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By 
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January 2021 
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Rigidoporus microporus is the fungus accountable for the white root rot disease 
that is detrimental to the rubber tree, Hevea brasiliensis. The pathogenicity 
mechanism of R. microporus and the identity of the fungal proteins and 
metabolites involved during the infection process remains unclear. It was 
suspected that the changes in R. microporus mycelial protein and metabolite 
profiles during interaction with the host plant leads to fungal virulence and this 
study aimed to identify the pathogenicity-related proteins and metabolites of two 
R. microporus isolates during in vitro interaction with H. brasiliensis. The two R. 
microporus isolates, Segamat (SEG) and Ayer Molek (AM) were used to inoculate 
H. brasiliensis clone RRIM 2025 in vitro and the mycelia adhering to the roots of 
the plant were collected for analysis. Transmission Electron Microscope (TEM) 
images acquired confirms the hyphae attachment and colonization of the mycelia 
on the root of the H. brasiliensis clones after four days of inoculation. The protein 
samples were subjected to 2-DE analysis and analyzed using MALDI-ToF MS/MS 
while the metabolites were extracted using methanol and analyzed using LC-
QToF MS/MS. Based on the differential proteomic and metabolomic analyses, 
fungal pathogenicity may be the result from protein upregulation that are essential 
for fungal growth such as malate dehydrogenase, fructose 1,6-biphosphate 
aldolase (FBA) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 
an increase in acidic compounds such as terepthalic acid, mefenamic acid and 
dihydropteroic acid that led to an increase in cell wall degrading enzyme activity. 
It can be concluded that the pathogenesis of RM might be related to metabolic 
pathways (e.g., glycolysis and gluconeogenesis) that involves responsive proteins 
such as FBA and GAPDH which can be the potential biological markers for early 
detection of the white root rot disease. 
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ANALISIS PERBEZAAN KE ATAS PROTEIN MISELIA DAN METABOLIT 
DARIPADA Rigidoporus microporus KETIKA INTERAKSI IN VITRO 

DENGAN Hevea brasiliensis Müll.Arg. 
 
 

Oleh 
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Januari 2021 
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Fakulti :   Bioteknologi dan Sains Biomolekul 
 
 
Rigidoporus microporus ialah kulat yang bertanggungjawab bagi penyakit akar 
reput putih yang berbahaya pada pokok getah, Hevea brasiliensis. Mekanisma 
kepatogenan R. microporus dan identiti protein dan metabolit kulat yang terlibat 
ketika proses jangkitan masih tidak jelas. Ia disyaki bahawa perubahan pada 
protein miselia R. microporus dan profil metabolit semasa interaksi dengan 
tumbuhan hos membawa kepada kevirulenan kulat dan kajian ini bertujuan 
untuk mengenalpasti protein dan metabolit yang berkaitan dengan patogen dua 
isolat R. microporus semasa interaksi in vitro dengan H. brasiliensis. Dua isolat 
R. microporus, Segamat (SEG) dan Ayer Molek (AM) telah digunakan bagi 
menginokulasikan klon H. brasiliensis RRIM 2025 in vitro dan miselia yang 
melekat pada akar tumbuhan tersebut diambil bagi tujuan analisis. Imej 
Mikroskop Elektron Transmisi (TEM) yang diperolehi mengesahkan ikatan hifa 
dan kolonisasi miselia pada akar klon H. brasiliensis selepas empat hari 
inokulasi. Sampel protein telah dianalisis menggunakan analisis 2-DE dan 
MALDI-ToF MS/MS manakala metabolit telah diekstrak menggunakan metanol 
dan dianalisis menggunakan LC-QToF MS/MS. Berdasarkan analisis perbezaan 
proteomik dan metabolomik, kepatogenan kulat mungkin adalah kesan daripada 
peningkatan protein yang penting bagi tumbesaran kulat seperti malat 
dehidrogenase, fruktosa 1,6-bifosfat aldolase, gliseraldehid-3-fosfat 
dehidrogenase dan peningkatan pada kompoun berasid seperti asid tereptalik, 
asid mefenamik dan asid dihidropteoik yang membawa kepada peningkatan 
aktiviti enzim pemecahan dinding sel. Di sini boleh disimpulkan bahawa 
kepatogenan RM mungkin berkaitan dengan laluan metabolik (e.g., glikolisis dan 
glikoneogenesis) yang melibatkan protein responsif seperti FBA dan GAPDH 
yang boleh menjadi penanda bio yang berpotensi bagi pengesanan awal 
penyakit akar putih.  
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CHAPTER 1 

1 INTRODUCTION 

Monoclonal Hevea brasiliensis is a tree valued for its latex content. The 
importance of this material has been greatly emphasized in the production of 
elastomers which is widely used in water, space and ship technologies 
(Omorusi, V.I, Eguavoen, O.I, Ogbebor, N.O, Bosah, B.O., Orumwense, K, Ijie, 
2014). Malaysia was considered one of the first and biggest countries producing 
natural rubber, with 46% of the total rubber production comes from Malaysia 
alone. However, the rubber plantation in Malaysia is affected by the ‘white root 
rot’ disease caused by the basidiomycetes fungus Rigidoporus microporus. This 
pathogen is a well-known destructive agent of the rubber trees, responsible for 
50% of yield losses in West Africa and was recognized as a significant endemic 
problem in Indonesia, Malaysia and Thailand (O. N. Ogbebor et al., 2013). 

The Hevea-fungus interactions involve attacks by R. microporus on the root of 
the Hevea tree. There are three stages of disease infection development: 
permeation, establishment, and decomposing. The mycelium of the pathogen 
enters the tree through the root system and degrades the host’s cell structure 
from there. The root rot pathogen of R. microporus must carry out the penetration 
and colonization of host’s cell wall repeatedly. The disease infection activities 
are carried out by enzymatic digestion of the tissues characterized by 
differentiation of specialized structures and after some time, half of the rubber 
trees in the plantation are lost to the disease (Omorusi et al., 2014). 

The detection of the white root rot disease in the early stages is difficult due to 
the trees are rapidly killed by the fungus which makes the usage of fungicide 
ineffective. When aboveground symptoms started to show, it already too late as 
the tree is already dying. Until recently, only little is known about the Rigidoporus 
species at the molecular level. The main problem in controlling the disease 
infection of the rubber tree is lack of sufficient information about fungus behavior 
during the interaction with the tree at biological and genetic level. 

Recently, due to the availability of the genomic sequences and resources, the 
study of fungal plant pathogens has increased through functional genomic 
analysis including proteomics, transcriptomics and metabolomics (K. C. Tan, 
Ipcho, et al., 2009). Although genomic-based investigation of host-pathogen 
interactions could give valuable information on the changes on gene expression, 
the study of changes in protein and metabolite abundance is also as important 
to identify the essential components during the interaction. This is because there 
is often poor correlation between transcript, protein, and metabolite abundance 
(Al-Obaidi et al., 2014). 
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Proteomics analysis is a method that can give us a lot of information about fungal 
pathogenicity by high-throughput studies. This approach allows identification of 
new fungal virulence factors, characterization of signal transduction signaling 
and pathways annotation. Using different software, the identification of the 
proteins will help us in understanding the protein interactions or biochemical 
pathways and study the fungal lifestyle and life cycles. This information can be 
used to provide new targets for disease crop diagnosis focused on fungicide 
design. In this sense, proteomic allows us to identify numerous differential 
proteins involved in multi-player crosstalk happening between plant and 
pathogens which could later potentially help us find novel biomarkers and 
characterize fungal strains in host pathogens interactions. 

Meanwhile, metabolomic analysis provide a comprehensive information of 
biological and biochemical processes by studying the metabolites within the 
system. Metabolites are the result of reactions; therefore, changes in metabolites 
can be considered a definitive response of cellular system in biotic and abiotic 
stresses (Srivastava, 2019). Presently, metabolomics techniques have been 
widely applied in pathogen-plant interactions; to identify fungi, determine 
infection mechanisms and detect interactions with host plants. Therefore, having 
another level of molecular analysis is helpful in filling the knowledge gap of 
molecular mechanisms of R. microporus pathogenicity towards H. brasiliensis 
as it is hypothesized that interaction between fungus and host plant leads to 
changes in fungal proteins and metabolites, resulting in fungal pathogenicity. 

Thus, this study exclusively aims to: 
 

1. To identify the pathogenicity-related mycelial proteins of two different 
pathogenic isolates of R. microporus during in vitro interaction with H. 
brasiliensis by proteomic approach. 

2. To identify the pathogenic metabolites from two R. microporus isolates 
involved during the in vitro interaction with H. brasiliensis by 
metabolomic approach. 
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