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Chairman :   Professor Ishak Aris, PhD 
Faculty :   Engineering 
 
 
Electric vehicles (EVs) have been recognized as a crucial pillar of a solution to 
significantly mitigate the detrimental impacts of transportation while improving 
energy consumption efficiency. Electric machines are classified into two types: 
rotational machines and linear machines. These EVs utilize rotating electric machines 
to transmit power from the motor shaft to the transmission and, subsequently, to the 
wheels through differential gears.  
 
 
However, the electric rotating machines of EV are expensive, have a complicated 
control system, heavy weight and must be larger in size to run the vehicle. 
Furthermore, the rotating electric motor of EVs suffers from excessive exposure 
temperature due to lengthy operation, which may cause the motor to fail, while the 
magnet is expensive. They also necessitate a specialised power transmission system 
in order to run the vehicle. This will increase the cost of the cars. On the other hand, 
the disadvantage of an internal combustion engine (ICE) is the friction between the 
piston rings, piston skirt, and cylinder linear that needs much effort to overcome 
friction, to outperform fuel efficiency. 
 
 
Therefore, a new proposed linear machine, known as the multi-cylinder linear motor 
powertrain system (McLMPS), has been conceived and developed to minimize the 
weight, size, and fuel consumption of the ICE. The McLMPS does not require the use 
of a specific power transmission system to verify its performance in the EV. The 
McLMPS prototype comprises various parts, namely a multi-cylinder linear machine 
(McLM), a multi-plate crankshaft position sensor (MpCPS) system, other mechanical 
components, and the drive system, which includes a control unit and a machine 
operating algorithm. The proposed McLM structure was selected due to its simple 
structure, high thrust, lack of a magnet, and minimal cogging force issue. 
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The proposed McLMPS was simulated using MATLAB/Simulink. The high level 
class was simulated used current about 250A at 300V battery supply, the plunger 
output force was 55.1kN with a torque of about 97.5Nm and motor power was about 
67.5kW. From the simulation results, the efficiency of the proposed McLMPS was 
about 90%, whereas the experimental results has an efficiency of around 75%. The 
experimental results show lower efficiency compared to simulation results because the 
first prototype of McLMPS was built based on quarter scale. On the other hand, the 
experimental results of the McLMPS is more efficient than the Perodua Kancil ICE, 
but less efficient than the Renault Zoe EV.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah

PEMBANGUNAN SISTEM POWERTRAIN PELBAGAI SILINDER MESIN 
LELURUS UNTUK KENDERAAN ELEKTRIK

Oleh

NORRAMLEE BIN MOHAMED NOOR

Ma 2021

Pengerusi : Profesor Ishak Aris, PhD
Fakulti : Kejuruteraan

Kenderaan elektrik (EV) telah diakui sebagai pilar penting dari penyelesaian secara 
signifikan untuk mengurangkan kesan buruk terhadap pengangkutan sambil 
meningkatkan kecekapan penggunaan tenaga. Mesin elektrik diklasifikasikan kepada 
dua jenis: mesin putaran dan mesin lelurus. EV ini menggunakan mesin elektrik yang 
berputar untuk menghantar kuasa dari motor aci ke transmisi dan, selanjuttya, ke roda 
melalui gear yang berbeza.

Walau bagaimanapun, mesin kenderaan electric (EV) yang berputar adalah mahal, 
mempunyai sistem kawalan yang rumit, berat dan saiznya lebih besar untuk 
menjalankan kenderaan. Selanjutnya, motor kenderaan elektrik yang berputar 
mengalami suhu pendedahan yang berlebihan kerana beroperasi agak lama 
menyebabkan motor tersebut gagal berfungsi, manakala magnetnya adalah mahal. Ia 
juga memerlukan sistem penghantaran kuasa khusus untuk menjalankan kenderaan. 
Ini menyebabkan kos kereta meningkatkan. Sebaliknya, mesin pembakaran dalaman 
(ICE) mempunyai kelemahan iaitu geseran antara cincin omboh, skirt omboh, dan 
lelurus silinder dimana ia memerlukan banyak usaha untuk mengatasi geseran pada 
kecekapan bahan api. 

Oleh itu, mesin linier yang baru dicadangkan, dikenali sebagai sistem powertrain 
pelbagai-silinder mesin lelurus (McLMPS), telah dirancang dan dikembangkan untuk 
meminimumkan berat, ukuran, dan penggunaan bahan api pada ICE. McLMPS ini 
tidak memerlukan penggunaan sistem penghantaran kuasa khusus untuk mengesahkan 
pretasinya dalam situasi di EV. Prototaip McLMPS merangkumi pelbagai bahagian 
iaitu pelbagai silinder mesin lelurus (McLM), system sensor pelbagai plat kedudukan 
crankshaft (MpCPS), komponen mekanikal, dan sistem pemacu, yang merangkumi 
unit kawalan dan algoritma operasi mesin. Struktur reka bentuk yang dicadangkan 
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oleh model McLM dipilih kerana strukturnya yang ringkas, tujahan tinggi, kekurangan 
magnet, dan isu kekuatan cogging yang minimum.

McLMPS yang dicadangkan itu disimulasikan dengan menggunakan perisian 
MATLAB /Simulink. Kelas tahap tinggi disimulasikan dengan menggunakan arus 
sebanyak 250A dan bekalan bateri adalah 300V, keluaran pelocok ialah 55.1kN 
dengan tork adalah 97.5Nm dan kuasa motor iailah 67.5kW. Dari hasil simulasi itu, 
kecekapan McLMPS yang dicadangkan adalah 90%  manakala hasil eksperimen pula 
mempunyai kecekapan adalah 75%. Hasil eksperimen menunjukkan kecekapan yang 
lebih rendah berbanding dengan hasil simulasi kerana ini merupakan prototaip 
pertama McLMPS dibina berdasarkan skala seperempat. Sebaliknya, hasil eksperimen 
McLMPS lebih cekap daripada Perodua Kancil ICE, tetapi kurang cekap daripada 
Renault Zoe EV. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

This chapter presents an overview of the whole thesis, which includes the background 
of the research, the problem statement, research objectives, scope of the research and 
finally, the organization of the thesis. 
 
 
1.1 Background of the Thesis 
 
 
Today's linear motion applications are more challenging than ever before, according 
to Parker and Memon [1][2]. Linear machines are electromagnetic devices that 
develop mechanical thrust without the need for gears or a rotary device. Some of the 
advantages of using linear motors include quieter operation, reduced operating costs, 
and a broader range of operations due to the gearless feature [3]. Linear machines are 
also more efficient and simpler in construction. The performance of a linear machine 
depends on the size of the magnet, structure, and efficiency. Thus, it is essential to 
provide the correct parameters during the process of designing a linear machine. 
Research investigation and feasibility testing are being carried out in the 
implementation of linear machines in automobiles [4][5][6]. 
 
 
The linear machine replaced the piston engines, and the working principle was 
equivalent to the reciprocating motion in the ICE. The structure of linear machines 
was similar to the solenoid actuator, which is designed using CATIA software. The 
linear machine model consists of three main parts: a yoke, a coil, and a plunger rod as 
stated by Noor [7].  The FEM analysis method and the PAM analysis method were 
used in designing the linear machine. The initial magneto-static analysis was carried 
out by the finite element method (FEM) to predict the magnetic flux relationship. The 
experiment aimed to revise the possible measures of the coils electromagnetic flux 
properties and validate the simulation of the linear machines model. Furthermore, the 
finite element (FE) modelling and analysis have followed a MATLAB/Simulink 
software calculation to predict the linear machines. The mechanical components, or 
the moving parts of the operating mechanism, were designed and analysed 
analytically. The dimensions of the parts were validated using the failure theory and 
fatigue concept as required. All the components and the linear machine were 
fabricated and tested to validate the results. 
 
 
The main focus of this research is the design and development of a linear machine and 
its operating mechanisms which can be used in electric vehicle (EV) application 
known as the multi-cylinder linear machines powertrain system (McLMPS). In 
addition, the experimental model was to establish and obtain the result without load 
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and load for a linear machine. Finally, the simulation results have produced a plunger 
force, thrust, plunger distance, speed, and motor power at the linear machine models. 
It will be evaluated, compared, and measured as a counterpart from the experimental 
setup.  
 
 
1.2 Significance of the Study 
 
 
The Malaysian Automotive Technology Roadmap (MATR) identified the six pillars 
to guide the acquisition of technology development in line with the development of 
the global automotive industry. As seen in Figure 1.1, the six areas are very much 
attributed as these features-environmentally friendly, energy-saver and efficient. 
 

 
 

Figure 1.1: Six areas of technology development identified under MATR [8] 
 
 
One of the technology development pillars is green vehicle technology, in which the 
focus is on vehicle design and development, and powertrain and related control system 
development. According to the Malaysian Automotive Robotics and IoT Institute 
(MARii), the main objective of the announced National Automotive Policy 2014 
(NAP2014) is to make Malaysia a regional automotive hub of Energy Efficient 
Vehicles (EEVs). This policy is in line with the provision of green technologies and 
green energy in line with the global trends of the future powertrains and fuel 
consumption patterns as well as the CO2 emission requirement.  
 
 
Electric vehicles (EV) become a key component of a solution to reduce the negative 
effects of transportation dramatically and to improve energy consumption efficiency 
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[9][10][11].  As seen in Figure 1.2, the development phase and fleet penetration have 
been set for 2014-2040. The EV and FCV are currently in the developing phase until 
2025 [12]. 
 

 
 
Figure 1.2: Malaysian’s Automotive Technology Projection 2014-2040 [12] 
 
 
1.3 Problem Statements 
 
 
Electric vehicles (EV) have been recognised as a crucial pillar of a solution to 
significantly mitigate the detrimental impacts of transportation while still improving 
energy consumption efficiency. Electric machines are classified into two types: 
rotational machines and linear machines [14][15][16]. These EVs utilise rotating 
electric machines to transmit power from the motor shaft to the transmission and, 
subsequently, to the wheels through differential gears.  
 
 
The electric machines of EVs use a rotating motor compared to a linear motor. 
Therefore, it causes many changes in the design of the vehicle, which require high 
costs, complex control systems, and the size of the machine needs to be bigger, etc 
[17]. However, the rotating electric motor suffers from excessive exposed temperature 
due to long operation that may cause the motor to fail, and the cost of the magnet is 
higher. On the other hand, electric motors in Evs require complex control algorithms 
and specialised power transmission systems in order to operate the vehicle. This will 
add an additional cost to the vehicles. 
 
 
On the other hand, an internal combustion engine (ICE) uses gasoline to generate the 
necessary power to move the wheels through the transmission and gearbox. The 
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friction issue between the piston rings, piston skirt and the cylinder linear at internal 
combustion engines is one of the drawbacks. As a result, there is no side thrust on the 
piston, and the piston does not travel radially in the cylinder [19][20]. This 
phenomenon gives linear machines an edge over rotating engines since less effort is 
required to overcome friction, making them more fuel-efficient.[21] [22]. 
 
 
Adnan [23] and Norhisam [24][25][26] performed thrust calculation and study of 
thrust constant, electrical time constant, and mechanical time constant of slot-less 
moving magnet linear actuators. FEM and PAM were utilised to design and develop 
the actuator in this case. The goal of this study was to produce high thrust with a broad 
stroke. However, only 250N of force and a 10 mm stroke were obtained. On the other 
hand, the magnets are attached to the mover, it becomes heavy. This can increase the 
magnet utilised and maintenance issues, which can raise the cost of the linear motor. 
[27][28].  
 
 
Adnan [23] asserted that he conceived and developed a moving magnet linear actuator 
for linear compressor applications. The fundamental properties of linear actuators in 
terms of force, thrust, efficiency, and stroke are covered in this section. This study 
generated a force of 150N and a stroke of around 4.5 mm. Norhisam [24][25][26] 
performed thrust calculation and study of thrust constant, electrical time constant, and 
mechanical time constant of slot-less moving magnet linear actuators. FEM and PAM 
were utilised to design and develop the actuator in this case. The goal of this study 
was to produce high thrust with a broad stroke. However, only 250N of force and a 10 
mm stroke were obtained. 
 
 
Therefore, a new proposed linear machine has been designed and developed in order 
to test its performance in EV settings at an early stage. The operation of this linear 
machine does not need the use of a particular power transmission system. It can run 
the car using the current internal combustion engine (ICE) transmission system. It will 
offer cheaper price, save space and less complex in its control system. 
 
 
1.4 Objectives of Research 
 
 
This research aims to design, fabricate, and test a novel multi-cylinder linear machine 
powertrain system (McLMPS) for EV application. In order to achieve the main 
objective, the following research activities and tasks have been carried out:     
 

i. To develop, implement and model the novel multi-cylinder linear machine 
(McLMPS) with a tubular structure using CATIA, ANSYS Maxwell and 
MATLAB/Simulink software. 
 

ii. To develop, build, and implement the novel multi-plate crankshaft position 
sensor system (MpCPS) used to assist the McLMPS operation. 
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iii. To design, build, and fabricate that optimal prototype of the McLMPS 
including the McLM, MpCPS, and other mechanical components using the 
CNC machines.  
 

iv. To develop the drive system of McLMPS and its control algorithm.  
 

v. To validate and test the effectiveness of the controller algorithm and McLMPS 
experimentally. 
 
 

1.5 Scopes of Work and Limitations 
 
 
To attain the scope of work and limitations, the following research activities are 
proposed:     
 

i. The proposed McLMPS is the first prototype designed and developed for this 
EV application. It has been fully modeled and simulated using ANSYS 
Maxwell and MATLAB/Simulink software. 
 

ii. The control algorithm has been developed in C language programming to 
manage the proposed McLMPS and control the full operation of the entire 
system. 
 

iii. The fabrication of the proposed McLMPS has been performed based on the 
scale-down version due to the limited financial budget given to this project. 

 
 
1.6 Thesis Contributions 
 
 
This study is significant for the following contributions it makes to the existing body 
of knowledge as presented below: 
 

i. Designing, modelling and fabricating the McLMPS is the first prototype 
developed for this EV application. 
 

ii. Designing and fabricating MpCPS consists of four components as namely a 
photoelectric sensor, a gear spurs, a disc sensor plate, and a sensor holder. 
It’s controlling the plunger rod position at a certain angle of the crankshaft 
and full operation of the McLMPS. 
 

iii. Designing and fabricating the device system of the McLMPS with its control 
algorithm. The Arduino system is a controller devices with the coding 
software that used in C language to perform a digital signal controller for 
further tuning of the controller at the McLMPS. 

 
 



© C
OPYRIG

HT U
PM

 
6 

1.7 Thesis Outline 
 
 
This thesis comprises five chapters covering the comprehensive states of the research.  
 
 
Chapter One presents the introduction, which covers a description of the multi-
cylinder linear machine powertrain system (McLMPS). Also, it discusses the problem 
statement, objectives, scope of work limitation and contributions.   
Chapter Two presents the literature review of a linear machine during the study. This 
chapter provides the study of various works done to design electric machines and 
linear machines for electric vehicles. The construction and working principle of linear 
machines are also explained. The introduction to the finite element method (FEM) and 
overview of related research on linear machines are discussed. 

Chapter Three presents the methodology used in designing the multi-cylinder linear 
machine powertrain system. This chapter explains designing, modelling, simulating 
and fabricating processes such as the multi-cylinder linear motor (McLM), multi-plate 
crankshaft position sensor system (MpCPS), and drive system algorithms.  It also 
discusses the proposed McLMPS system in terms of the designed, fabricated, and 
experimental set-up system. 
 
 
Chapter Four explains the multi-cylinder linear machines powertrain system 
(McLMPS) using the FEM simulation, calculated and experimental results. The 
simulation and experimental test are obtained to be compared and discussed.  
Chapter Five presents the study's conclusion done in terms of the performance of a 
multi-cylinder linear machine powertrain system (McLMPS). The recommendations 
for future studies are also presented in this chapter. 
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