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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Doctor of Philosophy 

FLUOROMETRIC GENE ASSAY FOR DETERMINATION OF Escherichia coli 

O157:H7 USING GRAPHENE QUANTUM DOTS AND CARBON DOTS WITH 

GOLD AND SILVER NANOPARTICLES 

By 

SURIA BINTI MOHD SAAD 

September 2020 

Chairman : Jaafar Abdullah, PhD 

Institute : Advanced Technology 

Escherichia coli (E. coli) O157:H7 is considered as harmful bacteria which can result in 

severe infections to human. Current detection methods are prolonged and inefficient due 

to extensive sample preparation and lengthy test procedures. Thus, there is a requirement 

for simplicity of techniques which are capable of sensing E. coli O157:H7 at high 

sensitivity, specific, less toxicity and agile. A fluorescence quenching assay involving 

graphene quantum dots (GQDs) and carbon dots (CDs) with gold (AuNPs) and silver 
(AgNPs) nanoparticles for the determination of E. coli O157:H7 have been explored. 

GQDs and CDs act as the fluorophore, while AuNPs and AgNPs as the quencher. Short 

target oligos (20 bp) have been utilized to establish distance between fluorophore and 

quencher in close proximity. Then, the fluorophore and quencher were complexing 

adjacently to trigger the fluorescence quenching mechanism following the target oligos 

co-hybridization.  The complex immediately returns to the ground state by absorption of 

light without the release of photons. Several essential parameters such as reaction time 

and wavelength maximum of emission have been optimized to enhance the efficiency of 

fluorescence quenching. An excitation/emission wavelength of 400 nm/530 nm and 340 

nm/450 nm were used for GQDs and CDs, respectively. The net intensity fluorescence 

quenching of GQDs and CDs was enhanced proportionally with the increment 

concentrations of target oligos. A linear correlation between the fluorescence quenching 

of GQDs/CDs and the logarithm concentration of target oligos in the series of 0.1 nM to 

150 nM (GQDs-AuNPs), 0.01 nM to 200 nM (CDs-AuNPs) and 0.001 nM to 200 nM 

(CDs-AgNPs) (slope = 42.74, R2 = 0.991; slope = 675.6, R2 = 0.992; slope = 217.6, R2 

= 0.977) and the detection limit (LOD) of 1.10 ± 0.58 nM, 1.00 ± 0.71 nM and 1.01 ± 

0.71 nM, respectively. The proposed method was utilized for verification of selectivity 
and specificity towards different oligonucleotide sequence and bacteria strain with 

satisfactory results. The practicability of the assay was also verified by evaluating the 

amplicon (fliC gene, 381 bp) of genomic DNA isolated from food samples spiked with 

E. coli O157:H7. It is noteworthy that the determined t-value is less than the critical t-

value (tcalc. < 2.78) indicating that the developed method and real time PCR method are 

comparable and in good agreement.  
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Abstrak tesis yang dikemukan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

UJIAN GEN FLUOROMETRIK UNTUK PENENTUAN Escherichia coli 

O157:H7 MENGGUNAKAN TITIK KUANTUM GRAFIN DAN TITIK 

KARBON DENGAN NANOPARTIKEL EMAS DAN PERAK 

Oleh 

SURIA BINTI MOHD SAAD 

September 2020 

Pengerusi : Jaafar Abdullah, PhD 

Institut : Teknologi Maju 

Escherichia coli (E. coli) O157:H7 dianggap sebagai bakteria berbahaya yang boleh 

menyebabkan penyakit serius kepada manusia. Kaedah pengesanan semasa adalah 

panjang dan tidak cekap kerana penyediaan sampel yang banyak dan prosedur ujian yang 

panjang. Oleh itu, terdapat keperluan untuk kesederhanaan kaedah yang mampu 

mengesan E. coli O157:H7 pada kepekaan tinggi, spesifik, kurang toksik dan tangkas. 

Ujian pelindapkejutan pendarfluor yang melibatkan titik kuantum grafin (GQDs) dan 
titik karbon (CDs) dengan nanopartikel emas (AuNPs) dan perak (AgNPs) untuk 

penentuan E. coli O157:H7 telah diterokai. GQDs dan CDs bertindak sebagai fluorofor, 

sementara AuNPs dan AgNPs sebagai pelindapkejut. Oligos sasaran pendek (20 bp) telah 

digunakan untuk menghasilkan jarak di antara fluorofor dan pelindapkejut berdekatan. 

Kemudian, fluorofor dan pelindapkejut telah berinteraksi secara berdekatan untuk 

mencetuskan mekanisme pelindapkejutan pendarfluor diikuti penghibridan bersama 

oligos sasaran. Kompleks segera kembali ke keadaan dasar dengan penyerapan cahaya 

tanpa pelepasan foton. Beberapa parameter penting seperti masa tindak balas dan 

panjang gelombang pelepasan maksimum telah dioptimumkan untuk meningkatkan 

kecekapan pelindapkejutan pendarfluor. Pada panjang gelombang pengujaan/pelepasan 

400 nm/530 nm dan 340 nm/450 nm bagi GQDs dan CDs, masing-masing. 

Pelindapkejutan pendarfluor bersih GQDs dan CDs meningkat secara berkadaran dengan 

peningkatan kepekatan oligos sasaran. Hubungan korelasi linear di antara 

pelindapkejutan pendarfluor GQDs/CDs dan kepekatan logaritma oligos sasaran dalam 

julat 0.1 nM hingga 150 nM (GQDs-AuNPs), 0.01 nM hingga 200 nM (CDs-AuNPs) 

dan 0.001 nM hingga 200 nM (CDs-AgNPs) (kecerunan = 42.74, R2 = 0.991; kecerunan 

= 675.6, R2 = 0.992; kecerunan = 217.6, R2 = 0.977) dan had pengesanan (LOD) 1.10 ± 
0.58 nM, 1.00 ± 0.71 nM dan 1.01 ± 0.71 nM, masing-masing. Kaedah yang dicadangkan 

telah digunakan untuk pengesahan kepilihan dan kespesifikan terhadap urutan 

oligonukleotida dan baka bakteria yang berbeza dengan keputusan yang memuaskan. 

Kebolehlaksanaan ujian juga disahkan dengan menilai amplikon (gen fliC, 381 bp) DNA 

genomik yang diasingkan dari sampel makanan disuntik dengan E. coli O157:H7. 

Diperhatikan bahawa nilai-t yang dikira adalah kurang daripada nilai-t kritikal (tcalc. < 

2.78) yang menunjukkan bahawa kaedah yang dibangunkan dan kaedah PCR masa nyata 

berada dalam persetujuan yang baik dan setanding. 
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CHAPTER 1 

 

 

INTRODUCTION 
 

 

1.1  Background of study 
 
 

Escherichia coli (E. coli) serotypes are the common bacteria that usually reside in 

the lower intestine of human digestive tract and warm-blooded animals. However, 

there are strains that are harmful to humans with a high toxicity level such as E. 

coli O157:H7 (Zhang et al. 2016) and can be categorized as microorganism with the 

potential for foodborne diseases burden. Generally, the food safety and outbreak of 

E. coli infection specifically in Malaysia was not a real issue and the community 

have low awareness on the risk and effect from its infection (New et al. 2017). 

Trend of food poisoning incidence in Malaysia is shown in increasing every year 

(Ismail et al. 2018). According to statistic prepared by Ministry of Health (MOH) 

in 2016, a total of 1063 premises inspection that has performed in the country such 

as school canteens and cafeterias, about 18 premises (2.1%) were forced to shut 

down their operations due to a violation of Section 11 of the Food Act 1983 for an 

offense of unlawful premises (Ministry of Health 2016). In 2013, approximately 

14,202 cases of food poisoning reported with a total of 12 cases of death (A’aisah 

2014). Figure 1.1a show that the most commonly encountered pathogen is 

Escherichia coli species followed by Salmonella spp., with the school canteen and 
cafeteria are the most commonly sector encountered with these pathogens in 

Malaysia (Figure 1.1b) (A’aisah 2014).  
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Figure 1.1: (a) Pathogen that was isolated (Lab-based surveillance - Acute 

Diarrhoeal Disease Project 2013) and (b) food poisoning episode and cases in 
Malaysia (Source: A’aisah 2014) 

 

 
In addition to the crisis of foodborne illness, deprivations in demand due to 

microbial contamination and spoilage in agricultural and food products typically 

have considerable economic consequences to the producer countries (Beutin & 

Martin 2012). In 2011, the European outbreaks have become one of the biggest E. 

coli epidemics in history and have damaged trade and triggered trade restrictions 

(EN SANCO/13004/2011 2011). This is because the contaminated agricultural and 

food products are in violation of EU law, the International Health Regulations (IHR, 

2005) and the Sanitary and Phytosanitary Measures (SPS) Agreement (Fidler 2011).  
Recently, Ministry of Health (MOH), Malaysia has advised the companies involved 

in the imported of romaine lettuce to withdraw the vegetable from the market. 

Consumers also were advised to stop eating the vegetables and to get rid of any 

they’ve purchased. This was in correlation with the report released by the Centres 

for Disease Control (CDC) and Prevention about 32 peoples in 11 s tates of United 

State (US) have reported E. coli infections which linked to romaine lettuce that 

occurred on October 2018 (Ministry of Health 2018). 

 

 
Biosensors have been known as reputable options for environmental monitoring, 

food monitoring and clinical diagnostic because of their user friendly, mobile, 

direct, sensitive, affordable and capable for precise, real-time detection (Paniel et 

al. 2013). These technologies appear with distinctive competencies for on-site (Li 

et al. 2018) and real-time (Singh et al. 2018) analysis. Real-time detection of 

pathogenic contaminants is essential because it offers instant interactive 

information on the sample being tested and allows food servicers to take corrective 

actions prior to the product is sold to consumers (Moerman 2018).  
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Currently, the advancement of biosensors for microbial identification and detection 

assures a rapid, simple and sensitive to carry out (Singh et al. 2014) (Hu et al. 2015). 

DNA-based biosensors offers high-sensitivity, cost-effective, faster and simpler 

compared with conventional enzyme immuno assay (EIA) (Khang et al. 2016). Over 

the past fifteen years, several numbers of reports utilizing biosensor techniques for 

the determination of E. coli O157:H7 have been established. Among all the 

established biosensor methods, optical biosensors are still the most attractive 

transduction method to be studied in the determination of E. coli O157:H7 (Xu, 
Wang & Li 2017). Optical sensors have been recognized as one of the techniques 

used to detect target elements due to their excellent performance for vari ous 

samples analysis, easy operation and rapid detection (Saleviter et al. 2019). In this 

study, major virulence genes such as shiga toxin 1 (stx1) and shiga toxin 2 (stx2) 

were not selected as detection targets. This is due to the common Shiga toxin-

producing E. coli (STEC) serotypes such as strains O26, O45, O103, O111, O121 

and O145 also produce stx1 and stx2 (Guy et al. 2014). Therefore, E. coli O157:H7 

was identified as STEC serotype O157:H7 with serotype-specific fliC gene 

(flagellin protein) in the developed sensing system to ensure detection specificity 

in this study.  

 

 

1.2 Problem statement 

 

 
E. coli O157:H7 is considered as dangerous bacteria which can cause serious illness 

to human. Negligence on prevention measures and provides early treatment could 
cause gastroenteritis symptoms such as vomiting, fever, nausea and in worst cases 

can lead to death.  

 

 
Various techniques have been proposed for the determination of E. coli spp. 

Conventional culture techniques for the determination of E. coli O157:H7 in food 

such as microbiological methods, involve culture on agar and followed by colony 

counting, which is laborious, time-consuming and inefficient (Paniel et al. 2013). 

The utilization of polymerase chain reaction (PCR) followed by gel electrophoresis 

is even faster, selective and sensitive (Afendy & Son 2015) than conventional 

methods, but requires agarose gel electrophoresis in the DNA detection process, 

which is rather troublesome and carcinogenic (Nakano, Ding & Suehiro 2017). 

Real-time PCR, on the other hand, involves expensive reagents, the use of optical 

detection equipment and also should be performed by skilled personnel (Pang et al. 

2017). In addition, dealing with DNA as a target analyte mostly struggling for target 

amplification using various strategies such as isothermal amplification which is 

time consuming and troublesome (Donmez et al. 2019). Fluorescence-based 
biosensor, on the other hand, often have problems with sensor performance and 

response, which are not sensitive enough (Saleviter et al. 2019). 

 

 
Thus, there is an urgent demand for simplicity of techniques which  are capable to 

detect E. coli O157:H7 at high sensitivity, specific, less toxicity, stable and agile. 

These are due to the effort of testing for E. coli O157:H7 which can happen 

anywhere and sometimes require a tool that is user friendly and can provide with 

an accurate and instant result. There are very limited reliable process monitoring 
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and control techniques available in the market to ensure food safety and public 

health concern. At the moment, there is no product able to comply with all these 

criteria. Therefore, if genomic DNA from bacterial isolates and cultures can be 

quantitatively and immediately quantified, ratiometric fluorescence DNA detection 

methods can offer a practical substitute to conventional PCR and real time PCR. To 

date the combination of graphene quantum dots (GQDs) and carbon dots (CDs) with 

gold (AuNPs) and silver (AgNPs) as a novel nanomaterial platform for DNA-based 

sensor for the detection of E. coli O157:H7 has not been explored. Therefore, the 
feasibility of these nanomaterials for DNA probes immobilization and hybridization 

has not been proven. In addition, the use of DNA as a sensing probe in the 

fabrication of fluorescence quenching biosensor can enhance the specificity and 

sensitivity of E. coli O157:H7 detection that cannot be achieved with conventional 

immuno-based technique.  

 

 
This study discusses the development of specific, sensitive and reliable optical 

sensor for E. coli O157:H7 detection based on DNA platform which utilized a 

fluorescence quenching assay format as the principle of detection. Three types 

DNA-sensor were focused on optical method that using a pair of fluorophore and 

quencher of fluorescence quenching: i) graphene quantum dots-gold nanoparticles 

(GQDs-AuNPs), ii) carbon dots-gold nanoparticles (CDs-AuNPs) and iii) carbon 

dots-silver nanoparticles (CDs-AgNPs) DNA-sensor.  

 

 
All of the DNA-sensors were characterized with an appropriate surface chemistry 
in fluorescence microplate reader for co-hybridization of target oligos to provide 

stable assay conditions. The appliance of AuNPs or AgNPs for signal quenching in 

all DNA-sensor approaches was also assessed to enhance sensitivity of the assay 

system. The fluorescence quenching of DNA-based sensor were initially utilized to 

determine a short fragments of fliC gene of E. coli O157:H7 in real samples 

analysis, which food samples were experimentally spiked and compared with an 

established real time PCR method.  Then the developed system finally was tested 

on genomic DNA as a target analyte in real sample analysis  and also compared with 

real time PCR.  

 

 

1.3 Objective of the study 

 

 
This study was intended to design a specific and sensitive DNA-based sensor 

technique using fluorescence quenching mechanism to detect fliC gene of E. coli 

O157:H7 for apply in food safety monitoring. The following specific objectives are 
outlined to achieve the goal of this study: 

 

 
I. To design and conjugate the DNA probe with graphene quantum dots 

(GQDs) or carbon dots (CDs) and gold (AuNPs) or silver (AgNPs) 

nanoparticles for the determination of fliC gene of E. coli O157:H7. 

 

II. To optimize and characterize the conjugated amine oligos with GQDs or 

CDs and thiol oligos with AuNPs or AgNPs and to verify the fliC gene of 
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E. coli O157:H7 using the GQDs-AuNPs, CDs-AuNPs and CDs-AgNPs 

fluorescence quenching DNA-sensor. 

 

III. To study the performance (sensitivity, selectivity and specificity) of the 

developed sensing system towards fliC gene of E. coli O157:H7. 

 

IV. To validate the developed DNA-based biosensor with commercial real time 

PCR kit method for detection of E. coli O157:H7 in real samples analysis. 
 

 

The flow chart below demonstrates the relationships between different parts of the 

study (Figure 1.2).  

 

 

 
 

Figure 1.2: Flow chart displaying the relationships between different parts of 

the study in the development of fluorometric gene assay for E. coli O157:H7 

determination 

 

 

1.4 Scope and limitation of study 

 

 
Fluorescence quenching DNA-sensor is an optical method that measures the 

fluorescence intensity changes which rely on the spatial distance between the 

fluorophore and quencher. Thus, for fluorescence quenching to occur it relies on 

incubation times for co-hybridization of target oligos with reporter oligos on 

fluorophore and next with quencher oligos on quencher consecutively to form stable 

complex structures. However, during the incubation process before and after the 
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adding of quencher (AuNPs- or AgNPs-thiol modified) many possibilities could 

take place in the sample mixture preparation. Even though it was from the same 

replicates it can be varied in term of fluorescence intensity reading. Therefore, the 

samples need to be prepared at least in five replicates in intention to calculate the 

quenching efficiency and to plot a linear graph. It is also difficult to obtain 

consistent results and reproducible techniques between replicates and batches in the 

development of this fluorescence quenching DNA-sensor. This is because it is a 

kinetic study in which the progress of fluorescence quenching depends on the 
incubation time. The system requires a lengthy tracking time of at least 2 hours and 

30 minutes and not stable for analysis of sample that have long target sequence. 

This is due to the steric hindrance of long target sequences might block the co -

hybridization sequence of quencher probes on AuNPs. The length, type (RNA or 

DNA) and secondary structure of the target mainly affect the efficiency of probe -

target duplex formation, hybridization and specificity (Liu, Guo & Wu 2007).  

 

 
Another limitation of this study is including the tedious sample preparation. As we 

know dealing with bacteria as targeted pathogen and DNA as a target analyte, the 

bacteria and DNA required being cultured and extracted to amplify and get its 

colonies and their total genome, respectively. Although this system can be used for 

fliC gene detection but there are some limitations. The developed system is still in 

preliminary study and is not ready for on-site application as samples require to be 

processed with simple sample preparation in the laboratory and instruments are used 

such as thermal cycler for PCR and fluorescence microplate reader for fluorescence 

assay. In the future, the developed system could be used in combination  with 
flocculation assay that has been established (Wee et al. 2015) and portable 

fluorescence reader for on-site DNA amplification and fluorescence assay. In this 

study, the developed system was also tested on genomic DNA in real sample 

analysis and the results were comparable to real time PCR. This indicates that in 

the future, the developed system has the potential to be tested direct ly on genomic 

DNA without time-consuming pre-detection amplification and eventually avoids the 

PCR procedure. 
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APPENDICES 

 

 

APPENDIX A1 

 

 
Data on Stern-Volmer plot for both CDs-AgNPs and CDs-AuNPs fluorometric assay 

were summarized in Table A1a and Table A1b, respectively. 
 

 

Table A1a: Data on Stern-Volmer plot of CDs-AgNPs fluorometric assay 

[AgNPs] 

µM 
F° F F°/F 

0.05 5845 5573 1.049 

0.10 5845 5340 1.095 

0.15 5845 5185 1.127 

0.20 5845 4991 1.171 

0.25 5845 4960 1.178 

0.30 5845 4759 1.228 

0.40 5845 4475 1.306 

0.45 5845 4489 1.302 

 

 

Table A1b: Data on Stern-Volmer plot of CDs-AuNPs fluorometric assay 

[AuNPs] 

µM 
F° F F°/F 

0.05 5845 5320 1.099 

0.10 5845 4947 1.182 

0.20 5845 4227 1.383 

0.25 5845 4141 1.412 

0.30 5845 3773 1.549 

0.40 5845 3633 1.609 
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APPENDIX A2 

 

 
Data on Benesi-Hildebrand plot for both CDs-AgNPs and CDs-AuNPs fluorometric 

assay were summarized in Table A2a and Table A2b, respectively.  

 

 

Table A2a: Data on Benesi-Hildebrand plot of CDs-AgNPs fluorometric assay 

[AgNPs] 

µM 
F° F F° − F 1/F° − F 1/[AgNPs] 

0.05 5845 5553 292 0.003425 20.0000 

0.10 5845 5297 548 0.001825 10.0000 

0.15 5845 5192 653 0.001531 6.6667 

0.20 5845 4989 856 0.001168 5.0000 

0.25 5845 5017 828 0.001208 4.0000 

0.30 5845 4692 1153 0.000867 3.3333 

0.35 5845 4418 1427 0.000701 2.8571 

0.40 5845 4458 1387 0.000721 2.5000 

0.45 5845 4488 1357 0.000737 2.2222 

0.50 5845 4533 1312 0.000762 2.0000 

 

 

Table A2b: Data on Benesi-Hildebrand plot of CDs-AuNPs fluorometric assay 

[AuNPs] 

µM 
F° F F° − F 1/F° − F 1/[AuNPs] 

0.05 5845 5320 525 0.001905 20.0000 

0.10 5845 4947 898 0.001114 10.0000 

0.20 5845 4227 1618 0.000618 5.0000 

0.25 5845 4141 1704 0.000587 4.0000 

0.30 5845 3773 2072 0.000483 3.3333 

0.40 5845 3633 2212 0.000452 2.5000 
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APPENDIX A3 

 

 
Data on log [(Fo − F)/F] vs log [Q] plot for both CDs-AgNPs and CDs-AuNPs 

fluorometric assay were summarized in Table A3a and Table A3b, respectively. 

 

 

Table A3a: Data on plot of log[(F° − F/F] vs log [AgNPs] of CDs-AgNPs 
fluorometric assay 

[AgNPs] 

µM 
F° F F° − F F° − F/F 

Log [(F° − F) 

/F] 

Log 

[AgNPs] 

0.05 5845 5573 272 0.04881 -1.31152 -1.30103 

0.10 5845 5340 505 0.09457 -1.02425 -1.00000 

0.15 5845 5185 660 0.12729 -0.89521 -0.82391 

0.20 5845 4991 854 0.17111 -0.76673 -0.69897 

0.25 5845 4960 885 0.17843 -0.74854 -0.60206 

0.30 5845 4759 1086 0.22820 -0.64169 -0.52288 

0.35 5845 4458 1387 0.31113 -0.50706 -0.45593 

0.40 5845 4475 1370 0.30615 -0.51407 -0.39794 

0.45 5845 4489 1356 0.30207 -0.51989 -0.34679 

0.50 5845 4599 1246 0.27093 -0.56715 -0.30103 

 

 

Table A3b: Data on plot of log[(F° − F)/F] vs log [AuNPs] of CDs-AuNPs 

fluorometric assay 

[AuNPs] 

µM 
F F° F° − F F° − F/F 

Log[(F° −F) 

/F] 

Log 

[AuNPs] 

0.05 5320 5845 525 0.09868421 -1.00575233 -1.30103 

0.10 4947 5845 898 0.18152416 -0.74106557 -1 

0.20 4227 5845 1618 0.38277738 -0.41705373 -0.69897 

0.25 4141 5845 1704 0.41149481 -0.38563564 -0.60206 

0.30 3773 5845 2072 0.54916512 -0.26029705 -0.52288 

0.40 3633 5845 2212 0.6088632 -0.21548028 -0.39794 
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