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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Doctor of Philosophy 

DEVELOPMENT OF TEMPERATURE MEASUREMENT METHOD FOR GAS 
TURBINE COOLING APPLICATION 

By 

HELMEY RAMDHANEY BIN MOHD SAIAH 

January 2021 

Chair : Associate Professor Azmin Shakrine Mohd Rafie, PhD 
Faculty  : Engineering 

Temperature measurement are one of the essential part in gas turbine cooling 
research. The resulting heat transfer coefficient and adiabatic wall temperature 
are two of the important information analysed from the temperature data.  One 
dimensional semi-infinite heat transfer solution is widely used to solve for the 
heat transfer coefficient and adiabatic wall temperature. However, the 
experimental time for this solution was limited resulting in less temperature data 
for analysis. There is an issue regarding longer experimental time is needed to 
accurately calculate the heat transfer coefficient and the adiabatic wall 
temperature. A temperature measurement method was investigated to solve this 
issue. A test rig was designed to have similar test area to the wheel space area 
for a representative single stage gas turbine rig. Crank Nicolson finite difference 
method was proposed to solve for the internal temperatures of the test plate. In 
this work, the solution was designed to have two different back face boundary 
condition. First, an adiabatic back face boundary condition to simulate the one 
dimensional semi-infinite heat transfer condition. Second, a conduction-
convection back face boundary condition to solve the time limitation issue. The 
resultant heat transfer coefficient from adiabatic back face boundary condition 
had an average of 2.5% difference and the adiabatic wall temperature had an 
average of 2% difference when compared to reference values. Duration for heat 
transfer experiments were longer for the conduction-convection back face 
boundary condition, at Fo = 0.7 rather than Fo = 0.1. This results in an increase 
of 40% more temperature data range for the heat transfer analysis. For these 
experiments, the conduction-convection back face boundary condition had an 
average of 5% difference in heat transfer coefficient and 3.5% difference in 
adiabatic wall temperature. Meanwhile, the adiabatic back face boundary 
condition had an average of 11.3% difference in heat transfer coefficient and 
4.9% difference in adiabatic wall temperature when compared to reference 
values. Crank Nicolson solution method with conduction-convection back face 
boundary condition allowed more temperature data for analysis and provide 
more accurate heat transfer coefficient and adiabatic wall temperature values. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

PEMBANGUNAN KAEDAH PENGUKURAN SUHU BAGI APLIKASI 
PENYEJUKAN GAS TURBIN 

Oleh 

HELMEY RAMDHANEY BIN MOHD SAIAH 

Januari 2021 

Pengerusi : Profesor Madya Azmin Shakrine Mohd Rafie, PhD 
Fakulti : Kejuruteraan 

Pengukuran suhu adalah salah satu keperluan di dalam kajian penyejukan gas 
turbin. Pekali pemindahan haba dan suhu dinding adiabatik yang terhasil adalah 
dua maklumat penting yang dianalisis daripada data suhu. Kaedah penyelesaian 
pemindahan haba satu dimensi separa tak terhingga digunakan secra meluas 
bagi menyelesaikan pekali pemindahan haba dan suhu dinding adiabatik. 
Tetapi, masa eksperimen bagi kaedah penyelesaian ini adalah terhad dan 
menyebabkan kekurangan data suhu untuk analisis. Terdapat isu berkenaan 
durasi eksperimen yang lebih lama diperlukan bagi pengiraan pekali 
pemindahan haba dan suhu dinding adiabatik yang lebih jitu. Satu siasatan 
kaedah pengukuran suhu telah dilakukan bagi menyelesaikan isu ini. Sebuah 
pelantar ujian yang mempunyai kawasan ujian yang sama kepada kawasan 
ruang roda wakil gas turbin satu tahap telah direka. Kaedah perbezaan terhingga 
Crank Nicolson telah diusulkan bagi menyelesaikan suhu dalaman plat ujian. Di 
dalam kerja ini, kaedah penyelesaian tersebut telah direka supaya terdapat dua 
keadaan sempadan muka belakang. Pertama adalah keadaan muka belakang 
adiabatik bagi menyamai keadaan pemindahan haba satu dimensi separa tak 
terhingga. Kedua adalah keadaan sempadan muka belakang pengkonduksian-
perolakan bagi menyelesaikan isu masa yang terhad. Pekali pemindahan haba 
yang terhasil daripada keadaan sempadan muka belakang adiabatic mempunyai 
purata perbezaan sebanyak 2.5% dan suhu dinding adiabatik pula mempunyai 
purata perbezaan sebanyak 2% apabila dibandingkan kepada nilai rujukan. 
Masa eksperimen pemindahan haba bagi keadaan sempadan muka belakang 
pengkonduksian-perolakan adalah lebih lama iaitu pada Fo = 0.7 berbanding 
pada Fo = 0.1. Ini menghasilkan peningkatan julat data suhu sebanyak 40% bagi 
analisis pemindahan haba. Bagi eksperimen ini, keadaan sempadan muka 
belakang pengkonduksian-perolakan menghasilkan purata perbezaan sebanyak 
5% bagi pekali pemindahan haba, dan perbezaan sebanyak 3.5% bagi suhu 
dinding adiabatik. Sementara itu, keadaan sempadan muka belakang adiabatik 
menghasilkan purata perbezaan sebanyak 11.3% bagi pekali pemindahan haba, 
dan perbezaan sebanyak 4.9% bagi suhu dinding adiabatik apabuila 
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dibandingkan kepada nilai rujukan. Kaedah penyelesaian Crank Nicolson 
keadaan sempadan muka belakang pengkonduksian-perolakan membenarkan 
lebih banyak data suhu unutk dianalisis dan menghasilkan pekali pemindahan 
haba dan suhu dinding adiabatik yang lebih jitu. 
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CHAPTER 1 

 

INTRODUCTION 
 
 
1.1 Chapter overview 
 
 
The introduction chapter discussed the need for accurate heat transfer 
experiment and data analysing technique. Beginning with the basic operation of 
gas turbine engines, the need of increasing its turbine inlet temperature and the 
importance of integrating cooling technique into high temperature regions. 
Investigation on increasing the turbine inlet temperature leads to the introduction 
of cooling techniques in the turbine section. These investigation depend highly 
on the heat transfer analysis. The usual approach on the heat transfer 
experiment was utilising the one dimensional semi-infinite heat transfer condition 
and analysing method. However, this technique has its limitations that could be 
improvised. The current research work revolves around this issue. The 
objectives for the thesis were defined at the end of this chapter. 
 
 
1.2 The basic of gas turbine engines 
 
 
The gas turbine engine concept started a long way back in the early 1790’s. 
Since then theories began being defined, prototypes being designed, and 
ultimately, a real working gas turbine engine was being invented. Be it land, sea, 
or air, the gas turbine engine proved to be a beneficial power generator. The 
basis for a gas turbine engine is based on the Brayton thermodynamics cycle. 
The thermodynamic cycle involves isentropic compression, constant pressure 
combustion, isentropic expansion, and constant heat rejection. These four 
theoretical processes are achieved by the three core components of a gas 
turbine engine, the compressor, combustion chamber, and the turbine.  
 
 
The compressor section draws and compresses ambient air where the pressure 
and consequently the temperature of the intake air are increased. Majority of the 
compressed air is then directed to the combustion chamber where fuel is added 
in a specific ratio to the compressed air. The air-fuel mixture is then combusted 
at a constant pressure condition. The resultant combustion product, which 
possesses extremely high pressure, enters the turbine stage and expand 
isentropically. Power will be extracted from this particular stage to either drive 
the compressor, powers a mechanical drive application, driving speed reduction 
gears for generators, and/or produces thrust for aero-engines. Heat rejection at 
a constant pressure takes place in the atmosphere for an open cycle, while for a 
closed cycle the heat rejection process takes place in a heat exchanger unit. 
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The thermal efficiency, ηth, for this thermodynamic process operating at an 
optimal compression ratio is given by, Kadambi (2003); 
 

𝜂𝑡ℎ = 1 − (
𝑇𝑠𝑖𝑛𝑘

𝑇𝑠𝑜𝑢𝑟𝑐𝑒
)
1

2⁄         (1.1) 

 
Tsink is the temperature for energy rejection, usually taken as the ambient 
atmospheric temperature. Tsource is the maximum operating temperature in the 
Brayton cycle, which can be represented by the turbine stage entry temperature. 
Therefore, in order to increase the thermal efficiency, Tsink should be as low as 
possible and Tsource should be as high as possible. For an open Brayton cycle, 
Tsink can be as low as the atmospheric temperature. This is why flying in higher 
altitude where the temperature is significantly low is preferable. Tsource on the 
other hand, could be set to be high as possible only to be limited by the materials 
temperature limitations. In an ideal condition, the combustion process should be 
in a stoichiometric temperature of around 2000 °C where complete combustion 
occurs.  
 
 
Specific fuel consumption of a gas turbine can also be related to the thermal 
efficiency of the Brayton cycle. Higher turbine entry temperature would indicate 
that the combustion temperature is near the stoichiometric temperature. This is 
where optimal combustion process occurs and fuel is being combusted at its 
peak level. Engine designers tend to push the turbine entry temperature as high 
as possible in order to gain more power and optimize fuel consumption. This aim 
however, will jeopardize the functionality, and lifespan for the turbine stage 
components. The turbine stage, having components moving at high speed and 
being exposed to high temperatures can be regarded as the most crucial section 
in the gas turbine engine. Aiming for higher turbine entry temperature would 
eventually mean exceeding the temperature limitation for the turbine stage 
components material. Utilizing high temperature resistance materials such as 
nickel-based alloys and the implementation of turbine cooling systems allow the 
combustion gases to yield higher temperatures well exceeding the materials 
temperature limit.  
 
 
1.3 Gas turbine cooling technologies 
 
 
The variation of gas turbine engine can be classified into two major variations, 
the industrial gas turbines and aero-derivative gas turbine. Despite these 
variations, the gas turbine manufacturers share the same aim that is to increase 
the efficiency of the gas turbine engine. One of the ways to increase the 
efficiency of a gas turbine engine is to increase the turbine entry temperature. 
However, without utilising high temperature resistance materials and advanced 
cooling schemes, increasing the turbine entry temperature will only jeopardise 
the life span of the engine components. Development of high temperature 
resistance materials and advanced cooling schemes were introduced to increase 
the turbine entry temperature. Figure 1.1 shows higher turbine entry temperature 
achievable with the advancement of cooling technologies to gas turbine engine. 
The maximum allowable turbine entry temperature for uncooled turbines was in 
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the temperature region of 1200 K, but with advanced cooling technologies, the 
turbine entry temperature may be increased further to 2000 K.  

Figure 1.1: Advancement of cooling technology in gas turbine engine 
(Source: Han et al., 2013) 

 
The first involvement of gas turbine cooling technique was the introduction of 
turbine blade cooling. In the early stage of turbine blade cooling, cooling air, 
usually bled from the compressor stage, passes through internal passages in the 
turbine blade body to cool the turbine blade. This technique is well known as 
internal convection cooling technique. Promoting turbulence in the cooling 
passages enhances the heat transfer process. Further enhancement in the 
cooling technologies led the cooling air from the internal convective cooling 
arrangement to impingement cooling before ejecting them through small 
openings on the surface of the turbine blades. Impingement cooling involves 
impinging the coolant directly to the inner surface of the turbine blades. The basis 
of this technique is a flow with a lower temperature coming out from an orifice 
and cools the adjacent heated surface. 
 
 
Air from the impingement cooling scheme, will be ejected through small openings 
on the surface of the turbine blades. Parts of these small openings are called 
film cooling holes. The ejected coolant through these film cooling holes will act 
as a buffer between the hot mainstream gas flow and the outer surface of the 
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turbine blade. This thin layer of cooling air protects the turbine blades from a 
direct contact to the hot combustion gases. Arrangements of the film cooling 
holes determine the coverage area and the film cooling thickness. Another 
portion of the small openings for the ejected coolant air to the mainstream gas 
path is for transpiration cooling scheme. These holes are much smaller 
compared to the film cooling holes. This technique involves the idea of having 
the cooling air penetrating the turbine blade surface through porous walls. Even 
though known as one of the most efficient cooling technique, due to the very 
small size of the transpiration holes, there is a high possibility of the holes getting 
blocked which limits its applicability. 
 
 
Research concerning cooling technologies is highly dependent on the heat 
transfer aspect. The effectiveness of a cooling technique is governed by the 
interaction between the cooling air and the hot gas stream. 1% addition of bled 
compressor stage air to the cooling channels may require 11K rise in turbine 
entry temperature to maintain the same level of power output from the gas 
turbine engine, Nikolaidis et al. (2020). An ideal cooling technique is a technique 
which utilises the least amount of bled air from the compressor and produces 
optimal cooling. Typically, up to 20% of the total engine mass flow was used for 
cooling purposes, Rolls Royce (1996). The interaction between the cooling air 
and the hot gas stream can be predicted based on reliable heat transfer 
experiments. In a heat transfer experiment, the useful parameters are the heat 
transfer coefficient and the adiabatic wall temperature. 
 
 
1.4 Gas turbine heat transfer 
 
 
The heat transfer coefficient shows the rate of heat energy being transferred 
from one state to the other. Heat will always flow from a high temperature region 
to a low temperature region. High heat transfer coefficient indicates large amount 
of heat transfer process. In the case of cooling a hot material, high heat transfer 
coefficient indicates better cooling process. Adiabatic means no heat transfer, 
thus an adiabatic wall temperature indicates a specific surface temperature when 
the temperatures between fluid and solid surface are in thermal equilibrium and 
there is no heat transfer process.  
 
 
In actual gas turbine application, knowing the adiabatic wall temperature is 
important so that the turbine components would not operate over its metal 
temperature limit. Thus, adiabatic wall temperature could also signify the 
temperature limit for the turbine components. Under-prediction of adiabatic wall 
temperature may cause the components to work beyond its metal temperature 
limit. An increase of approximately 11 ˚C of metal temperature limit may reduce 
the lifespan of the components into half, Glezer (2003). Over-prediction of 
adiabatic wall temperature may keep the components well below the metal 
temperature limit but this also means excessive usage of cooling air. An effective 
cooling technique should allow the turbine components working within the metal 
temperature limit while utilising minimal amount of bled cooling air from the 
compressor. 
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Heat transfer experiments can be categorised into two conditions: steady state 
and transient. In steady state heat transfer experiments, the interaction between 
the hot and cold components can be said to be in a thermal equilibrium state. A 
condition where there will be no heat transfer process between the two 
components. Before reaching the thermal equilibrium, the heat transfer process 
is a function of time. This condition is called transient heat transfer. In transient 
heat transfer experiments, the important measurement will be the surface 
temperature history. From the surface temperature history data, the heat transfer 
coefficient and the adiabatic wall temperature can be calculated. Fourier one-
dimensional heat equation is often used together with the semi-infinite solid 
condition to analyse the surface temperature history data to obtain the heat 
transfer coefficient and the adiabatic wall temperature. 
 
 
The semi-infinite solid condition assumes heat conduction in one direction 
normal to the front surface of a solid without having significant heat loss through 
the back surface of the solid. If the temperature at the back surface changes 
more than 1% that of the front surface temperature, the semi-infinite solid 
condition became invalid. The heat transfer coefficient and adiabatic wall 
temperature calculated from this invalid condition will therefore be inaccurate 
and not reliable. 
 
 
1.5 Problem statement 
 
 
The general issue for researchers is to safely increase the turbine entry 
temperature without compromising the functionality of the components in the 
turbine stage. Introduction to the turbine cooling technique have made the 
increase in turbine entry temperature possible. The need for efficient cooling 
system in gas turbine engines is therefore crucial. An effective cooling system is 
achieved by conducting reliable heat transfer experiments which represent the 
real environment inside a gas turbine engine. These heat transfer experiments 
utilised reliable measurement methods using suitable sensing devices. The 
resultant experimental data will usually be analysed and validated based on 
standard correlation or previously published work by other researchers. 
Therefore, in order to conduct experiments concerning an effective cooling 
system, it is important to closely simulate the conditions of a gas turbine, utilising 
a reliable measurement method, and properly analyse the experimental data to 
obtain the necessary heat transfer parameter, the heat transfer coefficient and 
the adiabatic wall temperature. 
 
 
In transient heat transfer experiments, researchers often analyse the 
temperature history data using the semi-infinite solid condition. The solution of 
Fourier one-dimensional heat equation requires temperature history data as the 
input. The problem arises when only part of the surface temperature history data 
can be used as an input to calculate the heat transfer coefficient and adiabatic 
wall temperature due to the considerably short experimental time. This is to keep 
the semi-infinite solid condition valid. Assume an insulation type material with a 
thermal diffusivity of α and a thickness of L, the experimental time limit, tL, at 
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which the back surface temperature changes by 1% that of the front surface 
temperature is given by (Shultz and Jones 1973); 
  

𝑡𝐿 =
𝐿2

9𝛼
            (1.2) 

 
Based on the material properties of 15 mm thick polycarbonate, the experimental 
time limit is approximately 188s before the back surface temperature changes 
more than 1% of its front surface temperature. The surface temperature history 
up to 160s will then be used to calculate the heat flux data using the boundary 
condition at x = 0. Due to the insufficient input, the typical heat flux versus surface 
temperature relationship graph would not lead to q = 0. Therefore, an 
extrapolation of the linear q versus Ts relationship based on curve fitting tool is 
necessary to estimate the Tad at q = 0. However, this extrapolation is an error 
prone process. Therefore, an approach that could complement the time limitation 
and superposition of data will be proposed to accurately obtain the heat transfer 
coefficient and adiabatic wall temperature.  
 
 
1.6 Objectives 
 
 
The current field of research involves heat transfer studies in a gas turbine 
engine. The research work will focus on the investigation of techniques to obtain 
accurate result of heat transfer coefficient and adiabatic wall temperature for 
transient heat transfer case. A test rig must be designed to perform the 
experimentations. Properly calibrated temperature sensors are also crucial in 
order to perform the experimentations. Experiments involved will include both 
steady state and transient heat transfer conditions. Improvisations to the current 
experimental and analysis techniques will result in a more accurate calculation 
of heat transfer coefficient and adiabatic wall temperature.  
 
 
The specific objectives are as follows: 
 

a. To build a test rig for the heat transfer experiments and temperature 
sensor calibration.  

b. To perform one dimensional semi-infinite heat transfer experiments to 
calibrate the functionality of the test rig. 

c. To propose experimental and analysis method to provide more surface 
temperature data for accurate heat transfer analysis 

 
 
1.7 Novelty of research work 
 
 
Based on the proposed research objectives, the research novelty would be the 
temperature measurement and analysing method. This method will allow users 
to bypass the one dimensional semi-infinite heat transfer time limitation and 
subsequently acquiring a more accurate heat transfer coefficient and adiabatic 
wall temperature for gas turbine cooling technique application.  
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1.8 Scope of research 
 
 
The scope of study in this work is based on a representative single stage gas 
turbine rig. The test area of the test rig will have the same dimensions as the 
wheel space area of the representative rig. Polycarbonate will be used as the 
target plate. Even though hard plastic type material has slower surface 
temperature response, their smooth surface condition excludes surface 
roughness effect in the boundary layer analysis for the test rig. Foam type 
material such as Rohacell has faster surface temperature response, but their 
rough surfaces may affect the fluid and thermal behaviour on the target surface. 
The blower used in the experiments will have a range of 1500 – 2500 because 
at lower and higher RPMs, the blower output will be unstable. This setting is also 
configured for the power supply to the mesh heater. The maximum power supply 
set is at 90A to avoid damaging the mesh heater. The temperature measurement 
method chosen for this work is a point measurement approach. Infrared sensors 
would be used to acquire the full surface temperature history from the wetted 
surface and the back surface of the target plate. This method was also chosen 
because it is suitable for the chosen alternative solution, the Crank Nicolson finite 
difference method.  
 
 
The condition for the heat transfer process in this work would still involve part of 
the one dimensional semi-infinite heat transfer condition. The heat transfer 
process is assumed to be one dimensional, but the semi-infinite solid assumption 
would be neglected. The lateral heat transfer process at the back surface will not 
be considered in this work, as it will need thermal imaging or full surface area 
temperature sensor to monitor the heat transfer process at the back surface. This 
will result in additional analysing technique incorporated to the suggested Crank 
Nicolson solution. 
 
 
1.9 Thesis layout 
 
 
Chapter 1 – Introduction to gas turbine engine. The need of increasing turbine 
inlet temperatures to increase performance. Introduction to cooling techniques 
to support the continuous increase of turbine inlet temperature throughout the 
year. The importance of heat transfer experiments and analysing technique for 
the investigation of cooling techniques. Thesis problem statement and 
objectives. 
 
 
Chapter 2 – Previous work related to heat transfer experiments. Includes the 
selection of temperature sensors involved in heat transfer experiments. Methods 
of other researchers in introducing heated air to induced the heat transfer 
experiments. Analysing techniques used by other researcher in obtaining the 
heat transfer coefficient and adiabatic wall temperature. The motivation for 
conducting the current research work. 
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Chapter 3 – The methodology of the experimental research work. Detailed 
explanation on the experimental test rig, selected temperature sensors and the 
data acquisition system. Elaboration on the heat transfer solution techniques that 
were involved in the current research work. 
 
 
Chapter 4 – Results and discussions on the experimental findings. 
Commissioning test results on the characteristic of the blower, stainless steel 
mesh heater, and boundary layer analysis. The effect of having narrow channels 
in heat transfer experiments were presented. Justification on the capability of the 
test rig to conduct proper heat transfer experiments by conducting simple heat 
transfer experiments. Validating the proposed solution method against 
commonly used one dimensional semi-infinite heat transfer solution. Heat 
transfer results for the Crank Nicolson solution with modified back face boundary 
condition to allow longer experimental time.  
 
 
Chapter 5 – The summary of the findings in the research work, the contribution 
gained from the results, and the possible future work that could be conducted to 
extend the current work. 
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APPENDICES 
 
 

Appendix A 
 
 

Matlab coding for Crank Nicolson solution with adiabatic back face boundary 
condition 
 
clearvars; clc; format long; 
tic 
% Define material properties - Polycarbonate 
  
rho = 1200;  % density 
k = 0.2;   % thermal conductivity 
cp = 1250;  % specific heat 
  
alpha = k/(rho*cp); % thermal diffusivity 
  
L = 0.015; % test plate thickness 
  
% Reads excel file for experimental data input 
  
dn = xlsread('IR_temp_data_poly','Data','A5');  
% experimental data time step interval 
  
To = xlsread('IR_temp_data_poly','Data','B4');  
% initial temperature, Ti = temp at node i 
  
Tn = xlsread('IR_temp_data_poly','Data','B4:B1603');  
% range of Ts values, Fo = 0.1 
%Tn = xlsread('IR_temp_data_poly','Data','B4:B5903');  
% range of Ts values, Fo = 0.35 
  
N = length(Tn)/(1/dn); % end time @ experimental time  (s) 
  
di = 0.001 %input('Input spatial interval step (m): ');  
    % value of spatial step size in meters 
    % 0.0001 --- d = 1.3333 
    % 0.0003 --- d = 0.1481 
    % 0.0005 --- d = 0.0533 
    % 0.001  --- d = 0.0133 
     
    % according to Ex 7.2-2, diffusion number must be <0.5 
     
I = (L/di);      % total number of spatial step, nondimensional value 
Icount = I-1;    % to satisfy known condition when n=1,  
                 % initial boundary condition 
  
d = (alpha*dn)/(di^2); % diffusion number for CN equations 
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Tilist = ones(I,1)*To; % define initial condition for all Ti when n=1 @ To 
% define matrix and CN solver  
  
step1 = [d      2*(1-d)        d]; % RHS equation 
  
step2 = [-d     2*(1+d)       -d]; % LHS equation 
  
mat1 = zeros(Icount,I); % set matrix size for RHS 
  
mat2 = zeros(Icount,I); % set matrix size for LHS 
  
  
for icount = 1:Icount  
    % inserting the parameters for Eq C2 and C3 in the matrix 
    % possibly becasue for 1-14, the number starts from 0-14 
     
        if icount == Icount 
             
            mat1(end,end) = 1-d; 
            mat1(end,end-1) = d; 
             
            mat2(end,end) = 1+d; 
            mat2(end,end-1) = -d; 
             
        else 
            mat1(icount,icount:icount+2) = step1; 
            mat2(icount,icount:icount+2) = step2; 
            % here started at icount+1,  
            % so that at 1, the values are left unchanged 
             
        end 
         
end 
  
Tilistsave = Tilist; 
  
for Tcount = 2:length(Tn); 
     
    sol1 = mat1*Tilist; 
     
    Tilist(1,1)=Tn(Tcount,1); 
     
    Tilist(end,1)=To; 
     
    Tilist(2,1)=quant((sol1(1,1)-((-
d)*Tilist(1,1))+(d*Tilist(3,1)))/(2*(1+d)),0.000001); 
     
    Tilist(3,1)=quant((sol1(2,1)-((-
d)*Tilist(2,1))+(d*Tilist(4,1)))/(2*(1+d)),0.000001); 
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    Tilist(4,1)=quant((sol1(3,1)-((-
d)*Tilist(3,1))+(d*Tilist(5,1)))/(2*(1+d)),0.000001); 
     
    Tilist(5,1)=quant((sol1(4,1)-((-
d)*Tilist(4,1))+(d*Tilist(6,1)))/(2*(1+d)),0.000001); 
     
    Tilist(6,1)=quant((sol1(5,1)-((-
d)*Tilist(5,1))+(d*Tilist(7,1)))/(2*(1+d)),0.000001); 
     
    Tilist(7,1)=quant((sol1(6,1)-((-
d)*Tilist(6,1))+(d*Tilist(8,1)))/(2*(1+d)),0.000001); 
     
    Tilist(8,1)=quant((sol1(7,1)-((-
d)*Tilist(7,1))+(d*Tilist(9,1)))/(2*(1+d)),0.000001); 
     
    Tilist(9,1)=quant((sol1(8,1)-((-
d)*Tilist(8,1))+(d*Tilist(10,1)))/(2*(1+d)),0.000001); 
     
    Tilist(10,1)=quant((sol1(9,1)-((-
d)*Tilist(9,1))+(d*Tilist(11,1)))/(2*(1+d)),0.000001); 
     
    Tilist(11,1)=quant((sol1(10,1)-((-
d)*Tilist(10,1))+(d*Tilist(12,1)))/(2*(1+d)),0.000001); 
     
    Tilist(12,1)=quant((sol1(11,1)-((-
d)*Tilist(11,1))+(d*Tilist(13,1)))/(2*(1+d)),0.000001); 
     
    Tilist(13,1)=quant((sol1(12,1)-((-
d)*Tilist(12,1))+(d*Tilist(14,1)))/(2*(1+d)),0.000001); 
     
    Tilist(14,1)=quant((sol1(13,1)-((-
d)*Tilist(13,1))+(d*Tilist(15,1)))/(2*(1+d)),0.000001); 
     
    Tilistsave(:,Tcount)=Tilist;     
     
end  
     
Tilistsave; 
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Appendix B 
 
 

Matlab coding for Crank Nicolson solution with conduction-convection back face 
boundary condition. 
 
clearvars; clc; format compact; 
tic 
% Define material properties - Polycarbonate 
  
rho = 1200;  % density 
k = 0.2;   % thermal conductivity 
cp = 1250;  % specific heat 
  
alpha = k/(rho*cp); % thermal diffus ivity 
  
L = 0.015; % test plate thickness 
  
% Reads excel file for experimental data input 
  
dn = xlsread('IR_temp_data_poly','Data','A5');  
% experimental data time step interval 
  
To = xlsread('IR_temp_data_poly','Data','B4');  
% initial temperature, Ti = temp at node i 
Tob = xlsread('IR_temp_data_poly','Data','C4'); 
  
%Tn = xlsread('IR_temp_data_poly','Data','B4:B1603');  
% range of Ts values, Fo = 0.1 
%Tb = xlsread('IR_temp_data_poly','Data','C4:C1603'); 
% range of Ts values, Fo = 0.1 
  
%Tn = xlsread('IR_temp_data_poly','Data','B4:B5904');  
% range of Ts values, Fo = 0.35 
%Tb = xlsread('IR_temp_data_poly','Data','C4:C5904'); 
% range of Ts values, Fo = 0.35 
  
%Tn = xlsread('IR_temp_data_poly','Data','B4:B8404');  
% range of Ts values, Fo = 0.5 
%Tb = xlsread('IR_temp_data_poly','Data','C4:C8404'); 
% range of Ts values, Fo = 0.5 
  
Tn = xlsread('IR_temp_data_poly','Data','B4:B11804');  
% range of Ts values, Fo = 0.7 
Tb = xlsread('IR_temp_data_poly','Data','C4:C11804'); 
% range of Ts values, Fo = 0.7 
  
%Butterworth and Median Filtering 
%For BF, the input data needs to start from 0.  
%so all the data will be -To at first 
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[b,a] = butter(1,0.35); %set butterworth filter 
  
Tnf1 = filter(b,a,Tn-To); %Tn Butterworth filtered 
  
Tnf2 = medfilt1(Tnf1,1000); %Tn median filtered 
  
Tnf3 = Tnf2+To; 
  
Tbf1 = filter(b,a,Tb-Tob); %Tb Butterworth filtered 
  
Tbf2 = medfilt1(Tbf1,1000); %Tb median filtered 
  
Tbf3 = Tbf2+To; 
  
N = length(Tn)/(1/dn); % end time @ experimental time  (s) 
  
di = 0.001 %input('Input spatial interval step (m): ');  
    % value of spatial step size in meters 
    % 0.0001 --- d = 1.3333 
    % 0.0003 --- d = 0.1481 
    % 0.0005 --- d = 0.0533 
    % 0.001  --- d = 0.0133 
     
    % diffusion number must be <0.5 
     
I = (L/di);      % total number of spatial step, nondimensional value 
Icount = I-1;    % to satisfy known condition when n=1,  
                 % initial boundary condition 
  
d = (alpha*dn)/(di^2); % diffusion number for CN equations 
  
Tilist = ones(I,1)*To; % define initial condition for all Ti when n=1 @ To 
% define matrix and CN solver  
  
step1 = [d      2*(1-d)        d]; % RHS equation 
  
step2 = [-d     2*(1+d)       -d]; % LHS equation 
  
mat1 = zeros(Icount,I); % set matrix size for RHS 
  
mat2 = zeros(Icount,I); % set matrix size for LHS 
  
  
for icount = 1:Icount  
    % inserting the parameters for Eq C2 and C3 in the matrix 
     
        if icount == Icount 
             
            mat1(end,end) = 1-d; 
            mat1(end,end-1) = d; 
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            mat2(end,end) = 1+d; 
            mat2(end,end-1) = -d; 
             
        else 
            mat1(icount,icount:icount+2) = step1; 
            mat2(icount,icount:icount+2) = step2; 
            % here we started at icount+1,  
            % so that at 1, the values are left unchanged 
             
        end 
         
end 
  
Tilistsave = Tilist; 
  
for Tcount = 2:length(Tnf3); 
     
    sol1 = mat1*Tilist; 
     
    Tilist(1,1)=Tnf3(Tcount,1); 
     
    Tilist(end,1)=Tbf3(Tcount,1); %needs to be read from Tb data 
     
    Tilist(2,1)=quant((sol1(1,1)-((-
d)*Tilist(1,1))+(d*Tilist(3,1)))/(2*(1+d)),0.000001); 
     
    Tilist(3,1)=quant((sol1(2,1)-((-
d)*Tilist(2,1))+(d*Tilist(4,1)))/(2*(1+d)),0.000001); 
     
    Tilist(4,1)=quant((sol1(3,1)-((-
d)*Tilist(3,1))+(d*Tilist(5,1)))/(2*(1+d)),0.000001); 
     
    Tilist(5,1)=quant((sol1(4,1)-((-
d)*Tilist(4,1))+(d*Tilist(6,1)))/(2*(1+d)),0.000001); 
     
    Tilist(6,1)=quant((sol1(5,1)-((-
d)*Tilist(5,1))+(d*Tilist(7,1)))/(2*(1+d)),0.000001); 
     
    Tilist(7,1)=quant((sol1(6,1)-((-
d)*Tilist(6,1))+(d*Tilist(8,1)))/(2*(1+d)),0.000001); 
     
    Tilist(8,1)=quant((sol1(7,1)-((-
d)*Tilist(7,1))+(d*Tilist(9,1)))/(2*(1+d)),0.000001); 
     
    Tilist(9,1)=quant((sol1(8,1)-((-
d)*Tilist(8,1))+(d*Tilist(10,1)))/(2*(1+d)),0.000001); 
     
    Tilist(10,1)=quant((sol1(9,1)-((-
d)*Tilist(9,1))+(d*Tilist(11,1)))/(2*(1+d)),0.000001); 
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    Tilist(11,1)=quant((sol1(10,1)-((-
d)*Tilist(10,1))+(d*Tilist(12,1)))/(2*(1+d)),0.000001); 
     
    Tilist(12,1)=quant((sol1(11,1)-((-
d)*Tilist(11,1))+(d*Tilist(13,1)))/(2*(1+d)),0.000001); 
     
    Tilist(13,1)=quant((sol1(12,1)-((-
d)*Tilist(12,1))+(d*Tilist(14,1)))/(2*(1+d)),0.000001); 
     
    Tilist(14,1)=quant((sol1(13,1)-((-
d)*Tilist(13,1))+(d*Tilist(15,1)))/(2*(1+d)),0.000001); 
     
    Tilistsave(:,Tcount)=Tilist;     
     
end  
     
Tilistsave; 
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