 29.22 21.50 9.52 23.88 25.73 

Mean 52.5 41.01 23.84 17.32 18.68 28.26 30.11 

Standard 
deviation 

8.6971 6.2347 4.9112 3.8341 8.2587 4.1969 3.9984 

Standard 
error 

4.3486 3.1173 2.4556 1.9171 4.1294 2.0984 1.9992 
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Wetting Angle Data for ENImAg substrate 
 

S/N SAC105 SAC105-
0.01GNS 

SAC105-
0.05GNS 

SAC105-
0.1GNS 

SAC105-
0.01CNT 

SAC105-
0.05CNT 

SAC105-
0.1CNT 

1 51.77 39.21 32.45 12.02 8.95 31.69 39.33 

2 43.85 32.95 24.15 14.11 17.01 39.97 44.41 

3 56.19 28.52 34.95 7.90 20.74 42.73 40.69 

4 39.43 42.60 26.97 5.81 4.98 34.45 45.77 

Mean 47.81 35.82 29.63 9.96 12.92 37.21 42.55 

Standard 
deviation 

7.5677 6.2978 4.9451 3.7830 7.2269 5.0390 3.036 

Standard 
error 

3.7839 3.1489 2.4725 1.8915 3.6135 2.5195 1.5181 
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APPENDIX B 

Data for Total Intermetallic Compound (IMC) Layer for Solders with Cu 
Substrate 
 
S/N SAC105 SAC105-

0.01GNS 
SAC105-
0.05GNS 

SAC105-
0.1GNS 

SAC105-
0.01CNT 

SAC105-
0.05CNT 

SAC105-
0.1CNT 

1 5.5388 4.0038 3.9758 3.5887 3.4174 4.2124 4.6909 

2 4.9214 3.7848 3.5462 3.1167 3.8048 3.9094 4.1763 

Mean 5.2301 3.8943 3.7610 3.3527 3.6111 4.0609 4.4336 

Standard 
deviation 

0.4366 0.1549 0.3038 0.3338 0.2739 0.2143 0.3639 

Standard 
error 

0.3087 0.0693 0.1359 0.1493 0.1225 0.0958 0.1627 
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Data for Total Intermetallic Compound (IMC) Layer for Solders with ENImAg 
Substrate 
 
S/N SAC105 SAC105-

0.01GNS 
SAC105-
0.05GNS 

SAC105-
0.1GNS 

SAC105-
0.01CNT 

SAC105-
0.05CNT 

SAC105-
0.1CNT 

1 2.7019 2.8004 2.7699 2.3611 2.5642 2.7844 2.7814 

2 3.2591 2.7478 2.6345 2.7063 2.7414 2.8786 3.0424 

Mean 2.9805 2.7741 2.7022 2.5337 2.6528 2.8314 2.9119 

Standard 
deviation 

0.3940 0.0372 0.0957 0.2441 0.1253 0.0665 0.1846 

Standard 
error 

0.2786 0.0166 0.0428 0.1092 0.0560 0.0297 0.0825 
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APPENDIX C 

Shear Force (N) Data for Cu Substrate 
 

S/N 
(Force) 

SAC105 SAC105-
0.01GNS 

SAC105-
0.05GNS 

SAC105-
0.1GNS 

SAC105-
0.01CNT 

SAC105-
0.05CNT 

SAC105-
0.1CNT 

1 957.7 1453.1 1080.2 1006.5 1207.8 998.8 591.8 

2 540.1 1010.9 612.7 1172.6 1041.7 1378.3 408.1 

3 1184.7 1125.3 931.7 495 569.8 1251.8 1151.7 

4 331.1 1338.7 464.2 661.1 735.9 872.3 968 

Mean 757.9 1232 772.2 833.8 888.8 1125.3 779.9 

Standard 
deviation 

391.237 200.453 283.206 310.497 295.438 230.956 340.208 

Standard 
error 

195.613 100.221 141.603 155.243 144.419 115.478 170.104 

 

  



© C
OPYRIG

HT U
PM

102  

Shear Stress (MPa) Data for Cu Substrate 
 

S/N 
(Stress) 

SAC105 SAC105-
0.01GNS 

SAC105-
0.05GNS 

SAC105-
0.1GNS 

SAC105-
0.01CNT 

SAC105-
0.05CNT 

SAC105-
0.1CNT 

1 8.87 13.21 9.82 9.15 10.98 9.08 5.38 

2 4.91 9.19 5.57 10.66 9.47 12.53 3.71 

3 10.77 10.23 8.47 4.50 5.18 11.38 10.47 

4 3.01 12.17 4.22 6.01 6.69 7.93 8.80 

Mean 6.89 11.2 7.02 7.58 8.08 10.23 7.09 

Standard 
deviation 

3.5567 1.8223 2.5746 2.8227 2.6258 2.0996 3.0928 

Standard 
error 

1.7783 0.9111 1.2873 1.4113 1.3129 1.0498 1.5464 
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Shear Force (N) Data for ENImAg Substrate 
 

S/N 
(Force) 

SAC105 SAC105-
0.01GNS 

SAC105-
0.05GNS 

SAC105-
0.1GNS 

SAC105-
0.01CNT 

SAC105-
0.05CNT 

SAC105-
0.1CNT 

1 1168.2 1433.3 1247.4 609.4 1166 1101.1 1256.2 

2 973.5 1221 1017.5 751.3 1251.8 1293.6 1133 

3 564.3 1392.6 946 1177 891 1331 877.8 

4 368.5 1281.5 1175.9 1035.1 976.8 1175.9 754.6 

Mean 768.9 1332.1 1096.7 893.2 1071.4 1225.4 1005.4 

Standard 
deviation 

366.74 97.988 139.007 259.072 166.32 105.996 229.757 

Standard 
error 

183.37 48.994 69.498 129.536 83.16 52.998 114.873 
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Shear Stress (MPa) Data for ENImAg Substrate 
 

S/N 
(Stress) 

SAC105 SAC105-
0.01GNS 

SAC105-
0.05GNS 

SAC105-
0.1GNS 

SAC105-
0.01CNT 

SAC105-
0.05CNT 

SAC105-
0.1CNT 

1 10.62 13.03 11.34 5.54 10.6 10.01 11.42 

2 8.85 11.1 9.25 6.83 11.38 11.76 10.3 

3 5.13 12.66 8.6 10.7 8.1 12.1 7.98 

4 3.35 11.65 10.69 9.41 8.88 10.69 6.86 

Mean 6.99 12.11 9.97 8.12 9.74 11.14 9.14 

Standard 
deviation 

3.334 0.8908 1.2637 2.3552 1.512 0.9636 2.0887 

Standard 
error 

1.667 0.4454 0.6318 1.1776 0.756 0.4818 1.0443 
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APPENDIX D 

FESEM observation and EDX analysis for important solder compositions  
 

Cu6Sn5 interface in solder joint 
 
 

Ag3Sn interface in solder joint 
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Cu6Sn5 IMC in solder matrix 
 
 

(Cu,Ni)6Sn5 interface in solder joint 
 
 

(Cu,Ni)6Sn5 IMC in solder matrix 
 
 



© C
OPYRIG

HT U
PM

107  

Ni-P layer on ENImAg substrate 
 
 

β-Sn phase in solder matrix 
 
 

SAC105-0.05CNT/Cu fractured sample 
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