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Application of an efficient pretreatment step is crucial in developing a viable 
biorefinery system for the production of lignocellulosic bioethanol. Subcritical 
hydrothermal appears as an economic pretreatment method with high sugar 
recovery. However, there were limited reports on its application with carbon 
dioxide (CO2) addition, particularly on oil palm biomass, hence this area should 
be explored. Moreover, by understanding the mechanism of hemicellulose 
degradation during pretreatment, the sugar produced hence bioethanol yield 
could be maximized. Although the integrated biorefinery approach for the 
production of bioethanol from oil palm frond (OPF) at the oil palm mill was 
reported promising, assessment of its environmental impact was equally 
important. Therefore, in this study, subcritical hydrothermal pretreatment of 
OPF pressed fiber (OPFPF) was conducted using stainless steel tube reactor 
and miniclave at various temperature, time and CO2 pressure, to evaluate the 
effect of CO2 addition on glucose production. Similarly, a kinetic study was 
performed to determine the kinetics of hemicellulose (xylan) degradation 
during the pretreatment using miniclave. In addition, the environmental and 
economic viability of integrated biorefinery model for bioethanol production 
from OPF was assessed by Life Cycle Analysis and cost analysis, each, based 
on three different case studies. Maximum glucose yield of 57.1% (g/g OPFPF) 
was obtained with application of tube reactor at 180°C, 1 MPa CO2 for 20 min, 
and further enhanced to 78.6% using miniclave at similar temperature and 
pressure for 30 min. Moreover, the rise of temperature and CO2 addition was 
found to improve the xylan autohydrolysis, with 180°C and 0.5 MPa CO2 as 
the most suitable condition for high glucose recovery from OPFPF. 
Furthermore, the integrated biorefinery model for the production of bioethanol 
from the OPF juice offers the best environmental and economic approach with 
production cost of $0.25/ L. Based on this study, subcritical hydrothermal 
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pretreatment is a promising method for application at the integrated biorefinery 
system at the oil palm mill in the future.  
.  
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Penggunaan langkah prarawatan yang efisien adalah penting dalam 
membangunkan sistem loji penapis bio berdaya maju untuk penghasilan 
bioethanol lignoselulosa. Hidroterma subkritikal muncul sebagai kaedah 
prarawatan yang ekonomi dengan perolehan gula yang tinggi. Walau 
bagaimanapun, terdapat laporan yang terhad tentang penggunaannya 
dengan penambahan karbon dioksida (CO2), terutamanya ke atas biojisim 
kelapa sawit, maka bahagian ini mesti diterokai. Tambahan pula, dengan 
memahami mekanisma penyingkiran hemiselulosa semasa prarawatan, 
penghasilan gula seterusnya bioetanol dapat dimaksimakan. Walaupun 
pendekatan loji penapis bio bersepadu untuk penghasilan bioetanol daripada 
pelepah kelapa sawit (OPF) di kilang minyak sawit telah dilaporkan 
berpotensi, penilaian kesan alam sekitarnya juga adalah penting. Oleh itu, 
dalam kajian ini, prarawatan hidroterma subkritikal serat mampat pelepah 
kelapa sawit (OPFPF) telah dijalankan menggunakan reaktor tiub keluli tahan 
karat dan miniklef pada pelbagai suhu, masa dan tekanan CO2, untuk menilai 
kesan penambahan CO2 ke atas penghasilan glukosa. Begitu juga, kajian 
kinetik telah dilakukan untuk menentukan kinetik penyingkiran hemiselulosa 
(xilan) semasa prarawatan menggunakan miniklef. Selain itu, kesauran 
ekonomi dan alam sekitar model loji penapis bio bersepadu untuk penghasilan 
bioetanol daripada OPF telah dinilai menggunakan Analisis Kitaran Hidup dan 
analisis kos, masing-masing, berdasarkan tiga kajian kes yang berbeza. Hasil 
glukosa tertinggi sebanyak 57.1% (g/g OPFPF) telah diperoleh dengan 
penggunaan reaktor tiub pada 180°C, 1 MPa CO2 selama 20 min, dan telah 
ditingkatkan lagi kepada 78.6% menggunakan miniklef pada suhu dan 
tekanan sama selama 30 min. Tambahan pula, kenaikan suhu dan 
penambahan CO2 telah didapati menambahkan autohidrolisis xilan, dengan 
180°C dan 0.5 MPa CO2 sebagai keadaan paling sesuai untuk perolehan 
glukosa yang tinggi daripada OPFPF. Selain itu, model loji penapis bio 
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bersepadu untuk penghasilan bietanol daripada jus OPF menawarkan 
pendekatan ekonomi dan alam sekitar terbaik dengan kos penghasilan 
sebanyak $0.25/ L. Berdasarkan kajian ini, prarawatan hidroterma kritikal 
merupakan kaedah yang berpotensi untuk diaplikasikan pada sistem loji 
penapis bio bersepadu di kilang minyak sawit pada masa hadapan. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction 

Total world energy consumption is increasing every year with fossil fuel as the 
major source of energy supply. In 2015, the total world energy consumption 
was 575 quadrillions British thermal unit (Btu) and it is projected to achieve 
736 quadrillions Btu in 2040 (US Energy Information Administration, 2017). 
Furthermore, with existing technologies and consumption patterns, the world 
energy demand is expected to be doubled by the year 2050 (Roy et al., 2012). 
In order to compensate the increasing energy demand and to lessen the 
reliability on the depleting fossil fuel, efforts have been directed to the 
discovery of alternative fuels from renewable resources. According to 
International Energy Outlook 2016 (US Energy Information Administration, 
2016), renewable energy is the world’s fastest-growing source of energy, at 
an average rate of 2.6% per year. This is due to the development of 
government policies and incentives promoting the use of non-fossil energy 
sources in many countries.  

One of the common technologies for biofuel generation is through the 
application of microorganism which utilizes carbohydrate as a carbon source. 
First-generation bioethanol is generated using sugars and starch from 
feedstocks such as sugarcane and corn (Borrion et al., 2012b; de Souza Dias 
et al., 2015; Morales et al., 2015; Ometto et al., 2009). However, bioethanol 
production from lignocellulosic materials including crop residues, forestry and 
municipal waste is getting much attention these days to overcome the 
limitation in first-generation biofuel production (Borrion et al., 2012a; Goh et 
al., 2010b; Kumar and Murthy, 2011). Apart from eliminating competition with 
a food source, most of these wastes are available in large quantity and cheap. 
Examples of potential crop residues are wheat straw, sweet sorghum, cane 
bagasse, oil palm biomass, rice straw and corn stover (Chen and Fu, 2016; 
Morales et al., 2015; Relvas et al., 2015; Wang et al., 2014b; Zabed et al., 
2016). As compared to first-generation biofuel, production of biofuel from non-
food feedstocks such as agricultural wastes is more preferable since these 
wastes are abundantly available and mostly underutilized (Borrion et al., 
2012b; Morales et al., 2015).  
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1.2 Problem statement 

Lignocellulosic biomass consists of three major components namely, lignin, 
hemicellulose and cellulose. These three components existed in a complex 
manner where they intertwined with each other, forming a sturdy and stable 
structure. Since hemicellulose and cellulose contributing more than 50% of the 
total composition, lignocellulosic biomass is considered as a potential source 
for renewable sugar production. As a second larger palm oil producer in the 
world, Malaysia generated huge amount of oil palm biomass annually. It was 
reported that about 51.19 million tonnes of oil palm biomass was produced in 
Malaysia in 2017 (Hamzah et al., 2019). Oil palm frond (OPF) is among the 
largest group of oil palm waste with generation of nearly 21.03 million tonnes 
(dry weight basis) for 95.38 million tonnes of fresh fruit bunch processed in 
2014 (Loh, 2017). The petiole of OPF consists of high carbohydrates and 
nutritive contents and can be converted into value-added products such as 
biofuels, biobased chemicals, biofertilizer and animal feed (Abdullah et al., 
2016; Lee and Ofori-Boateng, 2013a; Ofori-Boateng and Lee, 2014a; Zahari 
et al., 2015). OPF juice was found to have a high amount of free sugars with 
70% of glucose, and can be easily obtained by simple pressing method 
(Abdullah et al., 2015; Zahari et al., 2014, 2012). Whereas OPF pressed fiber 
(OPFPF), which is the residual part following pressing, contain a substantial 
amount of cellulose, approximately 33% - 45%, which can be further 
hydrolyzed into simple sugars through pretreatment and enzymatic hydrolysis 
(Goh et al., 2012; Sabiha-Hanim et al., 2011; Xian et al., 2015; Zahari et al., 
2014, 2012; Zakaria et al., 2014a). Its availability throughout the year, together 
with high sugar composition from both OPFPF and its juice, making OPF an 
outstanding raw material for a feasible biofuel production (Malaysia Innovation 
Agency, 2013), compared to other oil palm biomass.  

The availability of OPF annually and an existing access energy at the oil palm 
mill offers a great opportunity for the development of an integrated biorefinery 
for the production of biofuel such as bioethanol at the mill. However, the 
conversion of OPF to biofuel is challenging due to the complex structure of the 
lignocellulosic materials. Pretreatments to alter its original structure is 
necessary before saccharification and fermentation (Abdullah et al., 2016; 
Borrion et al., 2012b; Morales et al., 2015; Zabed et al., 2016) to break down 
the complex crystallized structure, making it more accessible for enzyme 
penetration. Since pretreatment contributed to about 20% of total production 
cost in cellulosic bioethanol production (Bensah and Mensah, 2013), 
application of an efficient pretreatment was important to develop a sustainable 
biorefinery. Subcritical hydrothermal pretreatment offers great advantages 
where it provides high sugar yield by involving water only, hence eliminates 
the usage of chemicals (Agbor et al., 2011; Capolupo and Faraco, 2016; 
Zhuang et al., 2016). Moreover, among all pretreatment method studied, it 
appears as the most economic method, hence practical for application at the 
biorefinery system (Harmsen et al., 2010). This could be achieved by utilizing 
the available excess steam (energy) at the oil palm mill, hence reducing 
energy waste (Zahari et al., 2015).  
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Besides that, the presence of subcritical CO2 as an external promoter during 
hydrothermal pretreatment was proven to enhance sugar recovery from 
sugarcane bagasse (Zhang and Wu, 2013, 2014a), wheat straw (Da Silva et 
al., 2014), eucalyptus (Zhang and Wu, 2014b) and OPMF (Ahmad et al., 
2018). The addition of CO2 is environmentally friendly as it is non-toxic and 
cheap besides easily separable following application (Morais et al., 2015). In 
addition, subcritical condition was more preferable as the generation of 
unwanted sugar degradation products was reduced under mild conditions 
(Patel et al., 2016; Xiao et al., 2017). Therefore, in this study, subcritical CO2-
H2O pretreatment was conducted to evaluate the effect of its application on 
glucose recovery from the OPFPF.  

To maximize the sugar produced during saccharification hence bioethanol 
yield, it is important to understand the effect of certain factors such as 
temperature on the lignocellulosic material during the hydrothermal 
pretreatment and the mechanism involved. Kinetic modelling not only helps to 
understand the mechanism that occurs throughout a process reaction but also 
provides a theoretical background for improving the operational conditions and 
subsequent process scale-up in the future (Carvalheiro et al., 2005). Since 
hemicellulose has a more vulnerable structure compared to cellulose and 
lignin, it is the most affected part in lignocellulosic material during hydrothermal 
pretreatment. Hence, most kinetics study was performed, focusing on its 
degradation (Lei et al., 2013; Relvas et al., 2015). Moreover, it was reported 
that pretreated solids which are more reactive to enzymatic hydrolysis was 
generated as more hemicellulose were dissolved (Shao and Lynd, 2013). 
During hydrothermal pretreatment, hemicellulose particularly xylan was 
converted into xylooligosaccharides (XOS) and xylose before further 
degradation occurs at more severe condition, generating furfural and formic 
acid. It was reported that hemicellulose degradation byproducts such as XOS, 
xylose, furfural and formic acid were among the compounds which act as 
inhibitors during enzymatic reaction. Therefore, these compounds must be 
removed prior to saccharifications by washing or detoxification (Zabed et al., 
2017). By studying the mechanisms of hemicellulose degradation, the effect 
of temperature on xylan degradation could be observed through determination 
of the reaction rate constants and activation energy. Therefore, the steps that 
govern the whole reaction at different pretreatment conditions could be 
identified. Ultimately, this information could be used to determine the condition 
which is favorable for the generation of glucose production hence increasing 
the ethanol yield. Furthermore, the generation of unwanted degradation 
products during subcritical hydrothermal pretreatment could also be reduced. 
Although the kinetic study of xylan’s hydrothermal degradation from a few 
lignocellulosic materials have been previously reported (Carvalheiro et al., 
2005; Relvas et al., 2015), it is important to conduct this study, not only to 
improve the sugar production from OPFPF, but also to compare the change in 
the kinetic parameters between different biomass due to the diversity of their 
compositions. Furthermore, to the best of our knowledge, a limited kinetic 
study has been reported for the degradation of xylan in OPFPF so far. 
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Feasibility study on the production of bioethanol from OPF petiole sugars was 
conducted within an integrated palm biomass biorefinery in the previous 
(Abdullah et al., 2016). It was demonstrated that integration of a biorefinery to 
an existing palm oil mill was possible and has high potential for bioethanol 
production scaling up. However, the environmental criteria must also be 
considered in developing a sustainable biofuel production process (Morales et 
al., 2015). LCA is the common method in assessing the environmental 
performance of a process. Many LCA study has been conducted on biofuel 
production from various feedstocks and lignocellulosic material over the past 
years (Borrion et al., 2012b; Morales et al., 2015). It was reported that 
bioethanol production can contribute to different environmental impacts, 
depending on the raw material used and process involved (Morales et al., 
2015). However, the most highlighted points were the impacts associated with 
feedstock cultivation and harvesting for first-generation bioethanol (Luo et al., 
2009; Muñoz et al., 2014; Ometto et al., 2009) and sugar recovery for 
lignocellulosic bioethanol production (Borrion et al., 2012b; Wang et al., 
2014a) due to chemical (fertilizer), enzyme and fossil fuel usage.  

In addition, several studies was also performed on oil palm based biorefinery 
model for the conversion of different oil palm biomass into various products 
such as methane gas, compost, ethanol and phytochemicals (Chiew and 
Shimada, 2013; Harsono et al., 2013; Ofori-Boateng and Lee, 2014b). From 
these studies, global warming (greenhouse gases) was among the effect 
reported to be potentially arising from the process involved. Therefore, LCA 
was performed in this study based on the previous integrated biorefinery 
model for the production of bioethanol from OPF (Abdullah et al., 2016). Since 
modifications was also made to improve the performance of the previous 
model, cost analysis was performed to justify the selection of the best model. 
Finding of this work could further support the potential of integrating a 
biorefinery to an existing oil palm mill for the production of biofuel (Abdullah et 
al., 2016). 

1.3 Objectives of the study 

This study was conducted based on three objectives, including: 

a) To evaluate the effect of subcritical hydrothermal pretreatment with CO2 
addition on glucose recovery from OPFPF. 

b) To determine the kinetics of hemicellulose hydrolysis of OPFPF during 
subcritical hydrothermal pretreatment. 

c) To develop and assess the environmental impact and economic 
viability of an integrated biorefinery approach for bioethanol production 
from renewable sugars of OPF  
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1.4 Scope of the study 

In general, this study can be divided into three parts according to the 
objectives. At the beginning of this study, the OPF was pressed using 
conventional sugarcane pressing machine, generating OPF juice and fiber 
residues called oil palm pressed fiber (OPFPF). However, only the OPFPF 
was used for experiments in Objective 1 and Objective 2. Whereas for 
Objective 3, data used was mostly obtained from the literature review. In the 
first part of this study, subcritical hydrothermal pretreatment and subcritical 
CO2-H2O of OPFPF was conducted before enzymatic hydrolysis for glucose 
production. Subcritical hydrothermal pretreatment are process conducted at a 
condition below critical point of water which is 373°C and 22.1 MPa (Kumar et 
al., 2018). At subcritical level, the properties of water such as density, 
viscosity, and dielectric constant dropped compared to at normal condition, 
making it a suitable medium for solvating organic molecules and higher 
hydrolysis reaction (Kumar et al., 2018). Two different types of reactors were 
used which are stainless steel tube reactor, located at the National Institute of 
Advanced Industrial Science and Technology (AIST), Japan and stainless 
steel miniclave (Buchi AG, CH-Usher, Switzerland), located in Universiti Putra 
Malaysia. Initial work was done using stainless tube reactor to get a 
preliminary data. Due to time limitation, this work was continued using 
miniclave, with preliminary data as a reference. A mixture of OPFPF and 
distilled water at a constant solid-liquid ratio of 1:10 was placed in a stainless 
tube reactor before subcritical hydrothermal pretreatment at different 
temperature (170 – 200°C), time (10-50 min) and CO2 initial pressures (0 – 5 
MPa). These conditions was designed based on previous subcritical 
hydrothermal works (Zakaria et al., 2015b; Zhang and Wu, 2014a). 
Subsequent enzymatic hydrolysis and compositional analysis were conducted 
according to NREL standard method to observe the difference in glucose 
production following pretreatment as well as in the lignocellulosic composition 
of the biomass. 

In the attempt to improve the sugar yield, the work was continued using 
miniclave, based on the preliminary data from hydrothermal pretreatment of 
OPFPF using tube reactors. 5 g of OPFPF was added into the miniclave at the 
same solid-liquid ratio, followed by heating at constant temperature of 180°C 
and initial CO2 pressure of 1 MPa for several durations (10-50 min) . Then, 
similar enzymatic hydrolysis and sample analysis was perfomed on the 
pretreated samples from the miniclave. In order to support the findings, several 
analyses including Fourier Transport Infrared (FTIR), Brunauer-Emmett-Teller 
(BET), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) 
analysis were conducted on the untreated and treated sample which produced 
the maximum saccharified sugars.  

Meanwhile, for the second part of this work, the trend for xylan conversion into 
xylooligosaccharides, xylose and degradation products was observed during 
subcritical hydrothermal pretreatment of OPFPF at two different conditions; 
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with and without CO2 addition. Similar model was tested for both conditions 
since it was demonstrated that the data from CO2-H2O pretreatment fitted well 
with the model proposed earlier by Carvalheiro et al., (2005) for hydrothermal 
pretreatment (Relvas et al., 2015). Nevertheless, only xylan content was 
considered in the present study due to low arabinan composition in the 
OPFPF, making it difficult to obtain the data required to fit into the model. For 
subcritical hydrothermal pretreatment with CO2 addition, the temperature and 
pressure was chosen based on findings from Objective 1 where 180°C and 1 
MPa was found to yield the highest glucose production. Hence, findings of this 
work could also help to explain the glucose yield obtained in Objective 1. 
However, the variation of initial pressure was limited to 0.5 and 1 MPa only, 
due to restriction of the reactor used. Since the effects of CO2 addition was 
minor due to low CO2 presence, the kinetic study was continued with 
experiments without CO2 addition at four different temperatures (170, 180, 190 
and 200°C). Degradation profiles of xylan over 40 minutes treatment time was 
developed for the experimental and predicted values by using an established 
degradation model and the kinetic coefficients were then determined.  

In the final part of this work, Life Cycle Analysis (LCA) with gate-to-gate 
approach was performed on conceptual oil palm biorefinery models for the 
production of bioethanol from renewable sugars of OPF. Three different case 
studies (A, B and C) were assessed to reduce the environmental impact 
arising from the production of 1 tonne of bioethanol. The scope of this study 
includes the transportation of OPF from the plantation to the mill, OPF sugar 
recovery, fermentation and finally bioethanol purification. Case study A was 
previously proposed by Abdullah et al., (2016) and it served as a base case. 
Initially, LCA was conducted on case study A and it was demonstrated that its 
environmental performance was poor due to application of energy intensive 
wet disc mill (WDM) for pretreatment of OPFPF and utilization of enzyme. 
Hence, for case study B, this method was replaced with hydrothermal 
pretreatment as this method was regarded as more environmental friendly and 
economic. However, since the glucose yield from subcritical CO2-H2O in this 
work (Objective 1) was low, optimum condition with higher glucose yield for 
hydrothermal pretreatment of OPFPF reported in the previous was used 
instead (Zakaria et al., 2015b). On the contrary, only sugar juice was used for 
bioethanol generation in case study C thus eliminating the need for 
pretreatment and enzyme usage. Material and energy balance was performed, 
alongside process simulation using Superpro Designer software for each case 
study. Ten impact categories were subsequently evaluated based on 
characterization model of CML 2 baseline 2000 v2.05 incorporated in SimaPro 
(version 8.0). This characterization model was selected as it is one of the 
commonly reported model for assessing environmental impact of biofuel 
generation (Chiew and Shimada, 2013; Dias et al., 2015; Morales et al., 2015;  
Wang et al., 2014a)  To support the findings from the LCA study, cost analysis 
was also performed on all case studies using the Cost & Evaluation Workbook 
(Max et al., 2003). The environmental and economical performance between 
case studies were then compared and discussed.  
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7 APPENDICES 

Appendix A 
 

Standard curves for HPLC analysis 
 

 
Appendix A.1: Standard curve for glucose concentration 

 
 

 
Appendix A.2: Standard curve for xylose concentration 
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Appendix A.3: Standard curve for arabinose concentration 

 
 

 
Appendix A.4: Standard curve for galactose concentration 
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Appendix A.5: Standard curve for mannose concentration 

 
 

 
Appendix A.6: Standard curve for acetic acid concentration 
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Appendix A.7: Standard curve for 5-HMF concentration 

 
 

 
Appendix A.8: Standard curve for furfural concentration 
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Appendix A.9: Standard curve for formic acid concentration 

 
 

 
Appendix A.10: Standard curve for levulinic acid concentration 
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Appendix A.11: Example of HPLC chromatogram for sugar analysis 
using Aminex HPX-87P column (Biorad, USA). (a) glucose; (b) xylose; (c) 
galactose; (d) arabinose; (e) mannose. 
 
 

 
 
Appendix A.12: Example of HPLC chromatogram for inhibitors analysis 
using Aminex HPX-87H column (Biorad, USA). (a) acetic acid; (b) formic 
acid; (c) levulinic acid; (d) 5-HMF; (e) furfural. 
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Appendix B 
 

Equations used for the kinetic study of xylan autohydrolysis  
 

 
Appendix B.1: Definitions of variables in kinetic model derived 
equations. 

 
Variables Definition 

 The percentage of xylan remaining in the pretreated solid 
OPFPF, % 

 The percentage of xylan in the feedstock, % 
 The percentage of xylan in the pretreated solid OPFPF at the 

beginning of the set temperature, % 
 The percentage of xylan in the pretreated solid OPFPF, % 

 The percentage of xylan remaining in the pretreated solid 
OPFPF at maximum time studied,% 

 Solid yield, g of solid recovered after treatment per 100 g of 
feedstock 

 Concentrations of xylooligosaccharides in the pretreated 
liquid, g/L 

 Percentage of feedstock xylan converted into 
xylooligosaccharides, % 

 Percentage of feedstock xylan converted into high molecular 
weight of xylooligosaccharides, % 

 Percentage of feedstock xylan converted into high molecular 
weight xylooligosaccharides at the beginning of the set 
temperature, % 

 Percentage of feedstock xylan converted into low molecular 
weight xylooligosaccharides, % 

 Percentage of feedstock xylan converted into low molecular 
weight xylooligosaccharides at the beginning of the set 
temperature, % 

 Weight of the liquid, g 
 Weight of the feedstock, g 
 Concentrations of xylose in the pretreated liquid, g/L 
 Percentage of feedstock xylan converted into xylose, % 
 Percentage of feedstock xylan converted into xylose at the 

beginning of the set temperature, % 
 Concentrations of furfural in the pretreated liquid, g/L 
 The percentage of feedstock xylan converted into furfural, % 
 Percentage of feedstock xylan converted into furfural at the 

beginning of the set temperature, % 
 Percentage of feedstock xylan converted into degradation 

products, % 
 Susceptible fraction of xylan 
 Soluble fraction of unreacted xylan 
 Reaction rate constant for i reaction steps, i = 1,2,3,4,5 
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Appendix B.2: Kinetic model derived equations for calculating 
experimental values (Carvalheiro et al., 2005; Relvas et al., 2015). 
 

Equation 
numbers 

Equations 
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B2 
 

B3 
 

B4 
 

B5  
 
 
Appendix B.3: Kinetic model derived equations for calculating predicted 
values (Carvalheiro et al., 2005; Relvas et al., 2015). 
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B19 

B20 

B21 

B22 

B23 

B24 

B25 

B26 

B27 

B28 

B29 

B30 
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Appendix C 
 

Calculation step for obtaining energy consumption values in Table 5.3 
(Chapter 5) 
 
 

1) Milling and juice extraction (Similar values for all case studies) 

 

 
2) Saccharified sugar production (for case study A and B only) 

 
Case study A:  
 
a) Wet disc milling 

 

 
b) Saccharification 

 

 
c) MVR evaporator 

  
 

 

Hence, 
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Case Study B 
 

a) Grinding 

 

b) Hydrothermal pretreatment 
Using the equation from Hosseini and Shah (2009),  

 
Where,  

 
 

 
 

 
 
Hence,  

 

For 20160 tonne of dried OPFPF,  

 

 
Latent heat of vaporization of steam at 20 bar is 1888.65 kJ/kg. Hence, 
the amount of steam required for hydrothermal pretreatment; 
 

 

 
Amount of HP steam generated (20 bar) at the mill is 299325 
tonne/year; and 
 
299325 tonne of HP steam generates 7.72 GWh of electricity. 
 
Electricity usage at the mill is 4.08 GWh. The amount of HP steam 
required to generate 4.08 GWh is; 
 

 

 
For bioethanol production, requires 2.61 GWh of electricity. The amount 
of HP steam required to generate 2.61 GWh is; 
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Therefore, total HP steam required for electricity generation is, 

Hence, 

Since only 8418.7 tonne/year of HP steam is required for conducting 
hydrothermal pretreatment, the remaining HP steam is sufficient. It is 
therefore suggested to tap the HP steam from the current existing 
channel (as indicated in Figure 5.6).

c) Saccharification 
Using solid recovery of 52.2% (Zakaria et al., 2015b), the amount of 
OPFPF generated following hydrothermal pretreatment was 
10523.5 tonnes/year. Therefore, in saccharification, 

d) MVR evaporator 

Hence, 

3) OPF juice pretreatment (Similar values for all case studies) 
3 multiple effect evaporator: 
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4) Fermentation 

Case study A 
a) Sterilization 

b) Fermenter 

Case study B 
a) Sterilization 

b) Fermenter 

Case study C 
a) Sterilization 

b) Fermenter 

5) Ethanol purification  

Case study A 
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Case study B 

Case study C 
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Appendix D 
 

Picture of subcritical hydrothermal reactors 
 

 

 
Appendix D.1: Stainless steel tube reactor  

 

 
Appendix D.2: Miniclave   
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