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Recent advancements in the aeroelasticity of aircraft structures show an 
increasing trend in using smart materials with composite structures for 
improved aeroelastic performance. An example is using shape memory alloys 
(SMAs) to be combined with composite structures either as actuators or for 
morphing capabilities. SMA has the ability to accommodate strain rather than 
breakage by unfolding its lattice when a load is applied and also, it generates 
stresses due to phase transformation from martensite to austenite at higher 
temperatures. Due to this coupling effect of SMAs in response to load and 
temperature, SMAs are embedded in laminated composites for improving 
damping, stiffness and vibrational characteristics. However, SMA embedded 
laminated composites are poor in through-the-thickness mechanical properties 
and SMA-induced stresses and temperature can cause delamination of plies 
that ultimately results in structural failures under high vibrations. 
 
 
In this research, SMA wires are embedded in the glass-fibre reinforced 
composites using 3D woven reinforcements to improve tensile and vibrational 
characteristics. 3D woven reinforcements provides delamination resistance, 
higher through-the-thickness mechanical properties and a strong grip to SMA 
wire due to binding yarns of 3D structure in through-the-thickness direction. 
Three different 3D woven orthogonal interlock configurations having different 
interlocking pattern of yarns with SMA wire are analysed in terms of tensile, 
dynamic and aeroelastic flutter properties. These 3D configurations are layer-
to-layer (L2L), through-the-thickness (TT), and a modified interlock (MF) 
structure that provides the strongest grip to SMA wire than L2L and TT. SMA 
positioning was also evaluated for both dynamic and aeroelastic flutter 
properties i.e. SMA at mid, near to trailing, and near to leading edge of 
cantilevered composite plate. 
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Tensile results showed that embedding SMA wires into structures have 
significantly improved tensile properties due to the coupling effect of SMA. The 
vibrational characteristics are also improved by embedding SMA wire and SMA 
wire at mid has a higher impact on bending mode frequencies while torsional 
mode frequencies are more affected for SMA wire at near to trailing and 
leading edge. Interesting results are obtained from aeroelastic testing by wind 
tunnel test. Activating SMA results in decrement of flutter speed and flutter 
frequency due to increment in flexibility of the deflected plate in airflow by SMA-
induced stresses. However, there is an improvement in post-flutter behavior as 
the bending and twist limit cycle oscillation (LCO) amplitudes are reduced by 
activating SMA wire. 
 
 
Among 3D configurations, L2L displayed the highest increase of 34.9% in 
Young’s modulus as L2L provides more freedom to SMA for generating 
stresses due to loose grip of yarns to SMA. For dynamic properties, L2L with 
SMA at mid showed the highest percentage increment of  17%, 11% and 4% in 
natural frequencies of first three bending modes respectively. For post-flutter 
behavior, L2L with SMA near to trailing edge showed a significant decrement of 
22.2% in twist LCO amplitude while L2L with SMA at mid showed a decrement 
of 9.5% for bending LCO amplitude. Hence, this work showed that embedding 
SMA is beneficial for improving tensile and dynamic properties as well as 
mitigating the post-flutter vibrations but as the consequence of reduced flutter 
speed and frequency.   
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Mac 2021  
 
 

Pengerusi : Prof. Madya Dayang Laila binti Abang Haji Abdul 
  Majid, PhD 

Fakulti  : Kejuruteraan  
 
 
Perkembangan terkini dalam struktur aeroelastik pesawat menunjukkan aliran 
peningkatan dari segi penggunaan bahan pintar dalam struktur komposit untuk 
meningkatkan prestasi aeroelastik. Contohnya melalui penggunaan bahan aloi 
memori bentuk (SMA) yang digabungkan dengan struktur komposit sama ada 
sebagai penggerak atau untuk keupayaan gabungan. SMA memiliki 
kemampuan untuk menampung terikan berbanding pemecahan dengan 
merungkaikan kekisi ketika beban dikenakan dan juga menghasilkan tekanan 
akibat transformasi fasa daripada martensit ke austenit pada suhu yang lebih 
tinggi. Disebabkan kesan gandingan SMA ini hasil tindak balas terhadap beban 
dan suhu, SMA yang terbenam dalam komposit berlapis berupaya 
meningkatkan ciri redaman, kekukuhan dan getaran. Walau bagaimanapun, 
SMA terbenam dalam komposit berlapis lemah dari segi sifat mekanikal dalam 
arah ketebalan serta perubahan tekanan dan suhu yang didorong oleh SMA 
juga akan menyebabkan pemisahan lapisan yang akhirnya mengakibatkan 
kegagalan struktur di bawah getaran tinggi.     
 
 
Dalam penyelidikan ini, dawai SMA terbenam dalam komposit bertetulang 
gentian kaca menggunakan tetulang tenunan 3D dikaji untuk meningkatkan ciri 
tegangan dan getaran. Tetulang tenunan 3D memberikan ketahanan nyah-
lapisan, sifat mekanik yang lebih tinggi merentasi ketebalan dan genggaman 
kuat pada dawai SMA kerana adanya pengikat benang struktur 3D mengikut 
arah ketebalan. Tiga konfigurasi tenunan 3D dengan ciri ortogonal saling-
mengunci yang berbeza dimana setiapnya mempunyai corak benang saling-
mengunci dengan wayar SMA yang berlainan akan dianalisis dari segi sifat 
tegangan, dinamik dan aeroelastik. Konfigurasi 3D ini terdiri daripada lapisan 
ke lapisan (L2L), arah ketebalan (TT), dan struktur saling-mengunci yang 
diubahsuai (MF) yang memberikan genggaman terkuat pada dawai SMA 
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berbanding dengan L2L dan TT. Kedudukan SMA juga dinilai dari segi sifat 
kibaran dinamik dan aeroelastik, contohnya; SMA pada kedudukan tengah, 
dekat dengan pinggir mengekor, dan dekat dengan pinggir depan plat komposit 
julur. 
 
 
Keputusan tegangan menunjukkan bahawa pembenaman dawai SMA ke 
dalam struktur meningkatkan sifat tegangan dengan ketara kerana kesan 
gandingan SMA. Ciri getaran juga diperbaiki dengan membenamkan dawai 
SMA dan dawai SMA pada kedudukan tengah mempunyai hentaman tinggi 
pada frekuensi mod lenturan, manakala frekuensi mod kilasan lebih banyak 
dipengaruhi oleh dawai SMA pada jarak dekat dengan pinggir mengekor dan 
dekat dengan pinggir depan. Keputusan yang menarik diperoleh daripada 
pengujian aeroelastik melalui ujian terowong angin. Pengaktifan SMA 
menyebabkan susutan kelajuan kibaran dan frekuensi kibaran kerana tekanan 
yang disebabkan oleh SMA meningkatkan fleksibiliti plat terpesong dalam 
aliran udara. Walau bagaimanapun, terdapat peningkatan dalam kelakuan 
pasca-kibaran disebabkan had lenturan dan puncak piuh litar ayunan (LCO) 
yang dikurangkan melalui pengaktifan dawai SMA. 
 
 
Di antara konfigurasi 3D, L2L memaparkan peningkatan tertinggi sebanyak 
34.9% dalam modulus Young kerana L2L memberikan lebih banyak 
kebebasan kepada SMA untuk menghasilkan tekanan disebabkan genggaman 
benang yang longgar ke atas SMA. Dari segi sifat dinamik, L2L bersama SMA 
pada kedudukan tengah menunjukkan peningkatan peratusan tertinggi iaitu, 
sebanyak 17%, 11% dan 4% masing-masing pada frekuensi semula jadi 
berasaskan tiga mod lenturan pertama. Bagi kelakuan pasca-kibaran, L2L 
bersama SMA dekat dengan pinggir mengekor menunjukkan penurunan ketara 
sebanyak 22.2% pada puncak piuh litar ayunan (LCO) manakala L2L bersama 
SMA pada kedudukan tengah menunjukkan penurunan sebanyak 9.5% untuk 
puncak lenturan litar ayunan (LCO). Oleh itu, hasil kajian ini menunjukkan 
bahawa pembenaman SMA bermanfaat untuk meningkatkan sifat tegangan 
dan dinamik serta mengurangkan getaran pasca-kibaran tetapi sebagai akibat 
penurunan kelajuan serta frekuensi kibaran. 
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CHAPTER 1 
 
 

1      INTRODUCTION 
 
 
1.1 Introduction 
 
In aerospace, the study of interactions of airflow with aircraft is very important 
as this interaction can cause undesirable deformations and structural failures. 
This study is known as aeroelasticity and classified in static and dynamic 
aeroelasticity (Ashley, 1970). Structural divergence and flutter are the failure 
processes that are strongly affected by structural stiffness. The main area of 
interest is the flutter phenomenon that is a dynamic instability of elastic 
structure and it is a synchronized interaction between bending mode and 
twisting mode so that energy is absorbed from the airflow in one mode to 
increase the amplitude of the other. The wing will absorb energy from the 
airflow and will act as an increasing bending and torsion flexure until sufficient 
displacement is achieved and the wing breaks (Donadon & De Faria, 2016). In 
aircraft, metallic structures are mostly replaced by the composite structures due 
to their high stiffness and lighter weights (Dutton et al., 2004).  
 
 
In composite structures, two-dimensional (2D) laminated composites have 
been used with outstanding success for many years in the aircraft industry 
(Mouritz et al., 1999; Kalanchiam & Chinnasamy, 2012). Despite the use of 2D 
laminates over a long period, their use in many structural applications has been 
limited due to their low through-the-thickness mechanical properties and 
inferior impact damage resistance as compared to aluminum alloys and steel 
(Mouritz et al., 1999). The low through-the-thickness properties have limited the 
use of 2D laminates to the structures, those are subjected to high through-the-
thickness and interlaminar shear stresses such as automobiles, wind turbine 
blades, stringers and stiffeners in aircraft, and pressure vessels. In aeronautic 
under high vibrations, the delamination of plies occurs for laminated structures 
that results in structural failure and even more worst results for curved and 
angled pieces (Umair et al., 2015). 
 
 
To improve through-the-thickness properties and interlayer fracture resistance, 
3D woven interlock structures are used as composite reinforcement (Mishra, 
2008; Nawab et al., 2012). 3D woven reinforcements have higher mechanical 
properties through-the-thickness direction and are used in areas of high-
performance applications (Huang et al., 2018). In 3D woven structures, binder 
yarns travel in through-the-thickness direction to bind the layers with each other 
and are responsible for higher through-the-thickness properties, higher 
delamination resistance, and excellent damage tolerance (Mouritz et al., 1999; 
Khokar, 2001; Lee et al., 2002). Also for 3D structures, the desired properties 
can be incorporated during the weaving process and these structures can be 
produced according to the required shape (Soden & Hill, 1998).  
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Recently, the development of composite materials took advantage of their 
inherent heterogeneity and anisotropy to combine the traditional load-bearing 
functions of composite materials with novel functionalities in the form of 
embedded elements. By combining smart materials with composites, the 
properties of the resultant smart composites can be modified due to integrating 
functions of smart materials directly into the structures (Cohades & Michaud, 
2018). Among smart materials, shape memory alloys (SMAs) are able to 
generate a relatively large deformation and then recover their deformed shape 
upon heating (Liang & Rogers, 1997). At low temperature, SMA actuators are 
plastically deformed by bending, stretching, compressing and twisting, and they 
return to their original shape and size by increasing temperature due to internal 
phase transformation process. This shape reformation process generates a 
thermal–mechanical driving force (Kim et al., 2011). This shape recovery 
property of SMA makes it  the most suitable smart material for active control of 
the structures. 
 
 
SMAs have two phases; the austenite phase having higher Young’s modulus 
due to well-packed crystalline structures at a higher temperature and the 
martensite phase in which SMAs have loosely packed crystalline structures at 
a lower temperature and behave as elastomers. In the martensite phase when 
a load is applied to SMA, it accommodates the strain as its crystal planes 
unfold the lattice and begin to reorient with the direction of loading. This 
reorientation of the lattice is known as "detwinning" and it gives higher values 
of stiffness (Sharifishourabi et al., 2014). SMAs change their phase from 
martensite to austenite at a higher temperature and recover their residual 
deformation due to well-packed crystalline arrangement in the austenite phase 
(Lei et al., 2013). The coupling effect of SMAs in response to temperature and 
load signifies their importance and encourages their embedment in composite 
structures for improving structural properties. 
 
  
Generally, pre-strained SMA wires are embedded into composite structures 
and the electric current is applied to activate the SMA wires. Due to electric 
current, resistance heat is generated in the SMA and a large additional internal 
force would then be induced accordingly into the structures (Kim et al., 2011). 
This induced internal force in SMA is responsible for improving the bending and 
torsional stiffness of the SMA embedded composite structures. Improved 
bending and torsional properties improve the dynamic and aeroelastic 
characteristics of the structures. Many researches has been carried out for 
improving dynamic and aeroelastic characteristics of the structures by 
embedding SMA wires in composites (Barzegari et al., 2012; Samadpour et al., 
2016; Donadon & De Faria, 2016; Cao et al., 2017; Lin et al.,2020). These 
researches are limited to embedding SMA wires in 2D structures and mostly 
studies are computational work. 2D laminated composites are poor in through-
the-thickness mechanical properties and SMA-induced stresses and 
temperature can cause delamination of plies that ultimately results in structural 
failures under high vibrations. 
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In this research, SMA wires are embedded into 3D woven structures for 
achieving improved mechanical properties due to SMA-induced force and 
higher through-the-thickness properties due to 3D structure. Further, the 
dynamics and aeroelastic properties are assessed for 3D woven composite 
configurations with SMA embedded at different positions to evaluate the effect 
of SMA and its positioning on the dynamic and aeroelastic performance of the 
structures. 
 
 
1.2 Problem Statement 
 
The laminated composites have replaced most of the metallic structures in 
aircraft due to their light-weight and high strength. During the flight, the aircraft 
undergoes the aeroelastic effects that can cause structural failure if the 
stiffness of the structures is not adequate. For achieving higher stiffness, the 
fibres with higher Young’s modulus such as carbon fibres are used as a 
reinforcement of composite structures. The increment of high-performance 
fibres for improving stiffness results in brittleness and also increases the cost.  
 
 
Although the laminated composites reinforced with high-performance fibres 
have higher in-plane mechanical properties but their through-the-thickness 
properties are poor and also these structures face delamination of plies when 
subjected to high vibrations that result in failures of structures (Nawab et al., 
2018). 
 
  
On the other hand, the 3D composites have higher through-the-thickness 
properties and delamination resistance but their in-plan properties are 
compromised due to the higher crimps in yarns (Stig & Hallström, 2013). While 
to prevent aeroelastic effects, the in-plane properties especially the stiffness of 
the structures should be higher. 
 
 
SMAs are the smart materials embedded in structures for improving stiffness 
by activating wires. For embedding SMA wires in laminated composites, 
additional processes are required for improving interfacial strength between 
SMA wire and matrix for achieving desired properties (Yang et al., 2018).  
 
 
Additionally, recent progress works on aeroelastic tailoring using smart 
materials are explored only for 2D laminated composites. Especially for SMA, 
most works reported are numerical findings due to the experimental challenges 
of embedding SMAs into a composite system. These computational studies are 
related to embedding SMA in resin and fibres and there is no research to date 
that explains the aeroelastic behavior of SMA-fibre woven composites 
(Barzegari et al., 2012; Samadpour et al., 2016; Donadon & De Faria, 2016; 
Cao et al., 2017; Lin et al.,2020). 
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So, there is a need to develop a smart composite structure for aircraft wing 
which has higher in-plane as well as through-the-thickness properties with a 
resistance to delamination and then experimental evaluation of its dynamic and 
aeroelastic flutter performance. 
 
 
1.3 Research Objectives 
 
This research has the main objective to improve the mechanical properties of 
3D woven composites by embedding SMA wires and evaluate their dynamic 
and aeroelastic properties. The specific objectives are as follows: 
 
1. To investigate and compare the tensile properties of 2D and 3D woven 

composite configurations without SMA wire, with inactive and activated 
SMA wire. 
 

2. To assess the dynamic characteristics of 3D woven composite 
configurations without SMA wire, with inactive and activated SMA wire 
at mid, trailing and leading edge. 
 

3. To evaluate the aeroelastic performance of 3D woven composite 
configurations without SMA wire, with inactive and activated SMA wire 
at mid, trailing and leading edge. 

 
 
1.4 Scope of Research 
 
This research is a fundamental structural study to modify the properties of 
glass-fibre reinforced 3D woven composite by embedding SMA wires. The 
basic purpose of the study is to improve the mechanical properties of the 
composite plate by using the stress generation property of SMA wires 
embedded in 3D woven structure and assess the dynamic and aeroelastic 
properties of SMA embedded 3D woven composites with improved mechanical 
properties. 
 
 
This study is limited to the multi-layer 3D orthogonal interlock with layer-to-layer 
and though-the-thickness penetration of binding yarns due to the higher 
bending and shear rigidity of 3D orthogonal structures. The SMA wire is 
embedded span-wise in the composite plate with a lower volume fraction i.e. 
0.389%. The span-wise direction of SMA contributes evenly to improve 
stiffness of whole structure and the lower volume fraction of SMA minimizes the 
effects of SMA activation temperature on matrix and fibres. On the other hand, 
to achieve higher effects of SMA-induced stresses on mechanical, modal and 
aeroelastic properties, the plate is designed a flexible structure with thickness 
of 0.7 mm. To keep same volume fraction of SMA wire for the samples of  
aeroelastic flutter test with tensile test samples, the calculated aspect ratio was 
6. Also aspect ratio 6 gives the highly flexible structure whose flutter can be 
easily manifested under low airspeed. 
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As the current study is the fundamental experimental research to explore the 
aeroelastic flutter properties of SMA embedded 3D woven composite plate, the 
aeroelastic flutter properties are evaluated in subsonic laminar flow of open-
circuit wind tunnel with Mach number, M ~ 0.02 and Reynolds number 1.2 x 
105. The lower Mach number and Reynolds numbers gives the smooth flow in 
which flutter performance of highly flexible plate can be precisely observed. 
 
 
1.5 Thesis Layout 
 
The thesis has five chapters in which Chapter 1 gives a brief introduction, 
objectives and the scope of the current study. Chapter 2 highlights the previous 
studies related to aeroelasticity and its types followed by a discussion on 
composites structures and smart materials. The studies related to composite 
passive tailoring for improving the aeroelastic performance are then presented 
and finally a discussion on embedding shape memory alloys for active tailoring 
of composites for improving aeroelastic performance. Chapter 3 is the 
methodology that described the materials, 3D weaving procedure of SMA 
embedded 3D structures and their composite fabrication method, testing 
methods for tensile, dynamic, and wind tunnel tests. Chapter 4 presents the 
results and discussion for the tensile, dynamic, and aeroelastic properties of 
SMA embedded 3D woven composites. Chapter 5 addresses the conclusion 
and recommendations for the future work. 
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APPENDICES 
 
 
Appendix A1. Calculation of volume fraction of constituents of composite 
structures for tensile test 

mc= 8.36gm, mf= 6.29gm,  ρf=2.54gm/cm³, ρm=1.1gm/cm³, mSMA=0.108gm, 
ρSMA= 6.45 gm/cm³,  
 
For matrix weight, 

 
mm =1.962gm 

1. Fibre volume fraction 

 

                  For calculating density, 

 

Dimensions of composite sample for calculating density are 2 x 2 x 0.07cm³ 
while dry weight and weight in water are mc=0.540 gm and mw =0.262 gm. 

= 1.937gm/cm³ 

 
 

2. Matrix volume fraction 
Mm= 1.962 gm, 

 

 
 

3. SMA volume fraction 

 

 

4. Void Content (%) 
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Appendix A2. Calculation of volume fraction of constituents of composite 
structures for modal analysis and aeroelastic analysis 

mc= 20.055gm, mf= 15.15gm, ρf=2.54gm/cm³, ρm=1.1gm/cm³, mSMA=0.26gm, 
ρSMA= 6.45 gm/cm³,  
For matrix weight, 

 
mm =4.645gm 

 
1. Fibre volume fraction 

 

 

Dimensions of composite sample for calculating density are 2 x 2 x 0.07cm³ 
while dry weight and weight in water are mc=0.544 gm and mw =0.264 gm. 

= 1.937gm/cm³, 
 

 
 
 
2. Matrix volume fraction 

Mm= 1.962 gm 

 

 
 
3. SMA volume fraction 

 

 

4. Void Content (%) 
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Appendix B1 
 
 

Appendix B1.1.  FRF plot of L2L without SMA wire 

                                              

 

Appendix B1.2. FRF plot of L2L with SMA wire at mid (a) Inactive SMA  
wire  (b) Activated SMA wire    
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Appendix B1.3.   FRF plot of L2L with SMA wire at near to trailing edge         
(a) Inactive SMA wire  (b) Activated SMA wire    

 
 
Appendix B1.4. FRF plot of L2L with SMA wire at leading edge (a) Inactive 

SMA wire  (b) Activated SMA wire    
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Appendix B2 
 
 

Appendix B2.1.  FRF plot of TT without SMA wire 

                            
 
Appendix B2.2. FRF plot of TT with SMA wire at mid (a) Inactive SMA wire  

 (b) Activated SMA wire    
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Appendix B2.3.  FRF plot of TT with SMA wire at near to trailing edge               
(a) Inactive SMA wire  (b) Activated SMA wire    

 
 
Appendix B2.4. FRF plot of TT with SMA wire at near to leading edge (a)   

Inactive SMA wire  (b) Activated SMA wire    
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Appendix B3 
 
 

Appendix B3.1. FRF plot of MF without SMA wire 

                         
 
Appendix B3.2.  FRF plot of MF with SMA wire at mid (a) Inactive SMA      

(b) Active SMA 
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Appendix B3.3.  FRF plot of MF with SMA wire at near to trailing edge (a) 
Inactive SMA wire (b) Activated SMA wire 

 
Appendix B3.4.  FRF plot of MF with SMA wire at leading edge (a) Inactive 

SMA wire (b) Activated SMA wire  
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Appendix C1 
 
 

Appendix C1. Calculations of  bending moments of 3D woven L2L with 
inactive  and activated SMA wire at mid 
 
i) 3D woven L2L with inactive  SMA wire at mid: 

Length of the cantilevered composite plate=L =0.3 m, 
 
Young’s Modulus of 3D woven L2L with inactive SMA wire (calculated in 
section 4.2.3)= E=15.78 GPa 
 
I= bh3/12= 1.43* 10-12 m4, 

The aerodynamic loading is mainly depend on pressure of airflow and it is 
mainly responsible for bending of plate. Weight of the plate and other factors 
are neglected as  these are same for inactive and activated SMA wire. So the 
load distributed to the plate is w1= P*L. 
 
The Dynamic pressure of the airflow=  

Speed of air for maximum deflection of plate before flutter phenomenon is 
U(From Figure 4.22(b))= 5.98 m/sec  

Density of the air= ρ=1.225 kg/m3. 

The Dynamic pressure of the airflow = 21.90 N/m2 

And the load distributed to the plate is w1= P*L =6.57 N/m. 

The bending moment at the tip of the cantilevered plate with inactive SMA wire 

 = - 0.0986 Nm 

The negative sign of the moment shows that the bending of the plate is in the 
downward direction.  

The maximum deflection of the tip of the plate calculated  

=  0.0786m 
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ii) 3D woven L2L with activated  SMA wire: 

Young’s Modulus of 3D woven L2L with activated SMA wire (section 4.2.3)= 
E=21.29 GPa 

I= bh3/12= 1.43* 10-12 m4 

Maximum deflection of the tip of the plate calculated from strain (Equation 3.9), 

=0.0789 m 

Speed of air before flutter phenomenon for maximum deflection of the plate is 

U(From Figure 4.22(c))=5.40 m/sec 

Density of air is ρ=1.225 kg/m3, 

The Dynamic pressure of the airflow = 17.86 N/m2 

The load distributed to the plate due to airflow is w1= P*L =5.358 N/m. 

‘w2’ is calculated by rearranging equation   

and putting values of d, w1, L, E, and I. 

w2=1.286 N/m. 

Now Bending moment at the tip of the plate with activated SMA 
wire

g
 = 0.1187 Nm. 

 

So the bending moment of the plate with activated SMA wire is 20.39 % higher 
than the bending moment of the plate without activating the SMA wire.
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