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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 
the requirement for the degree of Doctor of Philosophy

ABSTRACT

DEVELOPMENT OF BIOCHAR FROM OIL PALM FROND FOR PALM OIL 
MILL EFFLUENT TREATMENT 

By

ABUBAKAR ABDULLAHI  

February 2021

Chair : Professor Mohd Ali Hassan, PhD
Faculty : Engineering

In order to meet the growing demand for adsorbents to treat wastewater effectively, there 
has been increased interest in producing biochar from sustainable biomass feedstocks at 
minimum energy input. Although physical and chemical activations have been 
commonly employed to produce activated biochar with superior textural properties 
capable of treating wastewater effectively, little attention has been given to the effect of 
biomass nature and pyrolysis agents on biochar structure and adsorption performance. 
Therefore, the purpose of this research is to evaluate the effect of biomass cellulosic 
content and steam pyrolysis on evolution of pyrogenic nanopores and molecular 
structures of biochar, and evaluates the performance of biochar from oil palm frond 
(OPF) with respect to treating POME final discharge. Commercial cellulose, OPF, and 
palm kernel shell were pyrolyzed at 630 °C, and their biochar structures were analyzed. 
Evaluation of biochar nanotexture based on cellulosic content revealed that commercial 
cellulose decomposed rapidly into non-graphitizing large size crystallites (65 nm) with 
substantial defects within their graphene sheets forming mesopores resulting in the 
external surface area (SAext) of 95.4 m2/g and micropore surface area  (SAmi) of 231.2 
m2/g. Amorphous chars derived from lignin were thermally stable, slowing down the 
rapid formation of crystallites in biochar from palm kernel shell, which resulted to 
forming microporous structure with SAmi of 377.0 m2/g and SAext of 58.6 m2/g. Biochar 
from OPF had SAmi of 293.4 m2/g and SAext of 73.3 m2/g. The iodine number of the 
biochars from commercial cellulose, OPF and palm kernel shell correlated with the SAext
demonstrating the suitability of mesoporous biochar for wastewater treatment.
Increasing the pyrolysis temperature from 400 to 600 °C in presence of superheated 
steam increased the BET surface area (SABET) of biochar from OPF from 1.63 to 461.3 
m2/g, while increasing retention time from 2 to 10 h at 600 °C increased the SABET from
461.3 to 530.1 m2/g. Comparatively, steam pyrolysis of OPF at 600 °C produced biochar 
with higher SABET of 461.3 m2/g and SAext of 189.4 m2/g compared to nitrogen pyrolysis 
with lower SABET of 368.4 m2/g and SAex of 77.4 m2/g demonstrating pore broadening
activity of steam. Steam pyrolyzed biochar from OPF achieved a maximum adsorption 
capacity of 24.6 mg/g COD, 49 mg/g Pt-Co, 58.1 mg/g phenol, and 63.6 mg/g tannic 
acid by interacting with the contaminants through van der Waals force, π-π interactions, 
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H bonding, and water-bridged H bonding. Using 30 g/L dosage, the biochar from OPF 
exhibited an effective reduction of COD from 224 to 41.6 mg/g and color from 344 to 
15 Pt-Co. Findings of this work revealed the tendency of cellulose to yield a mesoporous 
biochar and demonstrated the effectiveness of steam pyrolysis in terms yielding biochar 
with superior textural properties through its greater pore deepening and broadening 
activities. Biochar from OPF was capable of engaging into multiple adsorption 
mechanisms signifying its high affinity for a variety of organic contaminants and 
suitability for wastewater treatment.     
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah

ABSTRAK

PEMBANGUNAN BIO-ARANG DARI PELEPAH KELAPA SAWIT UNTUK 
RAWATAN SISA AIR DARI KILANG SAWIT

Oleh

ABUBAKAR ABDULLAHI  

Februari 2021

Pengerusi : Profesor Mohd Ali Hassan, PhD
Fakulti : Kejuruteraan

Untuk memenuhi permintaan penjerap untuk merawat sisa air yang semakin meningkat 
dengan efektif, minat untuk menghasilkan bio-arang dari bahan biojisim yang lestari 
dengan input tenaga minimum telah meningkat. Walaupun kaedah pengaktifan secara 
fizikal dan kimia digunakan sebagai kaedah utama untuk menghasilkan bio-arang teraktif 
yang mempunyai liang nano yang unggul dan struktur molekul yang sesuai untuk 
rawatan sisa air, sedikit perhatian diberikan kepada kesan sifat biojisim dan ejen pirolisis 
kepada struktur bio-arang dan prestasi penjerapan. Oleh itu, tujuan penyelidikan ini 
adalah untuk mengkaji dan menerangkan kesan kandungan selulosa biojisim dan pirolisis 
stim terhadap perubahan liang nano pirogenik dan struktur molekul bio-arang serta 
menilai prestasi bio-arang dari pelepah kelapa sawit untuk rawatan pelepasan terakhir 
POME. Selulosa komersil, pelepah kelapa sawit, tempurung isirong kelapa sawit 
dipirolisis pada suhu 630 °C, dan struktur bio-arangnya telah dianalisis. Penilaian tekstur 
nano berdasarkan komposisi bio-polimer menunjukkan bahawa selulosa komersil terurai 
dengan cepat menjadi hablur bersaiz besar tanpa grafit (65 nm) dengan penghakisan yang
besar di dalam kepingan grafin membentuk struktur liang meso megakibatkan luas 
permukaan luaran (SAext) sebanyak 95.4 m2/g dan luas permukaan liang mikro (SAmi)
sebanyak 231.2 m2/g. Arang amorfus terhasil dari lignin adalah stabil secara terma 
membataskan pembentukan hablur dalam bio-arang yang cepat dari tempurung isirong 
kelapa sawit dan mempelopori struktur liang mikro dengan bacaan SAmi 377.0 m2/g dan 
SAext of 58.6 m2/g. Bio-arang dari pelepah kelapa sawit mempunyai bacaan SAmi 293.4 
m2/g dan SAext 73.3 m2/g. Bacaan nombor iodin bio-arang dari selulosa komersil, pelepah 
kelapa sawit dan tempurung isirong kelapa sawit saling berkait dengan SAext
menunjukkan kesesuaian bio-arang dengan liang meso untuk rawatan sisa air. 
Peningkatan susu pirolisis dari 400 ke 600 °C dengan kehadiran stim superpanas 
meningkatkan luas permukaan (SABET) bio-arang dari pelepah kelapa sawit dari 1.63 
kepada 461.3 m2/g, manakala peningkatan masa penahanan dari 2 ke 10 jam pada suhu 
600 °C meningkatkan SABET dari 461.3 kepada 530.1 m2/g. Sebagai perbandingan, 
pirolisis stim dari pelepah kelapa sawit pada suhu 600 °C menghasilkan bio-arang 
dengan luas permukaan lebih tinggi iaitu 461.3 m2/g dan SAext 189.4 m2/g berbanding 
pirolisis nitrogen dengan luas permukaan lebih rendah iaitu SABET 368.4 m2/g dan SAex 
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of 77.4 m2/g menunjukkan aktiviti perluasan liang oleh stim. Bio-arang pelepah kelapa 
sawit dari stim pirolisis mencapai kapasiti penjerapan maksimum iaitu 24.6 mg/g COD, 
49 mg/g Pt-Co, 58.1 mg/g fenol, and 63.6 mg/g asid tanik dengan berinteraksi bersama 
bahan cemar melalui daya van der Waals, interaksi π-π, ikatan hidrogen, dan ikatan 
hidrogen air. Dengan menggunakan dos 30 g/L, bio-arang dari pelepah kelapa sawit 
menunjukkan pengurangan COD dengan efektif dari 224 ke 41.6 mg/g dan warna dari 
344 ke 15 Pt-Co. Penemuan penyelidikan ini mendedahkan kecenderungan selulosa 
untuk menghasilkan bio-arang liang meso dan menunjukkan keberkesanan pirolisis stim 
dari aspek penghasilan bio-arang dengan sifat tekstur yang unggul melalui aktiviti 
memperdalam dan memperluas liang yang lebih besar. Bio-arang dari pelepah kelapa 
sawit mampu menggunakan beberapa mekanisma penjerapan keafinan tinggi  untuk 
pelbagai bahan cemar organic dan kesesuaiannya untuk rawatan sisa air. 
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CHAPTER 1 
 

1 INTRODUCTION 
 

1.1 Background of study 
 

In the past decades, there has been growing interest and attention in the scientific 
community on biochar, culminating into multidisciplinary areas for researches related to 
agricultural, engineering, and environmental applications (Tan et al., 2015). Biochar is a 
porous carbon-rich product obtained after thermal decomposition of biomass or organic 
waste at moderate pyrolysis temperature in an ambient condition of limited or 
unavailable air. Because of its porous structure, biochar has the potential to serve as an 
adsorbent for wastewater treatment as its surface area contains a wide range of functional 
groups capable of interacting with different types of contaminants (Dawood et al., 2017; 
Kan et al., 2016; Moreira et al., 2017). In addition to its adsorption affinity, sources for 
biochar feedstocks are abundant and renewable; accordingly, it is considered a more 
sustainable and cheaper alternative adsorbent in comparison to most conventional 
adsorbents. Other advantages are biochar can be produced without adding chemicals and 
consumed less energy, making its production environmentally friendly and cost-
effective. Though biochar has less surface area per unit weight compared with activated 
carbon, the potential benefits of using it as an adsorbent for treating wastewater cannot 
be overlooked. 
      

When biochar is the desired product, slow pyrolysis is the thermal treatment of choice to 
maximized yield (Ahmad et al., 2014) and to produce adsorbent for treating 
contaminated water (Tan et al., 2015). Some pyrolysis reactors that can achieve these 
goals include a fixed bed, fluidized bed, screw, rotating cone, and vacuum pyrolyzers. 
The basic operating parameters for these pyrolyzers are temperature and reaction 
environment. Feedstock condition is also an important parameter that limits the choice 
of a type of pyrolyzer. The extent of the surface area of biochars produced from 
lignocellulosic-based feedstocks using fixed bed reactor operated at 400 to 600 °C are 
between 13.6 and 316 m2/g  (Azuara et al., 2017; Lee et al., 2013; Mohanty et al., 2013), 
and between 18 and 170 m2/g for biochars produced from non-lignocellulosic-based 
feedstocks (Agrafioti et al., 2013; Atienza-Martínez et al., 2020; Touray et al., 2014). A 
similar magnitude of surface area between 92 and 259 m2/g was also reported for 
biochars produced from lignocellulosic feedstocks in vacuum pyrolyzer at 475 °C (Uras-
Postma et al., 2014). Significantly low surface area (1.2 – 1.6 m2/g) was reported for 
biochar produced from corrugated cardboard using a screw reactor (Sotoudehnia et al., 
2020). Although the surface area of biochar is low compared with activated carbons, 
selection of suitable feedstocks, and optimum setting of pyrolysis parameters can ensure 
production of biochar with a high surface area. 
 

The nature of feedstock used for producing biochar is an influential factor that 
contributes to surface area formation during pyrolysis. In order words, the proportion of 
feedstock components (i.e., biopolymers) and their conformation could have a 
considerable effect on the extent of the evolved surface area. Structurally altered 
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lignocellulosic-based (e.g. corrugated cardboard) and digested biomass feedstocks 
produce biochars with a relatively low surface area that range from 1.2 to 93 m2/g 
(Agrafioti et al., 2013; Sotoudehnia et al., 2020; Touray et al., 2014; Tsai et al., 2012) 
compared with biochars having a relatively higher surface area between 13.6 and 316 
m2/g produced from lignocellulosic-based biomass feedstocks with their structure 
preserved (Lee et al., 2013). During thermal decomposition of biomass, it is expected 
that restructuring and re-organization processes of the decomposing biopolymers would 
lead to the evolution of nanopores, identified as pyrogenic nanopores (Gray et al., 2014), 
within the biochar nanotexture. Keiluweit et al. (2010) conducted a molecular-level 
assessment study of the physical organization of biomass-derived biochar and observed 
a transition of the biomass, as it thermally decomposed, from transition chars to 
turbostratic char and also noticed a gradual increase in surface area with increasing 
proportions of turbostratic crystallites embedded in amorphous char.  Graphene layers 
that are irregularly stacked in bilayer are known as turbostratic crystallites (Inagaki and 
Kang, 2014a; Rouzaud et al., 2015). Consequently, knowledge of the proportion of 
feedstock components and their conformation, along with their thermal decomposition 
behaviour, will assist in the selection of feedstock that can produce high surface area 
biochar.        
 

Although the components of feedstock and their conformation can contribute to 
developing nanoporous biochar, the pyrolysis conditions that determine the degree of 
decomposition, dictate the extent of the surface area developed. Treatment temperature 
is the main pyrolysis condition that positively correlates with the thermal decomposition 
of biomass into successive phases of carbonization (Keiluweit et al., 2010). Components 
of lignocellulosic feedstock containing high volatile fraction such as extractives, 
cellulose and hemicellulose decomposed at < 400 °C. The remaining volatiles of 
intermediate products are released at heat treatment temperature between 400 °C and 500 
°C due to the transformation process of amorphous chars into turbostratic crystallites. At 
this temperature range, continuous release of volatiles and structural reorganization of 
the charring carbons results in increased surface area (Chen et al., 2017). The heating 
rate during biomass pyrolysis is also an important parameter that enhances surface area 
formation as the proportion of the pyrolysis products highly depends on the rate of 
heating feedstock. High heating rate enhances the release of volatiles and encourages the 
formation of porous char products (Rangabhashiyam and Balasubramanian, 2019). In 
contrast, Bouchelta et al. (2012) observed surface area increased with increasing heating 
rate from 1 to 10 °C and declined at higher heating rates. They attributed the former to 
enhanced heat and mass transfer, which encouraged the release of volatiles, and the latter 
to partial graphitization of the carbonizing biomass components. Duration of pyrolysis 
was reported to be significantly longer at lower treatment temperature for releasing of 
volatile matter, indicating the decreasing significance of residence time at high pyrolysis 
temperatures (Rutherford et al., 2012).  In general, pyrolysis temperature, retention time 
and heating rate are crucial production parameters that when optimally applied to a 
suitable feedstock can yield a high surface area biochar.   
      

The nanopore structure of biochar determines the extent of a surface area developed. As 
a result of thermal decomposition of biomass, different types and sizes of pores evolved 
in the final solid product. Pyrogenic nanopores – usually small-sized voids < 100 nm – 
evolved within the carbonized cell fibers due to release of volatiles, restructuring and 
reorganization of charring carbons. The large-sized pores (1 to 100 μm) known as the 
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residual macropores are inherited from plant cellular structure. These pores determine 
the total surface area of the biochar, and the majority of the surface area is located within 
the pyrogenic nanopores (Gray et al., 2014). The pyrogenic nanopores are identified as 
micropores (< 2 nm), mesopores (2 to 5 nm), and macropores (> 50 nm) based on the 
classification of International Union of Pure and Applied Chemistry (IUPAC). Bourke 
et al. (2007) proposed a nanotextural model to estimate the contribution of pyrogenic 
nanopores to the surface area. This model assumes the presence of voids within carbon 
graphene sheets forming turbostratic crystallite nanostructure. They attributed the 
reduction of surface area to a high proportion of amorphous carbon, which lacks voids 
and blocked pores within graphene sheets. Keiluweit et al. (2010) corroborated this 
assumption by studying the char forming mechanism of lignocellulosic-based biomass. 
Other nanotextural models simply assume the presence of pores within three-
dimensional randomly distributed turbostratic crystallites, in which porosity is observed 
to decrease with degree of graphitization (Inagaki and Kang, 2014b). These nanotextural 
models clearly demonstrate the relative contribution of pyrogenic nanopores on the 
extent of the surface area developed particularly for non-graphitizing biochar.             
 

1.2 Problem Statement 
 

Recently, the oil palm industry in Malaysia has growing interest on converting the huge 
amounts of oil palm biomass residues and palm oil mill effluent (POME) it generated 
into value-added products aiming at achieving zero-waste emission in the mills, and a 
more sustainable and profitable palm oil industry (Ali et al., 2015). Accordingly, there is 
increasing interest and attention on producing biochar from the residues for treating 
POME, particularly its final discharge. A variety of oil palm biomass residues have been 
considered for biochar production: palm kernel shell, mesocarp fibre, empty fruit bunch, 
palm kernel cake, palm oil mill sludge, frond and trunk (Kong et al., 2014). However, 
despite the abundance of the residues, selecting biomass precursor capable of yielding 
high surface area biochar with appropriate nanopore structure using simple 
environmentally friendly production method to effectively treat POME final discharge 
has always been challenging. This limitation leads to further activation step associated 
with high energy input or chemical use, putting the sustainability of the industry into 
question. Although a lot of research have been conducted on converting oil palm biomass 
into a high surface area biochar by physical activation (Abd Waft et al., 2017; Jia and 
Lua, 2008; Zainal et al., 2018), and on their performance for removing residual 
contaminants in POME final discharge (Amosa et al., 2014; Parthasarathy et al., 2016; 
Rugayah et al., 2014), little is known about the contribution of lignocellulosic 
components and steam pyrolysis, on the textural properties of biochar and how these 
properties interact with the residual organic contaminants to improve adsorption 
performance. Correlation between the components of feedstock and textural properties 
will guide in the production of engineered biochar suitable for treating a specific 
wastewater.  
 

Lignocellulosic biomass encompasses a multiscale complexity of an uneven mixture of 
cellulose, hemicellulose, and lignin with small fractions of nonstructural components 
such as extractives and ash (Wang et al., 2017). These structural components thermally 
decompose through different mechanisms following a series of reaction pathways to 
form a composite char having different nanopore structure (Kumar et al., 2020; Liu et 
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al., 2015). Cellulose is known to produce a higher fraction of non-aromatic chars before 
conversion into condensed aromatic chars with a higher surface area than lignin-derived 
char (Deng et al., 2016; Sharma et al., 2004, 2001). Li et al. (2014) compared the textural 
properties of biochars from cellulose, lignin, and Pinus radiata wood pyrolyzed at 400 
°C and 600 °C. Their findings showed that cellulose consistently produced biochar with 
higher surface area and total pore volume with a wider average pore size than biochar 
from lignin. Corroborating this claim, Deng et al. (2016) confirmed the presence of a 
lower percentage of micropores in cellulose-derived biochar – 80% for cellulose biochar 
and 87% for lignin biochar – suggesting that lignin predominantly produces microporous 
biochar. This finding is significant as the information on biochar nanopore structure can 
be partly deduced from the relative proportion of biomass structural components. Li et 
al. (2020) recommended that it would be more beneficial to investigate the control of 
biochar structure to produce biochar for targeted application. The outcome can be 
extended by broadening the scope into relating biomass components to biochar 
adsorption capacity.  
  

In addition, the thermal stability of lignocellulosic biomass decrease in flowing super-
heated steam atmosphere (Pütün et al., 2006; Pütün et al., 2008). Steam pyrolysis 
depressed the deposition of condensable volatile matter and preferentially removed 
amorphous carbons that could block pyrogenic nanopores in biochar (Antal and Grønli, 
2003; Bourke et al., 2007). Corroborating this claim, Önal et al. (2011) pyrolyzed potato 
skin waste at 550 °C under either nitrogen or steam flow and examined bio-oil yield of 
27.11 % and 41.09 % respectively. This means that steam activities during biomass 
pyrolysis encourage synthesis and removal of condensable volatiles. By this means 
promoting the evolution of pyrogenic nanopores in biochar nanotexture when compared 
to the conventional nitrogen pyrolysis. However, little information is available on the 
effect of steam as a pyrolyzing agent on biochar nanotexture.   
 

Effective treatment of POME final discharge requires high surface area biochar with the 
adequate nanopore structure and functional groups to interact with its contaminants. For 
the contaminants to have access to the adsorption sites, nanopore sizes of adsorbent must 
be wide enough to avoid pore blockage by larger contaminants. Most highly lignified 
biomass feedstocks produced microporous biochars that are often suitable for adsorbing 
microcontaminants (Daud and Ali, 2004). Therefore, the production of biochar with 
adequate nanopore sizes for a specific task will require selection of the right feedstock 
capable of yielding the required porosity at low energy input.   
 

Going by these assertions, it means that high cellulosic biomass feedstocks can produce 
high surface area biochar with wider nanopores using steam pyrolysis, which could be 
suitable for treating POME final discharge. Among the oil palm residues generated, oil 
palm frond best fulfils this criterion. In addition, it is the most abundant and renewable 
biomass in the oil palm industry, making it a cheap feedstock for biochar production. 
This research aims to fill the knowledge gaps mentioned by investigating the following 
hypothesis: (1) evolution of pyrogenic nanopores could be explained by composition and 
distribution of cellulose in biomass, (2) steam pyrolysis can improve the surface area of 
high cellulosic biomass at lower temperature and time, and (3) adsorption capacity of 
organic contaminants in POME final discharge and the aqueous solution is a function of 
biochar nanopores structure and surface area.         
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1.3 Research Objectives 
 

The purpose of this research is to examine and describe the evolution of nanopores and 
molecular structure of biochar targeting at producing high surface area adsorbent from 
oil palm frond using steam pyrolysis and evaluate the effect of the structural properties 
and operational conditions on adsorption of organic contaminants.  The specific 
objectives of this research are as follows:  
 

1. To assess the effect of cellulosic content on the evolution of pyrogenic nanopores 
and molecular structure of biochar. 

2. To evaluate steam and nitrogen pyrolysis methods and evaluate the effects of the 
steam pyrolysis process conditions on the textural and chemical properties of oil 
palm frond-derived biochar. 

3. To investigate the effects of the biochar structural properties, particle size and 
adsorption conditions on adsorption capacity of organic contaminants in aqueous 
solution and palm oil mill effluent final discharge. 

4. To identify the adsorption mechanisms during the interaction between the biochar 
from oil palm frond and the organic contaminants.   

 

1.4 Scope and Limitation of the Study 
 

The research activities carried out to achieve each objective is illustrated in Figure 1.1. 
The first objective involved characterization of cellulose, oil palm frond and palm kernel 
shell and production of their biochar at 630 °C followed by their analysis using 
thermogravimetric analysis, proximate and ultimate analysis,  X-ray diffraction, nitrogen 
adsorption-desorption isotherm, FTIR and point of zero charge pH aimed at correlating 
biomass cellulosic composition and pyrolysis with the evolution of nanopores and 
molecular structures and developing biochar structural nanopore model. The activity of 
the second objective included a comparison between steam and nitrogen pyrolysis 
methods and producing series of biochars from oil palm frond using one-step steam 
pyrolysis by varying pyrolysis temperature and retention time so that the one-step 
pyrolysis process performance could be evaluated based on the evolution of pyrogenic 
nanopores, surface area and surface functional groups. The third objective encompassed 
conducting a series of adsorption experiments using simple batch adsorption method for 
systematic evaluation of the effect of structural properties and particle size of the biochar 
from oil palm frond and adsorption conditions on the adsorption of organic contaminants 
in aqueous solution and POME final discharge. The final activity involved adsorption 
isotherm experiments and simulation of the isotherm data using appropriate equilibrium 
and kinetic isotherm expressions aimed at revealing the interaction mechanism between 
the biochar and organic contaminants and determined biochar condition suitable for 
adsorption.  
 

Evaluation of cellulosic content on evolution of pyrogenic nanopores in this study did 
not take into consideration the effect of biomass mineral content. Presence of some 
minerals results to catalytic effect during biomass pyrolysis and mineral such as silicon 
are known to suppress the formation of pyrogenic nanopores. Using steam as pyrolyzing 



© C
OPYRIG

HT U
PM

6 
 

agent requires additional energy for heating water to produce steam. This additional 
requirement necessitate for utilizing corrosive resistant boilers and piping materials.    
 

 
 
Figure 1.1: Graphical representation of the flow of research activities 

 

1.5 Significance of the Study 
 

The findings of this study will contribute significantly to the sustainability oil palm 
industry, considering that biochar has become an essential multifunctional material, 
particularly in environmental management. The greater demand of cost-effective biochar 
for treating POME final discharge in oil palm mills justifies the need for utilizing a high 
surface area biochar with adequate nanopores structure produce from oil palm biomass 
using a greener one-step steam pyrolysis approach. Therefore, mills that apply the 
biochar production protocols established in this study, which is easy and less time 
consuming, will be able to produce high surface area biochar with adequate nanopore 
structure to effectively treat their POME final discharge. The findings of this study will 
guide producers as to the most suitable biomass capable of producing high surface area 
biochar using one-step steam pyrolysis technique. For the research community, the study 
will point to a critical area for the evolution of pyrogenic nanopore in lignocellulosic-
based biochar that was not revealed before. Thus, a new model on biochar nanopore 
structure could be developed. 
 

1.6 Thesis Organization 
 

This thesis is structured into five chapters that begin with the introduction, followed by 
a literature review, then materials and methods before results and discussions and ends 
with conclusions and recommendations. References and appendices come after the fifth 
chapter. The basic background and problem that necessitates research on biochar 
production from oil palm frond are covered in the first chapter. Chapter 1 also covers the 
aim, objectives, scope and significance of the research. Chapter 2 deals with a 
comprehensive review of biochar structure and major production factors influencing its 
evolution. It also includes factors influencing biochar adsorption and its interaction 
mechanisms with organic contaminants, and previous studies on characteristics of 
POME final discharge. Chapter 3 covers a description of materials and equipment used, 

Characterization
■■ composition and ■■ omposisition andsic
thermal stability
■

y
■ nanopore model

Onene-e-step steam pyrolysis
■

p py y
■ Process performance

Batch adsorption test
■ adsorption 
performance

■ optimum adsorption 
coonditions

Equilibrium and 
kinetic isotherm test
■ biochar adsorption 

mechanisms
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the methods employed for biochar production and characterization, adsorption 
experiments, and data analysis. The fourth chapter presents the results and its thorough 
discussion and findings of the research. The final chapter provides the overall summary 
of the research findings and suggestions for further modifications and improvement.  
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APPENDICES 
 

Appendix A 
 

Raw data of FTIR analysis for raw CC 
 

PE IR                   SPECTRUM    ASCII       PEDS        1.60         
  -1 
~SP.SP 
20/09/07 
12:01:59.00 
20/09/07 
12:02:28.00 
Administrator 
 
650.000000 
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SPECTRUM 100, CPU32 MAIN 00.02.8200 12-DECEMBER-2006 10:00:00 
MIR TGS 
MIR 
 
77353 
0.200000 
 
4.000000 
STRONG 
RATIO 
SPECTRUM 
MAGNITUDE 
MIRACLE ATR 
DOUBLE 
 
COMBINED 
 
 
0 
 
 
#HDR 
-1 
-1 
#GR 
CM-1 
%T 
0.00002384185791015625 
0.0 
4000.000000 
-1.000000 



© C
OPYRIG

HT U
PM

137 
 

3351 
8 
100.000000 
3.162277 
#DATA 
4000.000000 86.869097   
3999.000000 86.617851   
3998.000000 86.446428   
3997.000000 86.395616   
3996.000000 86.460673   
3995.000000 86.604268   
3994.000000 86.757122   
3993.000000 86.835145   
3992.000000 86.797837   
3991.000000 86.673601   
3990.000000 86.529692   
3989.000000 86.442215   
3988.000000 86.466302   
3987.000000 86.602027   
3986.000000 86.784916   
3985.000000 86.911377   
3984.000000 86.890169   
3983.000000 86.689488   
3982.000000 86.354481   
3981.000000 85.985068   
3980.000000 85.680711   
3979.000000 85.484469   
3978.000000 85.368728   
3977.000000 85.276049   
3976.000000 85.173496   
3975.000000 85.065549   
3974.000000 84.968385   
3973.000000 84.892304   
3972.000000 84.853606   
3971.000000 84.885769   
3970.000000 85.019087   
3969.000000 85.245256   
3968.000000 85.509693   
3967.000000 85.742700   
3966.000000 85.895900   
3965.000000 85.955484   
3964.000000 85.926977   
3963.000000 85.814492   
3962.000000 85.623828   
3961.000000 85.375060   
3960.000000 85.098840   
3959.000000 84.807175   
3958.000000 84.468905   
3957.000000 84.032615   
3956.000000 83.480178   
3955.000000 82.860490   
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3954.000000 82.274320   
3953.000000 81.825942   
3952.000000 81.576383   
3951.000000 81.515883   
3950.000000 81.570858   
3949.000000 81.643122   
3948.000000 81.673681   
3947.000000 81.679430   
3946.000000 81.719894   
3945.000000 81.838558   
3944.000000 82.037483   
3943.000000 82.295937   
3942.000000 82.593139   
3941.000000 82.896850   
3940.000000 83.150216   
3939.000000 83.292211   
3938.000000 83.308487   
3937.000000 83.256260   
3936.000000 83.221525   
3935.000000 83.259786   
3934.000000 83.378220   
3933.000000 83.566296   
3932.000000 83.816242   
3931.000000 84.098475   
3930.000000 84.340451   
3929.000000 84.456455   
3928.000000 84.399386   
3927.000000 84.188658   
3926.000000 83.901033  
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Spectroscopic assignments for raw CC, OPF, PKS and their respective biochar 

 Cellulose Cellulose 
char 

OPF OPF 
char 

PKS PKS 
char 

Hydroxyl (-OH) stretch 3353 3466 3363 3456 3370 3463 
Aromatic C-H stretch - 3028 - 3024 3020 3023 
Symmetric stretch of 
aliphatic CH3  

- 2950 - 2950 2973 2950 

Asymmetric stretch of 
aliphatic CH3 

-  -  -  

Symmetric stretch of 
aliphatic CH2 

      

Asymmetric stretch of 
aliphatic CH2 

2885 2891 - 2883 - 2884 

Ester, carboxyl C=O 
stretching 

1731 1740 1724 1739 1740 1738 

Aromatic -C=C-, -
C=O- stretching 

1642 1634 1628 1636 1642 1635 

CH, CH2 and CH3 
deformation 

1428 1430 1418 1431 1425 1429 

-C-H or O-H bending 
vibration 

1369 1369 1358 1370 1369 1370 

C-O-C stretching 1057 1061 1043 1058 1051 1064 
Aromatic C-H out-of 
plane deformation 

- 888 - 888 - 895 

Aromatic C-H out-of 
plane deformation 

757 760 754 771 776 768 
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Appendix B 
 

Summary of nitrogen adsorption -desorption isotherms of biochar from 
commercial cellulose 
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Appendix C 
 

XRD profile of biochar from commercial cellulose 
///////////////////////////////////////////////////////////////////////////////// 

/// Profile Data Ascii Dump (XRD)                                             /// 
///////////////////////////////////////////////////////////////////////////////// 

 
  Group     : Syam 

  Data      : A_Bakar_Cell600(1) 
  File Name : A_Bakar_Cell600(1).RAW 

 
# Profile Datafile 

          Sample Name         = A_Bakar_Cell600(1)  
          comment             = start from 5 degree  
          date & time         = 20-08-26 16:24:37  

 
# Measurement Condition 

    X-ray tube 
          target              = Cu  

          voltage             = 30.0 (kV) 
          current             = 30.0 (mA) 

    Slits 
          divergence slit     = 1.00000 (deg)  

          scatter slit        = 1.00000 (deg)  
          receiving slit      = 0.30000 (mm)   

    Scanning 
          drive axis          = Theta-2Theta  

          scan range          =    5.000 -   50.000  
          scan mode           = Continuous Scan  
          scan speed          =   2.0000 (deg/min)  

          sampling pitch      =   0.0200 (deg)  
          preset time         =   0.60 (sec)  

 
# Data      [ Total No. = 2251 ] 

  <2Theta>   <   I   > 
     5.0000       184 
     5.0200       194 
     5.0400       194 
     5.0600       188 
     5.0800       190 
     5.1000       184 
     5.1200       186 
     5.1400       178 
     5.1600       194 
     5.1800       196 
     5.2000       176 
     5.2200       174 
     5.2400       178 
     5.2600       168 
     5.2800       204 
     5.3000       186 
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     5.3200       176 
     5.3400       186 
     5.3600       164 
     5.3800       180 
     5.4000       188 
     5.4200       146 
     5.4400       182 
     5.4600       214 
     5.4800       224 
     5.5000       162 
     5.5200       162 
     5.5400       202 
     5.5600       164 
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Appendix D 
 

TGA profile of commercial cellulose 
Filename: C:\Program Files\PerkinElmer\Pyris\data\Abu Bakar\VM 
Data\CELLULOSE CHAR VM.thd  
Operator ID: Abubakar  
Sample ID: CELLULOSE CHAR620  
Comment:    
Serial Number: 005031906  
Data Collected: 6/8/2020 3:20:09 PM  
Sample Weight: 16.078 mg  
Display Weight: 16.078  
Validation  
Validated: No  
By:   
Date:   
Calibration Information  
Filename: C:\Program Files\PerkinElmer\Pyris\Calibrations\Brian\Cal 21-05-
2015\Cal 18-03-2019.t6c  
Date/Time: 18/3/2019 10:06:59 AM  
Initial Conditions  
Temperature:  50.00 °C  
Baseline Filename:   
End Condition: Go To: 45.00°C  
Total Points in Run: 2328  
Method Steps:  
Pre-Run Actions  
Start the Run  
 Action occurs Immediately  
Switch the Gas to Nitrogen at 80.0 ml/min   
 Action occurs Immediately  
1) Heat from 50.00°C to 110.00°C at 50.00°C/min  
  
2) Hold for 15.0 min at 110.00°C  
  
3) Heat from 110.00°C to 950.00°C at 100.00°C/min  
    Step Detail: 500 
  
4) Hold for 7.0 min at 950.00°C  
  
5) Cool from 950.00°C to 110.00°C at 200.00°C/min  
  
6) Hold for 3.0 min at 110.00°C  
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1) TGA Temperature Scan  
 Time      Unsubtracted Baseline      Program      Sample     
 Approx.      R25 Diagnostic  
            Weight      Weight      Temperature Temperature
 Gas Flow      Temperature  
 0.000000 15.699768 0.000000 50.833333
 50.240000 79.800000 0.000000  
 0.016667 15.697618 0.000000 50.833333
 50.260000 79.800000 0.000000  
 0.033333 15.696328 0.000000 51.666667
 50.280000 79.800000 0.000000  
 0.050000 15.690952 0.000000 52.500000
 50.300000 79.800000 0.000000  
 0.066667 15.689662 0.000000 53.333333
 50.320000 79.800000 0.000000  
 0.083333 15.686222 0.000000 54.166667
 50.340000 79.800000 0.000000  
 0.100000 15.683857 0.000000 55.000000
 50.360000 79.800000 0.000000  
 0.116667 15.681492 0.000000 55.833333
 50.380000 79.800000 0.000000  
 0.133333 15.678697 0.000000 56.666667
 50.400000 79.800000 0.000000  
 0.150000 15.675901 0.000000 57.500000
 50.420000 79.800000 0.000000  
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Appendix E 
 

Structure of CC-BC, OPF-BC and PKS-BC 
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