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The engine intake charge air (EICA) system enhancement technology plays an essential 
part in vehicle engine performance developments and pollution reduction.  

The increase in ambient temperature due to global warming and climate change 
introduced a significant influence on vehicle performance. Same while, EICA 
temperature increasing affects the engine complete combustion due to the oxygen 
density per volume reduction in air. Thus, EICA cooling technology becomes one of the 
best solutions for temperature reduction through intercooler units. This research 
introduces the influence of direct combustion volumetric effect using a new designed 
evaporative intercooler heat exchanger (EIHE), direct intercooler device used for engine 
intake charge air cooling (EICAC) in non-turbocharged vehicles spark-Ignition 
engines (SI-engines), contributing a new technique method in heat-exchanger 
designing.  

Most of the previous studies of conventional intercoolers heat-exchangers (IHE) 
devices demonstrated a significant influence of EICAC on engine performance. 
However, it presented low efficient or non-operational in vehicle slow driving speed 
or stand-still operation. Furthermore, the designs showed non-flexibility in size 
and low cooling capacity. Therefore, there is a need for a better IHE design with 
flexibility in size designing suitable for most vehicles, able to function in all 
environments and weather conditions, with the ability of vehicle performance 
enhanced. The new design should be functional in both vehicle low-speed driving or 
stand-still parking operation.  

Refrigerant medium system technology becomes significant in heat transfer 
property which helps to design subcooling heat-exchanger. The new EIHE device 
utilizing the refrigerant medium which presented a better performance than the 
water cooled IHE reaching lower cooling range temperature and functional in all 
vehicle condition. 
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The Computational Fluid Dynamics (CFD) simulation was used using ANSYS FLUENT 
to simulate various EIHE models performance with different air flow rate and 
temperatures. The EIHE geometry shell-and-tube was designed from steel metal, based 
on criteria of space available inside the vehicle engine bay. The simulation results 
presented a significant improvement in cooling performance with temperature reduction 
lower than the inlet temperatures, offering a very low-pressure drop coefficient. The 
EIHE design was experimentally validated. For the experimental part, the EIHE device 
was tested both in the laboratory and real-world. The EIHE operation and performance 
evaluation investigated in real-world tests. The tests result generally presented a 
significant cooling performance capability by the developed EIHE almost efficient of 
49% - 50% reduction in temperature. The applied vehicle test results presented a 
significant enhanced improvement in the max power wheel and max torque 
increasement, and test results of real-world test utilizing the EIHE presented a significant 
emission reduction of 12.86% of CO, 29.32% CO2, and 29.41% HC.  In conclusion, the 
new designed EIHE successfully meet the required objectives.  
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Teknologi peningkatan sistem udara caj ambilan  enjin (EICA) memainkan peranan yang 
penting dalam perkembangan prestasi enjin kenderaan dan pengurangan pencemaran. 
Peningkatan dalam suhu ambien disebabkan pemanasan global dan perubahan iklim 
menghasilkan pengaruh yang signifikan  ke atas prestasi kenderaan. Di samping itu, 
peningkatan suhu menjejaskan enjin pembakaran yang sempurna akibat pengurangan 
ketumpatan oksigen per isi padu dalam udara. Oleh itu, teknologi penyejukan EICAC 
merupakan salah satu penyelesaian terbaik untuk pengurangan suhu melalui unit 
pendingin antara. Penyelidikan ini mengutarakan pengaruh kesan volumetrik 
pembakaran langsung , menggunakan  penukar pendingin antara evaporatif (EIHE) reka 
bentuk baharu, peranti pendingin antara langsung yang digunakan untuk penyejukan 
udara caj saluran ambilan enjin ( EICAC) dalam enjin cucuhan bunga api kenderaan 
(enjin SI) bukan pengecas turbo, menyumbang suatu kaedah teknik baharu dalam reka 
bentuk penukar haba. Kebanyakan kajian terdahulu mengenai peranti penukar haba 
pendingin antara yang konvensional (IHE) memperlihatkan pengaruh EICAC yang 
signifikan ke atas prestasi enjin. Walau bagaimanapun, ia mengutarakan keefisienan 
yang rendah atau tak operasional dalam kenderaan kelajuan pemanduan perlahan atau 
operasi tak bergerak. Di samping itu, reka bentuk tersebut menunjukkan  tidak fleksibiliti 
dari segi saiz dan kapasiti penyejukan rendah. Oleh sebab itu,  terdapat keperluan untuk 
reka bentuk IHE yang lebih baik dengan fleksibiliti dari segi mereka bentuk saiz yang 
sesuai bagi kebanyakan kenderaan, dapat berfungsi dalam semua  persekitaran dan 
keadaan iklim, dengan keupayaan prestasi kenderaan dipertingkat. Reka bentuk baharu 
tersebut harus berfungsi dalam kedua-dua kenderaan pemanduan kelajuan rendah atau 
ketika operasi parkir tanpa bergerak. Teknologi sistem medium refrigeran menjadi 
signifikan dari segi sifat penukar haba yang membantu bagi mereka bentuk penukar haba 
subpenyejuk. Peranti EIHE yang baharu menggunakan medium refrigeran yang 
memperlihatkan prestasi yang lebih baik daripada IHE penyejuk air mencapai suhu julat 
penyejukan yang lebih rendah dan berfungsi dalam semua keadaan kenderaan.  © C
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Simulasi Dinamik Bendalir Komputational (CFD) telah dilaksanakan menggunakan 
ANSYS FLUENT bagi mensimulasi pelbagai prestasi model EIHE dengan kadar aliran 
udara dan suhu yang berbeza. Kelompang dan tuib geometri EIHE telah direka bentuk 
daripada logam keluli, berdasarkan kriteria ruang yang terdapat dalan ruang enjin 
kenderaan. Dapatan simulasi memperlihatkan penambahbaikan yang signifikan dari segi 
prestasi penyejukan dengan pengurangan suhu yang lebih rendah daripada suhu 
masukan, mengemukakan suatu koefisien kejatuhan tekanan yang sangat rendah. Reka 
bentuk EIHE telah disahkan secara eksperimental. Bagi bahagian eksperimental, peranti 
EIHE telah diuji di kedua-dua makmal dan dunia sebenar. Operasi EIHE dan penilaian 
prestasi telah diselidiki dalam ujian dunia sebenar. Dapatan ujian umumnya 
memperlihatkan kapabiliti prestasi penyejukan yang signifikan oleh EIHE yang 
dibangunkan, hampir efisien, iaitu 49% - 50% pengurangan dalam suhu. Dapatan Ujian 
kenderaan yang diaplikasikan memperlihatkan pembaikan dipertingkat yang signifikan 
dalam roda kuasa maksimum dan kenaikan kilas maksimum, dan dapatan ujian bagi 
ujian dunia sebenar yang menggunakan EIHE memperlihatkan pengurangan buangan 
yang signifikan, iaitu 12.86%  CO, 29.32% CO 2 , dan 29.41% HC. Kesimpulannya, 
reka bentuk EIHE yang baharu berjaya memenuhi objektif yang diperlukan. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

Environment and greenhouse effects presented a global issue of pollution, as gases are 
released into the atmosphere, leading to global climate change and global warming (N. 
Sharma et al. 2018). The increase of ambient temperature and engine emissions 
recognized as a potential problem globally, which needs serious attention (Sutherland et 
al., 2019). Global warming and greenhouse with climate change and desertification all 
lead to environmental pollutions and increasing the atmospheric temperature, unstable 
weather, and an increase in ocean levels (Xiang et al., 2019). Most countries suffering 
from weather temperature increasing are Middle East countries, where a high ambient 
temperature recorded in summertime (Salimi and Al-Ghamdi, 2020). 

 

Figure 1.1 : Surface air temperature anomaly for December 2019 relative to the 
December average for the period 1981-2010 (Copernicus and ECMWF, 2019) 
 
 
The European Centre for Medium-Range Weather Forecasts (ECMWF), Simulated of 
the earth's surface global warming status of air temperature increasing shown in Figure 
1.1 Furthermore, NOAA's National Centers for Environmental Information (NCEI) 
provides public access to global climate observation and historical weather data and 
information reported in 2019 (Allegra et al. 2019). Data illustrated in Figure 1.2 shows 
ambient temperature in most of the countries increased above the average temperature 
between 5°C to 6°C. © C
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Figure 1.2 : Global climate report -June 2020 blended land and sea surface 
temperature percentiles (Climate, 2020) 
 
 
The Engine intake charge air (EICA) systems significantly introduced an enhancement 
of engine pollution reduction. However, this technique was successfully adopted but still 
there is need for better heat exchanger designs with flexibility is size and shapes with 
better cooling performance with reasonable cost manufacturing. Most of conventional 
IHE in the market couldn’t reach the required design performance for optimum engine 
pollution reduction and economically are very expensive to purchased.  

1.2 Problem Statement 

Few studies in EICA thermal management technology were conducted to enhance the 
air property of engine combustion by improving its temperature significantly for a better 
air density (Di Battista et al. 2018; Krishnamoorthi et al. 2019; Farzam et al. 2020). The 
most practical method of the EICA cooling technique without engine modification is by 
external parameter enhancement and add-on installation components (Zhuang, W et al. 
2020). However, there is a need to evaluate and investigate the EICA lower temperature 
variation effect on the engine performance in the absence of the compression system 
supercharger and turbocharger. Furthermore, the new Evaporative intercooler heat 
exchanger (EIHE) classified as a new technology method for hyper cooling EICAC were 
founded from previous studies it was conducted on diesel engine power and emission 
enhancement by (Grönman et al. 2016) using compressed air turbine expansion 
technique design, which faces the issue of large size and low cooling capacity compared 
to its scale. And some of the studies mainly completed in design stages only, or with the 
simulation, used to protect the idea.  © C
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Available IHE in the market technically face the issue of large size, non-flexible of use 
with other engines, and showed low performance at low engine speed, maintenance and 
utility problems, and there is a need to contribute new design technique of IHE. 
Furthermore, there were incomplete or failed attempts to integrate the IHE directly with 
the vehicle air-conditioning system. But due to unavailable suitable facility and 
technology at that time, it was abended or failed, and most of the designers investigated 
the EICA cooling influence in laboratories with an external refrigerant system source 
(Cipollone et al. 2017). Commercially, the conventional IHE’s available in the market 
have disadvantages in operation, low thermal capacity, size challenge, high cost, and 
leaking. A new higher performance IHE will help to improve the vehicle performance 
and reduce the emissions, especially present century recorded a significant increase in 
vehicles produced in the world to fulfill the market demand. The amount of vehicles 
globally shows a massive number of personal ownership of vehicles on the road (N. 
Menon et al. 2019). The increase of ambient temperature variation affects the SI-engine 
performance (Gong et al., 2019), cause the engines to consume extra fuel due to 
incomplete combustion (Pugh et al., 2019), and this leads to a higher exhaust emission 
(Nanthagopal et al. 2019). 

Figure 1.3 : Parameters influence the atmosphere air temperature increasing 
 
 
Figure 1.3 demonstrated that most characterized parameters influence the atmospheric 
temperature increase. The engine intake charge air EICA cooling technology using the 
IHE used to improve the engines for better performance and emissions levels. 
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1.3 Objective  

The main objective of this study is to design a developed EIHE that can be utilized by 
vehicles with SI engines in order to improve their performance. The specific objectives 
are: 

1. To design an improved EIHE utilizing new coolant type as a vehicle EICAC 
device. 

2. To analyze the performance of a newly designed EIHE device by using 
computational fluid dynamics (CFD) and experimentally.  

3. To validate the new EIHE and evaluate the cooled air influence on the engine 
performance based on laboratory test and real-world tests based on a chassis 
dynamometer and vehicle static stand-still tests. 

 
 

1.4 Scope of the Study 

1. The constructed EIHE designed to be operational in all vehicle status 
operations, a challenge of cooling performance while the vehicle is in a static 
standstill operation. 

2. The constructed EIHE design was designed to utilized in vehicles with SI-
engines. The IHE intended for the vehicle sample of the Proton Wira 1.5L 
four-cylinder SI-engine 2004 model. The device integrated into the manifold 
inlet charge air of the engine.   

3. The selected sample vehicle is non-turbo or supercharger. The study focuses 
on temperature parameter influence on vehicle performance in the absence of 
the pressurized system.  

4. The constructed EIHE developed to be used as an EICAC device to study the 
influence of lower intake charge air temperature within 50% on vehicle 
engine performance.   

5. The constructed EIHE Scale is dependent on minimum charge air pressure 
drop of 5%.  

6. Shared the refrigerant coolant with the vehicle air-conditioning system 
utilizing the same system component, operate as the second evaporator.  

7. The EIHE designed to be operational in various vehicle engine speed of 0 to 
100 km/h, and functional at different environmental temperature status. 

8. Evaluate the vehicle EICAC performance by conducting the real-world 
driving test 
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1.5 Thesis Layout 

This thesis consists of five chapters. The thesis first chapter starts with the introduction, 
including the problem statement, objectives, and scope of this work, the significance of 
the research, and thesis layout.  

The second chapter includes the literature review search of subjects pertinent to the work. 
An overview of vehicle combustion performance in sparked ignition engines, 
introducing the influence of ambient air temperature property on engine combustion 
performance, utilizing intercooler heat exchanger and introduction to its types, 
introduction to vehicle air-conditioning system, the process of EIHE developing and 
selection. In this chapter, Computational Fluid Dynamic (CFD) presented with EIHE 
optimization. Laboratory and real-world test investigation introduced for design 
validating and performance evaluation. 

The third chapter describes the methodology outline of this research. Firstly, a 
comparison analysis for existing IHE. Secondly, theoretical analysis and designing of 
the selected EIHE. Thirdly, the CFD numerical analysis elaborating for the modeling 
process of the current and new design IHE models using the ANSYS Platform. Fourthly, 
experimental laboratory validation of the newly designed EIHE and engine charge air 
measuring flowrate experimentally. The fifth, experimental tests of EIHE evaluation and 
cooling performance analysis. The experiments conducted with the continuation of the 
process to evaluate the EICAC influence engine performance in the laboratory and 
applied real-world tests conducted using a chassis dynamometer for the investigation. 
Real-world on-road drive test conducted to make sure and present actual realistic data of 
EICAC technology on the vehicle during the performance investigation. The eyewitness 
of driving observation by the author evaluating through observation of the vehicle while 
conducting the tests.   

Chapter four presents the results achieved from numerical and CFD simulation, 
comparison analysis of designs, evaluation results of EIHE experimental tests. The 
investigation results of the engine performance influenced by the EICAC temperature 
variation and driving method. The results presented in visual graphical forms, tables, and 
statistical analyses. 

Chapter five presents the conclusions derived results from this research, future 
recommendations of the research presented.
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