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Voltage reference circuit produces reference voltage that is independent of fabrication 
process, temperature and supply voltage (PVT) variation. Differential successive 
approximation register (SAR) analog to digital converter (ADC) that converts an 
analog signal to digital signal is very much dependent on accurate reference voltage 
which defines the resolution of the converter. It requires two reference voltages 
namely VREF and VCM. VREF is used to set the full-scale voltage range while the 
common-mode voltage, VCM defines an initial value of most significant bit (MSB) 
digital output. VCM is designed as such that it is half of VREF and independent of 
process, voltage and temperature (PVT) variations. The deviation of the VCM develops 
an offset that shifts the transfer function of the ADC. Consequently, it reduces the 
dynamic range of the analog input to be digitised. The evolution of technology has 
favoured in a system on chip integration of the voltage reference and SAR ADC 
because it reduces design circuit area and consumes less power. However, based on 
the previous literatures, the impact of voltage reference circuits integrated with SAR 
ADC on a single die has not been discussed in depth. Hence, this thesis features the 
design and implementation of a high accuracy dynamic dual output voltage reference 
circuit for a 200kS/s differential 10-bit SAR ADC using a Silterra 0.18µm process 
with a supply voltage of 1.8V on a common die. The measurement of the fabricated 
chips is able to generate constant reference voltages for the VREF is that 1.2V±0.03V. 
Meanwhile, the VCM deviates as much as ±4mV between temperatures ranging from 
0 C and 80 C across ±10% voltage supply variation. The measurement result shows 
that the circuit have sufficient drive capability to provide dual reference voltages to 
the SAR ADC. The voltage reference circuit achieves a good performance on the SAR 
ADC with 0.4LSB differential nonlinearity (DNL), 57.39dB Signal-to-noise and 
distortion ratio (SINAD) and an effective number of bits (ENOB) of 9.5 bits. The 
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voltage reference circuit functions accurately in temperature sensor application 
between 0 C and 80 C temperature input range.  
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LITAR RUJUKAN VOLTAN DUA KELUARAN BERKEJITUAN TINGGI 
UNTUK PEMBEZAAN 10-BIT PENGUBAH ANALOG KEPADA DIGITAL 

JENIS SAR MENGGUNAKAN TEKNOLOGI 180nm 

Oleh 

SITI IDZURA BINTI YUSUF 

Mei 2020 

Pengerusi :   Profesor Madya Suhaidi Shafie, PhD 
Fakulti :   Kejuruteraan 

Litar rujukan voltan menghasilkan voltan rujukan yang bebas daripada perubahan 
proses fabrikasi, suhu dan voltan. Penukar isyarat analog kepada digital jenis SAR 
sangat bergantung kepada voltan rujukan untuk menentukan resolusi penukar. 
Penukar SAR memerlukan dua voltan rujukan iaitu VREF dan VCM. VREF digunakan 
untuk menetapkan julat voltan berskala penuh manakala VCM menetapkan nilai 
permulaan bit. Nilai VCM direka untuk menjadi separuh daripada VREF dan bebas 
daripada perubahan proses, voltan dan suhu. Penyimpangan VCM akan mengakibatkan 
satu offset yang menyebabkan pemindahan fungsi ADC teranjak. Oleh sebab itu, ia 
mengurangkan isyarat analog untuk didigitalkan. Evolusi teknologi litar rujukan 
voltan dan penukar analog kepada digital menjurus kepada pembangunan sistem pada 
satu cip kerana ianya dapat mengurangkan keluasan pembangunan litar dan 
menjimatkan tenaga. Walau bagaimanapun, berdasarkan kepada karya terdahulu, 
kesan rujukan voltan yang disepadukan dengan Penukar SAR pada satu cip tidak 
dibincangkan secara mendalam. Oleh itu, tujuan tesis ini adalah untuk mereka bentuk 
litar rujukan voltan yang menghasilkan dua output berketepatan tinggi yang akan 
digabungkan dengan Penukar 10-bit perbezaan SAR berkelajuan 200kS/s 

Pengukuran terhadap cip yang difabrikasi mampu menghasilkan voltan rujukan tetap 
untuk VREF ialah 1.2V±0.03V. Manakala VCM menyimpang sebanyak VREF/2 ±4mV 
pada julat suhu antara 0 C dan 80 C dan ±10% perubahan voltan bekalan . Litar ini 
mempunyai keupayaan memandu yang mencukupi untuk menyediakan voltan rujukan 
kepada Penukar SAR. Hasil pengukuran mencapai prestasi yang baik terhadap 
Penukar SAR dengan 0.4LSB perbezaan linear, kadar terhadap hingar dan gangguan 
telah berlaku sebanyak 57.39dB dan bilangan bit yang berkesan adalah sebanyak 9.5 
bit. Litar rujukan voltan ini juga berfungsi dengan baik dalam aplikasi pengesan suhu 
antara julat suhu 0 C hingga 80 C.
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CHAPTER 1 

1 INTRODUCTION 

This chapter introduces to the readers to the framework of this research. An operation 
of voltage reference for differential Successive Approximation Register Analog 
Digital Converter (SAR ADC) architecture is presented. The literature of existing 
design of voltage reference is also reviewed, which explains the research motivation 
from which the drawback was identified. Subsequently, the objectives are defined as 
a guide to achieve the research goal within the scope of the study, and the chapter 

 

1.1 Research Background 

The latest technology advancement has provided an opportunity for people to use the 
Internet of Thing (IoT). This new IoT invention is mostly implemented in a single 
system-on-chip (SoC) to provide the highest level of integration and conservation of 
the design area. The voltage reference is a necessary part of the power management 
system to provide a constant voltage that is insensitive to the fabrication process, 
supply voltage and temperature (PVT). It is commonly used as a reference for various 
amplifiers, comparators, data converters and many other analogs and mixed-signal 
functions.  

The reference voltage sets the limit of the ADC input range. It is basically the 
benchmark against which every proportion of analog input correspondes to the digital 
code. Also, the reference voltage defines the resolution of the ADC by dividing the 
reference voltage value by the total of conversion code. In establishing the requirement 
of ADC system performance, each component in the system probably will have an 
associated error. One of the main potential sources of errors in an ADC is the reference 
voltage (Siva & Chakravarty, 2015). Thus, the goal of voltage reference circuit is 
designed to keep the error under an acceptable limit. Any disturbance at the reference 
voltage contributes to the output code that causes the limitation of the ADC 
performance (Walsh, 2013).  

Analog-to-Digital Converter (ADC) is a device to represent the quantity of analog 
signals being measured and subsequently translates it into digital form. Currently, 
ADC offers high-performance signal conversion for a wide range of application 
requirements. Four main types of ADCs are usually used which are subjected to their 
desired applications, namely flash, pipelined, delta-
approximation register (SAR).  

Flash converter offers the fastest rate of conversion that could reach a maximum speed 
of 5 GS/s but has low resolution which is lesser than 8-bit among others (Inamdar, 
Sahu, Ren, & Setoodeh, 2015)(Jeon, Yoo, Kim, & Yoo, 2017). It is designed for a 
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wide bandwidth of applications such as satellite communication. The pipelined 
converter is designed for high resolution up to 16-bit and retains the sampling rate 
greater than 50 MSPS (C. Wu & Yuan, 2019)(Moon, Jo, Kim, Choi, & Ko, 2019), and 

a very high resolution of 12-24 bits but with lower sampling speed of 15 KS/s 
(Mehrjoo, Taherzadeh-sani, & Nabki, 2016)(Pini, 2018). It is mostly used in high 
precision converter applications such as automation test equipment.  

Challenges still persist for designers to balance the requirements for performance, 
device complexity and size. SAR ADC architecture is extensively used in low power 
and medium speed from 10KS/S to 10MS/s. It provides an excellent combination 
between resolution to 18 bits, die area, and circuit complexity compared to other ADC 
(Zahrai & Onabajo, 2018)(H. Wei et al., 2012)(Ku, Xu, Kuan, Wang, & Frank, 2012). 
The SAR ADC uses a binary search algorithm to convert an analog signal to a digital 
form. The fundamental architecture of SAR ADC is shown in Figure 1.1. 

 
Figure 1.1 : Basic architecture of SAR ADC 

(Xingyuan, Jianming, Zhangming, & Yintang, 2010) 
 
 
A full-scale range voltage (VREF) of the analog input signal is determined by the 
reference voltage of the ADC. The binary search algorithm is implemented by setting 
the midscale value of the most significant bit (MSB) that is equal to one. It needs to 
be set to the digital-to-analog converter (DAC) capacitance switch at VREF/2. The 
output of the ADC is determined by the approximate value that is performed by the 
comparator.  

The counting sequence of the binary search algorithm for 3-bit conversion is expressed  
in Figure 1.2. Initially, the midscale value sets a high MSB value (100). This digital 
output is converted to an analog value by DAC that produces VDAC. The next bit is 
determined by a VDAC of either ¾ VREF or ¼ VREF. Then, the VDAC is compared with 
the voltage sample input VIN. If the VIN is greater than VDAC, it gives a positive 
difference of comparator output; the next bit of MSB value becomes high (110). 
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Conversely, if VIN is less than VDAC, the comparator output delivers a logic low value. 
This condition resets the MSB value to logic 0 (000). The SAR control logic then sets 
the next bit to be high (110) and second comparison is made.  Since VIN is less than 
VDAC, bit 1 is set to 0. The DAC is then set to 101, and the final comparison is 
performed. Subsequently, VIN greater than VDAC bit 0 remains at 1. 

.  
Figure 1.2 : Binary search algorithm of a 3-bit SAR ADC 

 
 
Since the SAR ADC is highly dependent to the reference voltage, a voltage reference 
circuit must designed to generate highly accurate reference voltage that is able to fulfill 
the SAR ADC requirement.   

1.2 Research Problem 

Accurate conversion of SAR ADC relies on the accuracy of the voltage references 
because the comparison between an analog input voltage and a reference voltage 
creates the conversion code values (Siva & Chakravarty, 2015). Differential SAR 
ADC architecture requires dual reference voltages to digitise the analog input voltage. 
The VREF sets the full-scale range analog input while the VCM sets the initial MSB 
value of the conversion. Since the VCM sets the initial MSB value of digital output, it 
must be continuously designed to remain at half of VREF over the fabrication process 
and every change of temperature and supply voltage during the circuit operation. 
Otherwise, it develops an ADC offset and reduces the dynamic range of the analog 
input voltage of the converter as shown in Figure 1.3. Consequently, it causes the 
digital output value to saturate before the analog input voltage reaches maximum 
value.  © C
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Figure 1.3 : Fully differential 10-bit SAR ADC system architecture 

 
 
Since the voltage reference accuracy influences the SAR ADC performance, the SAR 
ADC integrates with an external monolithic voltage reference device due to the output 
that can be adjusted to the desired voltage (C. C. Liu, Chang, Huang, & Lin, 
2010)(Song, Xue, Xie, Fan, & Geng, 2016)(Song, Y., Xue, Z., Xie, Y., Fan, S. and 
Geng, 2016)(Shim et al., 2017). However, the technology has evolved towards the 
integration of system on chip (SoC) because it consumes less power and reduces 
circuit area than multi-chip circuit with similar functionality. Thus, the integrated chip 
is on high demand for currently available applications.  

Drive capability is another concern in integrating a voltage reference with SAR ADC. 
The primary source of error that degrades the performance of SAR ADC comes from 
the unstable reference voltage. The undershooting and overshooting of reference 
voltages that deviate more than 1LSB produce an error of digital outputs. The 
inadequate drive strength of current voltage reference circuit causes switching 

errors in conversion .The measurement results in (Huang, Ting, & Chang, 2016) 
explain the effect of the undershoot voltage reference th

sufficient current to maintain the reference voltage from drooping significantly 
throughout the conversion (Walsh, 2013). 

Based on previous literature, most of the designers optimise the performance of 
voltage reference and differential SAR ADC independently (Dancy, Amirtharajah, & 
Chandrakasan, 2000)(Shrivastava, Craig, Roberts, Wentzloff, & Calhoun, 2015)(Song 
et al., 2016)(I. Lee, Sylvester, & Blaauw, 2017)(Berens, Mai, Feddeler, & Pietri, 
2019). It is observed that the impact of the voltage reference accuracy to ADC 
performance is not investigated in depth. Although there are on-chips that are designed 
with the voltage reference integrated into the SAR ADC, these designs require high 
supply voltage to activate the chip (Instruments, 2017)(Maxim, 2018).  

The ADC requires high accuracy reference to digitise temperature input in temperature 
sensor application. The sensing element produces an analog voltage with every 
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temperature change and this voltage takes a ratio of reference voltage before 
converting into digital output. Consequently, unstable reference circuit causes an error 
code of digital output. Thus, the performance of voltage reference is investigated in 
depth in temperature sensor application. 

In order to produce a robust voltage reference design, it has to pass through 45 corners 
simulation process, voltage and temperature (PVT) variation and Monte Carlo 
analysis. It aims to hinge on a high yield production by taking into consideration the 
corners that are appropriate and the ones that are not.   

Therefore, with all above mentioned issues, an integration of the voltage reference 
circuit with SAR ADC on a single chip is proposed to provide advantages of increasing 
the accuracy and drive capability reference voltage for the differential SAR ADC.  

1.3 Research Objectives 

This research aims to achieve a high accuracy dual output voltage reference of VREF 
is 1.2V±0.03V and VCM is VREF/2 ±15mV across PVT variation. In order to achieve 
the aim of the research, three research objectives have been set as follows: 

1. To design and characterise a new voltage reference circuit that produces an 
accurate dual reference voltage for differential SAR ADC. 

2. To evaluate voltage reference functionality and drive capability by 
integrating it with differential SAR ADC. 

3. To validate the performance of voltage reference in the real utilisation of 
temperature sensor application.  

 
 
1.4 Research Scope and Limitation 

This research focuses on the design of a voltage reference circuit and test the fabricated 
chips to obtain high accuracy of circuit performance. The circuit is to be designed 
using the BSIM model transistor 0.18µm CMOS technology provided by Silterra 
technology. The schematic is designed, and the parameters is simulated using Cadence 
tools software. The parameters consist of initial error, line regulation temperature drift, 
stability and drive capability. The post layout is simulated across 45 corners PVT 
variation between temperature range -40 C and 125 C. However, the temperature test 
is measured ranging from 0 C to 80 C only. The test cannot be conducted at the 
highest temperature up to 125 C because some of the devices on the test board are 
working at a maximum temperature of ±90 C. In addition, for low-temperature tests 
down to -40 C, the limitation of liquid nitrogen supply is a caused factor. 

Moreover, the PSRR performance is tested on post layout simulation only because the 
measurement equipment with a careful setup should be prepared to obtain a significant 
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and accurate PSRR result (Rice & Sandler, 2013). The equipment is the tool that is 
able to correctly mix DC and AC input signals to avoid the output signal from being 
attenuated. Picotest J2120A Line Injector is a recommended tool for signal mixing to 
produce an accurate PSRR measurement. 

The circuit generated dual reference voltage outputs, VREF is 1.2V ±0.03V and VCM is 
VREF/2±15mV, to fulfil the requirement of the 10-
reference voltage that was designed by the IC design department team, MIMOS 
Berhad. The functionality and drive capability of the voltage reference circuit is 
measured by integrating it with SAR ADC. The circuit is also tested in a temperature 
sensor application to verify the functionality. The parameters of the fabricated chips 
are tested using the custom test board and other test bench equipment provided by 
MIMOS Berhad. 

This work is part of a collaboration between Universiti Putra Malaysia and IC design 
department team, MIMOS Berhad. The SAR ADC circuit design and the source code 
for testing the ADC performance remain confidential.    

1.5 Organization of the Thesis  

This thesis is arranged into seven chapters. Following this introductory chapter is 
Chapter 2, which defines crucial parameters that should be taken into consideration 
when designing a voltage reference in a fully differential SAR ADC application. A 
topology of voltage reference circuit is reviewed. The chapter ends with highlighting 
the significance of the research work in relation to the findings of  previous research. 

Chapter 3 explains the full description of the voltage reference circuit design. The 
schematic, simulated parameter and layout formation of the proposed circuit is 
presented. The measurement setup for the fabricated chip is also presented. 

Chapter 4 presents a comparison of the post-layout simulation and measurement 
results. The results analyses the voltage reference accuracy including the parameters 
of the initial error, line regulation, temperature drift, stability, and power consumption.  

Chapter 5 evaluates the functionality and drive capability of the voltage reference 
circuit by integrating with the SAR ADC. The SAR ADC performance of the static 
and dynamic parameters is analysed. The result is then compared with monolithic 
voltage reference chip. 

Chapter 6 describes the performance of the voltage reference circuit in a temperature 
sensor application. The measurement result of temperature to digital value is obtained.  
The thesis is concluded in Chapter 7. It summarises and concludes the research work. 
Several suggestions related to future works are also proposed.  
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