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The expected usage growth of smart devices in the wireless cellular system and 

many connected devices with other new, improved technological advancement has 

resulted in the high data rate demands and spectrum scarcity problems. Hence, 

efficient resource allocation techniques are required to improve spectrum 

utilization and address the high data rate demands for future wireless 

communication networks. Non-Orthogonal Multiple Access (NOMA) is one of the 

most promising multiple access technology for fifth-generation (5G) and future 

advancement due to its significant role in achieving high spectral efficiency and 

energy efficiency together with supporting large number of connectivity required 

for massive machine-type communication (mMTC). This thesis’s main objective is 

to solve the downlink NOMA systems’ resource allocation problems for improving 

the system sum rate and energy efficiency. The study addressed the optimization of 

resources in a single-cell and heterogeneous transmission systems using convex 

optimization techniques. First, the downlink NOMA-based single-cell systems’ 

resource allocation problems are addressed. The closed-form solutions are derived 

using Karush-Kuhn-Tucker (KKT) conditions to maximize the system sum rate and 

the Dinkelbach (DKL) algorithm to maximize system energy efficiency. Moreover, 

the Hungarian (HNG) algorithm is utilized for pairing two users into the sub-

channel. For 10 users, 2 W Base Station (BS) power, the system sum rate of the 

proposed NOMA with optimal power allocation using KKT conditions and HNG 

(NOMA-PKKT-HNG) achieves a higher sum rate by 20.02 %, 40.09 %, and  

50.32 % than NOMA with a Difference of Convex programming (NOMA-DC), 

NOMA with Fractional Transmitting Power Allocation (NOMA-FTPA), and 

conventional Orthogonal Frequency Division Multiple Access (OFDMA) 

techniques respectively. Besides, with 20 users at the BS, the system energy 

efficiency presented an optimal power allocation using DKL and HNG  

(NOMA-PDKL-HNG) with greater performance than those from NOMA-DC, 
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NOMA-FTPA and OFDMA by 40 %, 59 %, and 86 % respectively. Second, the 

downlink NOMA’s resource allocation problems in a heterogeneous network 

(NOMA-HetNets) are investigated. The results show that the femtocell user’s 

minimum energy efficiency by applying NOMA with power allocation method 

using Sequential Convex Programming and user pairing based on Greedy 

Algorithm (NOMA-SCP-GA) is higher by 38.22 %, 58.84 %, and 76.39 % 

compared to NOMA-DC, NOMA-FTPA, and OFDMA methods respectively. The 

obtained results from both NOMA scenarios confirm that the proposed  

NOMA-PKKT-HNG, NOMA-PDKL-HNG, and NOMA-SCP-GA methods are 

promising approaches for the 5G capability demands. 
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Jangkaan pertumbuhan penggunaan peranti pintar dalam sistem selular tanpa wayar 

dan kebanyakan peranti penghubung bersama-sama dengan pembangunan 

kemajuan teknologi baru dan dipertingkatkan telah menyebabkan permintaan kadar 

data yang tinggi dan masalah kekurangan spektrum. Oleh itu, teknik peruntukan 

sumber yang cekap diperlukan untuk meningkatkan penggunaan spektrum dan 

menangani permintaan kadar data yang tinggi untuk rangkaian komunikasi tanpa 

wayar masa depan. Non-Orthogonal Multiple Access (NOMA) merupakan salah 

satu teknologi pelbagai akses yang menjanjikan untuk generasi kelima (5G) dan 

pada masa hadapan kerana peranannya yang penting dalam mencapai kecekapan 

spektrum tinggi dan kecekapan tenaga dengan jumlah sambungan yang besar yang 

diperlukan untuk massive machine-type communication (mMTC). Objektif utama 

tesis ini adalah untuk menyelesaikan masalah peruntukan sumber dalam sistem 

downlink NOMA untuk meningkatkan kadar jumlah sistem, dan kecekapan tenaga. 

Kajian ini dapat menangani pengoptimuman sumber dalam satu sel dan sistem 

penghantaran heterogen menggunakan teknik pengoptimuman convex. Pertama, 

masalah peruntukan sumber sistem sel tunggal berasaskan downlink NOMA 

ditangani. Penyelesaian bentuk tertutup diperoleh menggunakan syarat Karush-

Kuhn-Tucker (KKT) untuk memaksimumkan kadar jumlah sistem dan algoritma 

Dinkelbach (DKL) untuk memaksimumkan kecekapan sistem tenaga. Selain itu, 

algoritma Hungarian (HNG) digunakan untuk menggandingkan dua pengguna ke 

dalam sub-saluran. Keputusan menunjukkan bahawa dengan 10 pengguna, dan 

kuasa 2 W Base Station (BS), kadar jumlah sistem NOMA yang dicadangkan 

dengan peruntukan kuasa optimum menggunakan syarat-syarat KKT dan HNG 

(NOMA-PKKT-HNG) mencapai kadar jumlah yang lebih tinggi sebanyak  

20.02 %, 40.09 %, dan 50.32 % daripada NOMA-difference convex programming 

(NOMA-DC), NOMA-fractional transmitting power allocation (NOMA-FTPA), 

dan konvensional orthogonal frequency division multiple access (OFDMA). 
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Sementara itu, dengan 20 pengguna di BS, kecekapan sistem tenaga dengan 

peruntukan kuasa yang optimum menggunakan DKL dan HNG  

(NOMA-PDKL-HNG) dengan prestasi yang lebih baik daripada NOMA-DC, 

NOMA-FTPA dan OFDMA masing-masing sebanyak 40 %, 59 %, dan 86 %. 

Kedua, masalah peruntukan sumber downlink NOMA dalam rangkaian heterogen 

(NOMA-HetNets) telah disiasat. Keputusan menunjukkan bahawa kecekapan 

tenaga minimum pengguna femtocell menggunakan NOMA dengan kaedah 

peruntukan kuasa optimum menggunakan SCP dan GA (NOMA-SCP-GA) adalah 

lebih tinggi sebanyak 38.22 %, 58.84 %, dan 76.39 % berbanding kaedah NOMA-

DC, NOMA-FTPA, dan OFDMA. Keputusan yang diperoleh daripada kedua-dua 

senario NOMA mengesahkan bahawa, cadangan NOMA-PKKT-HNG,  

NOMA-PDKL-HNG, dan kaedah NOMA-SCP-GA adalah pendekatan yang baik 

yang dapat menjamin permintaan keupayaan 5G. 
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1 

CHAPTER 1 

1 INTRODUCTION 

The research in wireless communication systems moves towards the fifth 

generation (5G) and beyond. The capabilities of 5G are expected to be more 

extended than the previous generations, which enable massive connectivity with 

different and powerful requirements, such as high data rates, very low latency, 

ultra-high reliability, and energy-efficient techniques, etc. The current wireless 

communication networks may not achieve these demands, which also needs the 

usage of different advanced technologies. Non-orthogonal Multiple Access 

(NOMA) is among the non-orthogonal transmission techniques that have attracted 

tremendous interest by researchers due to its high spectral efficiency improvements 

and high data rates performance, which appears to meet the 5G capability demands. 

This chapter highlights the background of wireless communication systems, the 

problems existing in the NOMA system, states the main research objectives to be 

achieved and research questions to be answered, followed by the scope and the 

main contributions, and then the significance of the study. Finally, this chapter 

outlines the thesis organization. 

1.1 Background  

Wireless communication has become an essential part of our everyday lives since it 

improves our countries’ economic growth and attends to human needs. It has 

witnessed historical changes due to the need for high capacity and high-quality 

communications, so the development of new generation became significant. The 

Frequency Division Multiple Access (FDMA) [1], [2], and Time Division Multiple 

Access (TDMA) technologies were deployed to achieve higher data rate and 

improve the spectrum efficiency [2], [3] in the early generations. The evolution of 

third-generation (3G) in 2000 became a significant step for the introduction of 

General Packet Radio Service (GPRS), which was introduced by the International 

Telecommunication Union (ITU). The 3G networks, also known as Universal 

Mobile Telecommunication System (UMTS), offered a higher data rate and greater 

security than second-generation (2G) networks. In this network, the Code Division 

Multiple Access (CDMA) technology was deployed, which allows users to share 

the same frequency at the same time, but with different orthogonal codes 

assignment. The 3G offered applications such as Global Positioning System (GPS), 

location-based service, mobile internet access, video calls, and mobile television 

[2], [4]. The main limitation of 3G is broad bandwidth usage, which leads to the 

development of other generations. 

New generation standards have appeared approximately every ten years. So, by 

2010, the 3G evolved to the current fouth-generation (4G) mobile communication 

systems such as Long-Term Evolution (LTE) and LTE-Advanced (LTE-A), which 

was standardized by the 3rd Generation Partnership Project (3GPP). In these 4G 

networks, Orthogonal Frequency Division Multiple Access (OFDMA) and Single-
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Carrier OFDMA (SC-OFDMA) has been widely utilized to allocate resources to 

users and achieving a high data rate [5], [6]. The multiple access techniques 

mentioned above are termed as Orthogonal Multiple Access (OMA), in which 

resources are allocated to users in the orthogonal approach. The rapid development 

of internet-enabled smart devices, termed as Internet of Things (IoT) and 

innovative applications promotes the development of fifth-generation (5G). The 5G 

networks are predicted to be high in performance with more users’ capability than 

the current 4G networks [7], [8]. There are three main areas of applications in 

which 5G is expected to revolutionize our  future life; which are enhanced Mobile 

Broad Band (eMBB), massive machine type communication (mMTC) and Ultra-

Reliable and Low Latency Communications (URLLC). Several requirements are 

needed for 5G to meet the demand for eMBB (e.g., high resoulution video 

streaming), mMTC (e.g., IoT services), and URLLC (e.g., autonomous driving). 

The fundamental requirements of 5G technology are summarized in Figure 1.1.  

 

Figure 1.1 : Illustration of 5G requirements [9] 

 

 

Power and resource-saving have been captured more attention recently. Hence, 

meeting the high data traffic and solving the power efficiency problems has 

become the critical challenges for the evolution of the 5G cellular wireless 

communication systems. Therefore new advanced technological advancement such 

as Multiple-Input Multiple-Output (MIMO) technology, millimetre wave 

technology, ultra-dense network technology [5], [10], [11] and NOMA schemes are 

required [12]. NOMA has risen as one among the promising multiple access 

scheme that can improve the spectrum efficiency and meet 5G requirements. There 

are two types of NOMA schemes, which are Power Domain NOMA (PD-NOMA) 

and Code Domain NOMA (CD-NOMA) [13], [14]. Figure 1.2 illustrates the 

historical overview of a different mobile cellular generation with the corresponding 

multiple access. 
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Figure 1.2 : Illustration of the evolution of mobile communication systems and 

representative technologies for each generation [7] 

 

 

In recent years, the green communication technology, which focuses on energy 

efficiency, has become an inevitable trend in both academic and industrial worlds 

[15]–[17]. The 5G is expected to reduce energy consumption and achieve green 

communication [18]. Thus, saving energy and meeting green communication 

requirements in 5G systems motivate the study on energy-efficient resource 

optimization in NOMA systems by designing different resource allocation schemes 

that are highly efficient and capable of achieving 5G demands. 

1.2 Problem Statement 

The ultimate growth of mobile internet users and the IoT raises some challenges for 

the 5G wireless communication, such as high data rate, higher energy efficiency 

and spectral efficiency, low latency, low cost, and massive connectivity. It is 

difficult for the OMA scheme currently utilized in 4G networks to overcome these 

challenges, which are limited by simultaneously transmitting users and orthogonal 

resource allocation [12], [19]. NOMA is a promising solution to address these 

challenges by employing multiple users on the same sub-channel, where users are 

distinguished by their power level and achieve user’s fairness. NOMA can use the 

limited available frequency/power/time resources, connect massive devices, and 

provide higher data rate requirements [13]. For the Quality of Service (QoS) 

achievement for each user, optimization and assignment of limited resources 

should be considered under realistic constraints. The sub-optimal or optimal 

resource allocation approaches are mainly used in solving resource allocation 

problems in wireless cellular networks [20], [21]. The sub-optimal resource 

allocation approaches have less complexity algorithm formulation, leading to lower 

computational time. On the other hand, the optimal resource allocation approaches 
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have higher complexity algorithm formulation, leading to higher computational 

time usage. However, the optimal strategy achieves better performance compared 

to sub-optimal ones. Thus, the considerations of cellular system performance and 

complexity are the main aspects that need to be considered in designing the 

resource allocation schemes for practical cellular systems design. 

In summary, the following problems have been identified and will be addressed in 

this thesis: 

i. In real networks, resource allocation can be well managed when the number 

of users is small. Since the NOMA is addressed for massive connectivity by 

allowing multiple users in the same sub-channels, user pairing/clustering 

becomes a challenge in the NOMA systems. Therefore, efficient user 

pairing is required.  

 

ii. After the user assignment process is done, the Base Station (BS)  is required 

to allocate the power for each of the sharing users in the same sub-channel 

and across sub-channels, which is a challenging concern in NOMA 

systems. This allocated power mostly affects the overall system 

performance, such as rate distribution and user admission. Suppose the 

power allocation is not well distributed among the multiplexed users. In that 

case, it may lead to unfair user rate distribution and system outage 

performance due to failure of the Successive Interference Cancellation 

(SIC) process. Therefore, efficient power allocation schemes are needed to 

be developed and utilized in the NOMA systems. 

 

iii. Heterogeneous Networks (HetNets) are another effective solution to 

address the 5G challenges. HetNets can improve network capacity growth, 

spectral efficiency improvement with low energy consumption, and useful 

for resource utilization [22]–[24]. However, maintaining fairness among 

users is the fundamental challenge of HetNets. Hence, to provide better user 

capability and network performance, NOMA’s application in HetNets is 

essential to harness the benefits of both technologies. However, the 

combination of NOMA-HetNets faces challenges on co-tier and cross-tier 

interferences, as well as fair resource allocation [25], [26]. Therefore, it is 

essential to consider fair resource allocation in designing hybrid NOMA-

HetNets.  
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1.3 Aim and Objectives 

The main aim of this research is to investigate the resource allocation problems in 

the downlink NOMA-based single-cell systems and HetNets systems by focusing 

on achieving higher data rates and high energy efficiency performance. Effective 

and efficient resource allocation solutions are designed to achieve the desired 

performance. The following specific objectives are considered to accomplish the 

goal, as mentioned:  

1. To propose a resource allocation mechanism that can improve the overall 

NOMA system performance in terms of sum rate using an efficient user 

pairing approach and a closed-form optimal power allocation solution.  

 

2. To design an efficient and optimal resource allocation scheme that can 

improve the NOMA system in terms of energy efficiency performance.  

 

3. To investigate NOMA’s combination with HetNets technology and 

optimize their performance by using the max-min approach to achieve fair 

and optimal energy efficiency performance.  

 

 

1.4 Research Questions  

The following research questions have been outlined to be answered throughout 

this thesis: 

1. Considering the BS transmitting power and minimum user rate constraints, 

how to design an optimal resource allocation schemes that will improve the 

NOMA system’s sum rate in the downlink NOMA single-cell systems? 

 

2. With the assignment of two users in the sub-channel, how to optimize the 

power at the BS and assign to them to increase their energy efficiency and 

overall NOMA systems performance? 

 

3. With considerations to the co-tier and cross-tier interference, together with 

transmitter and receiver energy power consumption, how to design fair 

energy-efficient resource allocation scheme in the downlink NOMA-

HetNets systems?  
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1.5 Thesis Contributions 

The main contributions of this thesis are summarized as follows: 

i. The sum rate maximization problem for the downlink NOMA single-cell 

system was identified as a joint user pairing and power allocation problem. 

The problems were analyzed separately to reduce complexity. In solving the 

user pairing problem, an optimal user pairing approach based on Hungarian 

(HNG) algorithm that considers the pairing of two users at each sub-

channel is adopted. This algorithm guarantees optimal performance of both 

the sum rate and energy efficiency maximization process in a downlink 

NOMA single-cell system. The sum rate maximization problem is 

formulated by considering SIC for each user in the sub-channel where 

constraints are the minimum acceptable data rate and the maximum 

available transmission power at the BS. A power allocation solution is 

proposed based on Karush-Kuhn-Tucker (KKT) conditions (PKKT) to 

solve this problem and obtain the optimal power for each of the paired users 

in a sub-channel. The closed-form optimal power allocation solution for 

multiplexed users is then obtained. The PKKT solution is applied after 

pairing users based on HNG to obtain the downlink NOMA single-cell 

system’s optimal sum rate. Thus, we refer to this technique as NOMA-

PKKT-HNG. 

 

ii. The energy efficiency maximization problem is formulated with power 

constraint consideration, and SIC is applied to reduce complexity at the 

receiver. The study adopted a power allocation solution using the 

Dinkelbach (DKL) algorithm (PDKL) to solve this problem and obtain the 

multiplexed users’ optimal power. The formulated objective function is in 

fractional form. Hence, the DKL algorithm transformed the objective 

function into linear form (subtractive function) and iteratively solved the 

problem with considerable error tolerance. The PDKL solution is applied 

after pairing users based on HNG to obtain the optimal energy efficiency in 

the downlink NOMA single-cell system. Thus, we refer to this technique as 

NOMA-PDKL- HNG. 

 

iii. The fair energy-efficient resource allocation problem for downlink NOMA-

HetNets is a joint problem of user pairing and power allocation problem. A 

user pairing approach based on Greedy Algorithm (GA) is proposed by 

considering two users pairing at each sub-channel to solve the first sub-

problem. This approach achieves the sub-optimal performance with low 

computational complexity at the downlink NOMA-HetNets. 

 

iv.  A formulation of the fairness-based energy efficiency maximization 

problem for solving the second sub-problem is developed for the downlink 

NOMA-HetNets with the following stated constraints: the user’s 

transmission rate, transmit power budget at the BS, and interference from 

femtocell’s users. An optimal sub-channel power allocation solution based 

on the Sequential Convex Programming (SCP) is adopted to obtain the 

optimal power across sub-channels. The SCP optimization approach’s 
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application updates the optimal energy efficiency parameter iteratively to 

obtain the optimal power allocation solution. A new algorithm termed as 

Fair Energy-Efficient Power Allocation (FEPA) is developed to achieve the 

sub-optimal power between the paired users, which iteratively improves the 

energy efficiency in their assigned sub-channel. The SCP solution is applied 

after pairing users based on GA to obtain the optimal and fair energy-

efficient at the downlink NOMA-HetNets. Thus, referred to the technique 

as NOMA-SCP-GA. 

 

 

1.6 Scope and Limitation of the Study  

This thesis focus on resource allocation for NOMA-based-single-cell and NOMA-

HetNets systems. The femtocells are particularly considered in the NOMA-

HetNets. The study is mainly based on the most popular NOMA type, which is the 

PD-NOMA deployment in the downlink NOMA scenario to achieve high data rate 

and energy efficiency performance. The other different types of NOMA are 

considered out of scope in this study. The investigations are carried out under a 

Single-Input Single-Output (SISO) antenna system with perfect Channel State 

Information (CSI) at the BS. The analysis of power allocation and user pairing 

problems is considered and solved by proposing effective and efficient resource 

allocation solutions through the optimization process. To improve the NOMA 

system performance and investigate the effectiveness of the proposed resource 

allocation solutions, the system sum rate, the system energy efficiency, spectral 

efficiency, complexity of the proposed algorithms, and fairness are considered. 

Figure 1.3 illustrates the flow of the study in which the solid lines show the 

direction followed to achieve the set goal while the dotted lines refer to other 

research areas that are out of the scope of this thesis. 
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Figure 1.3 : Study module 

 

 

1.7 Significance of the Study 

The NOMA scheme’s application is an ultimate way of achieving high capacity for 

5G and future wireless networks. It improves the system sum rate and the cellular 

networks’ energy efficiency performance. The multiple users’ assignment in the 

same sub-channel enhances the users’ data rate performance and spectrum 

efficiency. Also, fairness among users is maintained by allocating different powers 

to strong and weak users. The NOMA scheme’s deployment in the cellular system 

has more flexibility with low-complexity by using effective resource allocation 

design. Moreover, employing NOMA in HetNets harness both technologies’ 

benefits and improves the spectral efficiency, energy efficiency, and coverage area. 
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1.8 Thesis Organisation 

This thesis is formatted with 5 chapters, as shown in Figure 1.4, to ensure that the 

proposed resource allocation solutions’ main findings are highlighted and 

discussed. Chapter 1 entails the introduction and overview of the research study, 

the general background on the history of the wireless communication systems, 

defining the problem statement of the research study, stated the research objectives 

and research questions, the scope of the study, and the main contributions and the 

significance of the study. The rest of the thesis is organized as follows:  

Chapter 2 presents a brief overview of the proposed NOMA system alongside with 

conventional OMA system. Then, enumerate recent related works in the reviewed 

literature about the resource allocation techniques in downlink NOMA in single-

cell and HetNets systems. Several resource allocation techniques proposed in the 

earlier studies to improve NOMA system performance, and the research gaps 

discovered as the novelty for further improvement of the NOMA system.  

Chapter 3 presents the research design, the description of NOMA’s system models 

in single-cell and HetNets deployment scenarios, and the provided mathematical 

problem formulations. Moreover, the proposed resource allocation techniques’ 

detailed procedures that address the problems are presented. Finally, the chapter is 

summarized. 

Chapter 4 provides the simulation settings, simulation results and the complexity of 

the proposed resource allocation techniques in both downlink NOMA single-cell 

systems and HetNets systems. Furthermore, the proposed resource allocation 

schemes’ performance evaluations indicate that the proposed solutions offer great 

improvement compared to the benchmarked methods. In the end, the summary of 

this chapter is provided. 

Finally, Chapter 5 presents the thesis’s conclusion by highlighting the research 

study’s novelty and considering the implication of the achieved results on the 

proposed objectives and recommends some potential future research direction on 

the NOMA system. 
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Figure 1.4 : Thesis organization 
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