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The tunnel-form building system is gaining popularity due to its characteristics 
in time saving in construction. However, the tunnel-form structure is more 
vulnerable against lateral loads because of its large weight to stiffness ratio, 
which can potentially intensify the forces induced to the structure during 
seismic events. To improve this vulnerability during earthquake hazards, 
seismic base isolation systems can be incorporated into the tunnel-form 
structure. Among others, rubber isolators have been adopted extensively as 
effective base isolation systems for various building and bridge structures 
around the world. However, the most common shapes used for base isolators 
are circular and square, as the anisotropic isolation system has typically been 
designed by employing symmetrical-shaped seismic isolators. While, these 
configurations are not applicable for the tunnel-form building system, since the 
distribution of the loads corresponding to the shear wall does not provide a 
uniform support condition along the walls. Therefore, an attempt was made in 
this study to develop rectangular rubber isolators with couple cores that are 
applicable for tunnel-form structures. A rectangular isolator with dual lead cores 
instead of a single core is proposed to enhance the efficiency of the isolator 
along the direction of the wall in terms of lateral shear resistance and energy 
absorption capacity. Previous studies had revealed the poisoning effects of 
lead material exposure on the environment and human health. Thus, to avoid 
adverse effects caused by exposure to lead material, a rectangular isolator with 
dual rubber cores instead of lead cores was developed. In this study, the 
rubber cores in a rectangular isolator are confined with a single layer of CFRP 
wrap and stainless steel tube to improve the lateral shear behavior and 
damping ratio of the isolators. For the sake of comparison, a rectangular rubber 
isolator without cores is also considered in this study. Five full-scale 
rectangular isolators are manufactured and experimentally tested under a 
vertical compressive load and horizontal displacements to derive and evaluate 
their hysteresis response. Finite element models for the 5 mentioned large-
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scale isolators are developed, and their performance under cyclic loads is 
investigated. The experimental and numerical results were then compared and 
they showed a good agreement. Based on the experimental testing and 
simulation results, the CFRP and stainless-steel tube confinement were found 
effective in improving the behavior of rectangular isolators with rubber cores in 
terms of damping ratio and energy dissipation capacity. 

Furthermore, the proposed rectangular isolators are implemented into a 5-story 
tunnel-form structure, and nonlinear dynamic analyses were conducted for 
different structural performance levels. The seismic performance of the fixed 
base and base-isolated buildings is investigated by performing the Incremental 
Dynamic Analysis (IDA) using a suite of 10 pairs of earthquake ground motion 
records. Also, the fragility curves were created based upon the results of 
incremental dynamic analysis as it is one of the effective methods of 
conducting nonlinear dynamic analyses to gather data to estimate the fragility 
curves. In all models, the results showed that the probabilities of exceeding the 
Immediate Occupancy (I.O) performance level for coupling beams under both 
DBE and MCE hazard levels are less than 10 and 20%, respectively. This way, 
under both DBE and MCE hazard scenarios, these values for the walls are 
about 3 and less than 6%, respectively. It can be concluded that the tunnel-
form structure can practically satisfy the Immediate Occupancy (I.O) 
performance level by implementing the proposed rectangular isolator systems 
even under severe seismic excitations. 

Finally, the finite element parametric study based on the validated finite 
element models is conducted on 12 rectangular rubber isolators with one, two, 
and four square lead and rubber cores subjected to lateral cyclic loads. As in 
the case of prototype samples, the square rubber cores are confined with 
CFRP and steel layers which play a vital role, as concluded earlier, in 
improving the damping parameter of the proposed rectangular isolators. The 
numerical parametric study results showed a slight increase in the damping 
ratio with increasing the number of rubber cores. The results also indicated no 
remarkable difference between isolators tested along the length and those 
tested along the width. This shows that the response of the isolator does not 
depend on its shape rather than it is dependent on the amount and number of 
lead/rubber cores. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 

sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

PEMBANGUNAN ISOLATOR GETAH SEGI EMPAT TEPAT BAGI STRUKTUR 
BENTUK TEROWONG DI BAWAH PENGUJAAN SEISMOS  

Oleh 

ALTALABANI DIYAR NASIH QADER 

April 2021 

Pengerusi : Profesor Madya Farzad Hejazi, PhD 
Fakulti : Kejuruteraan 

Sistem bangunan berbentuk terowong semakin popular kerana ciri-ciri 
penjimatan masa dalam pembinaan. Walau bagaimanapun, struktur terowong 
lebih rentan terhadap beban lateral kerana nisbah berat dan kekakuannya 
yang besar, yang berpotensi dapat meningkatkan kekuatan yang disebabkan 
struktur pada kejadian seismik. Untuk memperbaiki kerentanan ini semasa 
bahaya gempa, sistem pengasingan pangkalan seismik dapat dimasukkan ke 
dalam struktur terowong dari. Antara lain, isolator getah telah diadopsi secara 
meluas sebagai sistem pengasingan asas yang berkesan untuk pelbagai 
struktur bangunan dan jambatan di seluruh dunia. Walau bagaimanapun, 
bentuk yang paling umum digunakan untuk pengasing asas adalah berbentuk 
bulat dan persegi, kerana sistem pengasingan anisotropik biasanya dirancang 
dengan menggunakan pengasing seismik berbentuk simetris. Walaupun, 
konfigurasi ini tidak berlaku untuk sistem bangunan bentuk terowong, kerana 
pengedaran beban yang sesuai dengan dinding ricih tidak memberikan 
keadaan sokongan yang seragam di sepanjang dinding. Oleh itu, percubaan 
dibuat dalam kajian ini untuk mengembangkan isolator getah segi empat 
dengan pasangan inti yang dapat digunakan untuk struktur bentuk terowong. 
Isolator segi empat tepat dengan dua teras utama dan bukannya satu teras 
dicadangkan untuk meningkatkan kecekapan pengasing sepanjang arah 
dinding dari segi ketahanan ricih lateral dan keupayaan penyerapan tenaga. 
Kajian terdahulu telah menunjukkan kesan keracunan pendedahan bahan 
plumbum terhadap persekitaran dan kesihatan manusia. Oleh itu, untuk 
mengelakkan kesan buruk yang disebabkan oleh pendedahan kepada bahan 
plumbum, sebuah isolator segi empat tepat dengan teras getah berganda dan 
bukannya teras plumbum dikembangkan. Dalam kajian ini, inti getah dalam 
isolator segi empat dibatasi dengan lapisan tunggal CFRP wrap dan tiub keluli 
tahan karat untuk memperbaiki tingkah laku ricih lateral dan nisbah redaman 
isolator. Sebagai perbandingan, pengasing getah segi empat tanpa teras juga 
dipertimbangkan dalam kajian ini. Lima pengasing segi empat tepat berskala 
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penuh dihasilkan dan diuji secara eksperimen di bawah beban mampatan 
menegak dan anjakan mendatar untuk mendapatkan dan menilai tindak balas 
histeresisnya. Model elemen hingga untuk 5 isolator berskala besar yang 
disebutkan telah dikembangkan, dan prestasi mereka di bawah beban siklik 
diselidiki. Hasil eksperimen dan berangka kemudian dibandingkan dan mereka 
menunjukkan persetujuan yang baik. Berdasarkan hasil ujian dan simulasi 
eksperimen, CFRP dan pengikat tiub tahan karat didapati berkesan dalam 
meningkatkan tingkah laku pengasing segi empat tepat dengan teras getah 
dari segi nisbah redaman dan kapasiti pelesapan tenaga. 

Selanjutnya, isolator segi empat tepat yang dicadangkan diimplementasikan ke 
dalam struktur terowong 5 tingkat, dan analisis dinamik nonlinier dilakukan 
untuk tahap prestasi struktur yang berbeza. Prestasi seismik bangunan tetap 
dan terpencil pangkalan disiasat dengan melakukan Analisis Dinamik 
Tambahan (IDA) menggunakan rangkaian 10 pasang rekod gerakan tanah 
gempa. Juga, lengkungan kerapuhan dibuat berdasarkan hasil analisis dinamik 
tambahan kerana ia adalah salah satu kaedah berkesan untuk melakukan 
analisis dinamik nonlinier untuk mengumpulkan data untuk menganggarkan 
keluk kerapuhan. Dalam semua model, hasilnya menunjukkan bahawa 
kebarangkalian melebihi tahap prestasi Penghunian Segera (I.O) untuk 
gandingan gandingan di bawah tahap bahaya DBE dan MCE masing-masing 
kurang dari 10 dan 20%. Dengan cara ini, di bawah senario bahaya DBE dan 
MCE, nilai-nilai untuk dinding masing-masing sekitar 3 dan kurang dari 6%. 
Dapat disimpulkan bahawa struktur bentuk terowong secara praktikal dapat 
memenuhi tahap prestasi Penghunian Segera (I.O) dengan menerapkan 
sistem isolator segi empat tepat yang dicadangkan walaupun dalam keadaan 
gegaran seismik yang teruk. 

Akhirnya, kajian parametrik elemen hingga berdasarkan model elemen 
terhingga yang disahkan dilakukan pada 12 isolator getah segi empat dengan 
teras timah dan getah satu, dua, dan empat persegi yang dikenakan beban 
siklik lateral. Seperti dalam contoh prototaip, inti getah persegi dibatasi dengan 
lapisan CFRP dan keluli yang memainkan peranan penting, seperti yang 
disimpulkan sebelumnya, dalam meningkatkan parameter redaman isolator 
segi empat tepat yang dicadangkan. Hasil kajian parametrik berangka 
menunjukkan sedikit peningkatan nisbah redaman dengan peningkatan 
bilangan teras getah. Hasilnya juga menunjukkan tidak ada perbezaan yang 
luar biasa antara isolator yang diuji sepanjang dan yang diuji sepanjang 
lebarnya. Ini menunjukkan bahawa tindak balas pengasing tidak bergantung 
pada bentuknya daripada bergantung pada jumlah dan bilangan teras 
plumbum / getah. 
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CHAPTER 1 

 

INTRODUCTION 

1.1  Introduction 

In most living areas, an earthquake as a devastating event affects its habitants, 
so the primary objective of earthquake scientists and researchers was to 
minimize the earthquake irreversible damage. The use of nonlinear dynamic 
analyses was expanded by passing the time and switching points of view from 
strength-based plotting to performance-based plotting. The performance-based 
design is the modern approach that was commonly used in the latest 
instructions and regulations (ASCE 41-13, 2013; ATC-40, 1996; FEMA 273, 
1997; FEMA 350, 2000; FEMA 356, 2000; FEMA P695, 2009). During seismic 
excitations, some tensions are generated in structures that advance the 
structural components toward yield and collapse (Providakis, 2008). The first 
stage in the seismic improvement of existing structures is the seismic 
vulnerability analysis. The vulnerabilities and deficiencies of structures are 
defined based on the evaluation methods carried out on them. Primarily, 
several limitations are existed in selecting the enhancement methods of 
structures that impact the adopted approach. One of the most economical and 
efficient strategies is to separate the foundation from the superstructure to 
prevent the damage caused by the earthquake, which decreases the energy 
generated by the earthquake without affecting the structure’s stability. The 
seismic performance-based design is the modern design approach used for 
evaluating the performance of structures through conducting the Incremental 
Dynamic Analysis (IDA) which includes scaling ground motion records to cover 
the entire domain of structure response, from elasticity to yielding, and then 
global dynamic instability (Mansouri et al., 2017). 

In high seismicity areas, seismic base isolator systems are frequently used to 
ensure the seismic protection of essential facilities. Earthquake experts have 
developed and installed various seismic base isolation systems (Kim et al., 
2019). Among others, seismic rubber isolators have been adopted extensively 
as isolation systems for various building and bridge structures worldwide. 
Although it is not possible to control the earthquake itself, its actual impact on 
the building can be controlled by mitigating the effects of the foundation’s 
movement on the superstructure by employing base isolators. Through 
installing seismic isolators between the foundation and superstructure, the 
isolation system offers improved stability and energy dissipation capacity. 
Although the use of conventional seismic isolator systems may be familiar in 
various countries around the world, rectangular rubber isolators have rarely 
been investigated for shear wall structures (Al-Kutti & Islam, 2019; Ismail et al., 
2010; Islam & Al-Kutti, 2018; Ounis & Ounis, 2013; Saha et al., 2015). The 
design of base-isolated structures is primarily based on the assumption that 
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when subjected to seismic excitations, the structure will effectively respond 
elastically. It is predicted that the damage caused by seismic forces will be 
concentrated in the isolators that are designed to be easily replaceable. As 
their design is aligned with the concepts of resilience, i.e., rapid restoration and 
low-damage, isolated structures are resilient. The use of steel shim layers 
alternating with rubber layers provides improved vertical stiffness to preserve 
the structure's self-weight and the isolator’s lateral flexibility (Kalfas et al., 
2017). 

The Industrialized Building System (IBS) is the construction process that most 
of its structural components such as walls, slabs, beams, columns, and 
staircases are pre-prepared in the factory and assembled on the site in a short 
amount of time with high-quality construction. This system is effective in 
projects that provide repetitive formation opportunities with today's refinements. 
Because of its industrialized modular construction method, the more repetitive 
steps there are, the greater the benefits. The system is especially suitable for 
multi-unit housing, student housing, military housing, hotels, single-family 
homes, townhouses, and prisons (Qasem, 2016). The tunnel-form building 
system is classified under the IBS which consists of shear walls and flat slabs. 
There are two primary functions of shear walls: carrying vertical loads (load-
bearing walls) and resisting lateral loads such as wind and seismic loads. 
During the construction process of the tunnel-form structural system, cast-in-
situ concrete is poured into two inverted L-shape steel formworks to 
simultaneously build the shear walls and flat slabs in a daily cycle. For every 24 
hours, the formwork is transferred to another building level. Upon finishing each 
story level, the construction process is repeated on the next floor and as a 
result, the residential units can be built up quickly. For this purpose, the tunnel-
form system is a unique alternative to repetitive plans for erecting medium to 
high-rise buildings. In this innovative system, precast components don’t exist in 
which the structural members such as shear walls and slabs are poured in 
place having almost the same thickness. This leads to minimize the number of 
joints and result in a symmetrical configuration in vertical and horizontal plan 
views of a monolithic structure, as well as to provide high seismic resistance. 

Malaysia is located close to the most seismically active region known as the 
earthquakes zone and volcanic eruption encircling the pacific ring of fire. 
However, Malaysia is deemed a low seismic zone under a far-field earthquake 
from Sumatra and near-field earthquakes from Bukit Tinggi to Kuala Lumpur 
fault lines (Hamid et al., 2014). The majority of existing reinforced concrete 
(RC) buildings in Malaysia have been designed based on the British BS8110 
code to sustain gravity loads, notional lateral loads, and wind loads, which has 
no specific provision for seismic loads (Qasem, 2016). Nevertheless, due to the 
regularly felt ground tremors from earthquake events in the neighboring 
countries and earthquakes of local origins that occurred in Malaysia, RC 
buildings may be at risk under a repetitive low cycle of failure that leads to 
significant damage of these buildings. For instance, the reinforced concrete 
school building in Sabah has experienced partial damages under an 
earthquake with a magnitude of 4.3 scale Richter. These damages indicate that 
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a structure’s overall performance could not sustain under a low magnitude of 
seismic excitation. If an unexpected earthquake occurs within 300 km of the 
epicenter of Malaysia, a significant collapse of these structures can happen 
(Hamid et al., 2014). Figure 1.1 shows the seismic activities surrounding the 
east and west of Malaysia (Syahrum, 2007). 

 

 Figure 1.1: Sea seismic activities surrounding Malaysia 
(Source: Syahrum, 2007) 

1.2  Research Hypothesis 

Energy dissipation covers any component used to reduce the movement of 
structures under dynamic excitation (e.g., wind, earthquakes). From the 
literature review, it is further observed that the majority of conventional lead 
rubber bearing isolators available in the market have a single lead core which 
is not sufficient for shear wall structures due to its great weight and stiffness. 
Therefore, increasing the number and amount of lead cores is crucial to 
achieving the high damping performance of the proposed rectangular rubber 
isolators along the wall direction of the tunnel-form building system. Although 
there are limited studies on rectangular isolators for shear wall structures, 
proper experimental tests and physical and material modeling of rectangular 
rubber isolators are not seen. On the other hand, the previous research studies 
proved the poisoning effects of lead material exposure on the environment and 
human health. Therefore, to avoid any harmful effects caused by the lead 
material, a rectangular isolator with rubber cores instead of lead cores will be 
developed. The literature review revealed that the rubber cores in the 
conventional base isolators are unconfined which resulted in a low viscous 
damping ratio and unable to withstand the great weight and stiffness of tunnel-
form structures under seismic activity and vibration. Thus, the rubber cores will 
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be confined with a single layer of CFRP wrap and stainless steel tube to 
increase the damping ratio of the isolation system via dissipating more energy 
and vibrations induced to the building. This study aims to develop a new type of 
seismic base isolator that uses a combination of lead or rubber cores to 
improve energy dissipation. Full-scale experimental testing will be conducted. A 
numerical model will be developed to investigate the device considering lateral 
cyclic loading. Scenarios involving different types of plugs will be considered; 
the stiffness and damping of the devices will be discussed. In the second half 
of the study, nonlinear time history analysis will be performed on a base-
isolated tunnel-form building with the bearings mentioned above. The 
structure’s response will be evaluated based on base shear, drift, and damage 
of the concrete structural elements. An incremental dynamic analysis will be 
performed, and fragility curves will be generated. 

1.3  Brief Review of Earlier Works 

Seismic rubber isolators are common types of seismic isolation systems. 
Numerous studies have been investigated under seismic excitation for 
mechanical simulation of these isolators. Cho et al. (2016) conducted 
comparative research on various models of rubber hyperelastic materials. The 
analysis is performed on lead rubber isolators with different rubber material 
properties. The study revealed that the Ogden model captures the material with 
fewer errors than other hyperelastic models. Ahmadipour and Alam (2017) 
presented the mechanical properties of a square lead rubber isolator with a 
sensitivity analysis. The research compared the isolators’ horizontal and 
vertical stiffness to various lead types, lead radius, and rubber layers. Their 
findings revealed that the radius of the lead core was the most influential 
parameter among the three variables above in effecting the quality of the lead 
rubber isolator. The degradation of vertical stiffness of laminated rubber 
isolators was performed under lateral shear loading by Yang et al. (2017). The 
analysis results revealed that the ratio of vertical stiffness is calculated only by 
the section proportion of the lateral deformation to the inertia radius, and is not 
affected by the section shape, direction of loading (compressive or tensile), and 
isolator size. Kalfas et al. (2017) and Kalfas and Mitoulis (2017) used finite 
element methods to examine the response of laminated rubber isolators under 
the effect of different axial loads. The study results indicated that increasing 
axial compressive load caused a remarkable decrease in the isolator stiffness. 
Their results indicated that the isolator demonstrates a fluctuate behavior when 
considering the combination of shear strain, axial loading, and rotation. Zeynali 
et al. (2018) carried out an experimental and numerical investigation on the use 
of lead rubber dampers in the chevron braced frame. They concluded that the 
isolator with a larger diameter of the lead core has a greater capacity for 
energy dissipation. Kumar and Whittaker (2018) proposed a mathematical 
model capable of providing the best estimate of the isolator’s response under 
extreme load. Xiang et al. (2018) conducted a shake table test of a highway 
bridge by enabling laminated rubber isolators to be slid with and without 
restraining equipment. Gauron et al. (2018) used experimental results to test 
the shear failure and lateral stability limit states of rubber bridge isolators. The 
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study findings demonstrated that the limited operating conditions seem to be 
virtually impossible, and why the majority of isolators do not show any damage 
before failure cannot be determined experimentally. Rahnavard and Thomas 
(2019) performed a theoretical study on the mechanical properties of 
elastomeric base isolators with various rubber cores under combined tensile 
and compressive loading effects. Their study showed that rubber isolators with 
different radially distributed circular rubber cores overcome those with a single 
central rubber core. In a more recent study, Rahnavard et al. (2020) performed 
a numerical investigation on the static and dynamic lateral stability of circular 
and square rubber isolators with different rubber cores. They concluded that 
using single and multiple rubber cores increases the lateral stability of the 
isolators due to the high critical axial forces. 

The innovative construction industry is gaining popularity in the structural 
engineering community and progressing increasingly towards more effective 
structural systems and technologies to minimize expenses, construction time, 
and human resources, as well as to improve the durability and stability of 
buildings during severe loading excitations such as intense earthquakes. 
However, the novel tunnel-form building systems may deliver many advantages 
in this regard, such as professional planning capacity, shortening the 
construction time, and ultimately contributing to a rapid return on assets 
(Mohsenian et al., 2019). All the vertical load-bearing members of this unique 
system are composed of walls and slabs classified as lateral and vertical load-
bearing components, which are cast in each story simultaneously. Since the 
walls and slabs are built simultaneously in each level, using a cold joint to 
maintain an integrated performance of the structure throughout an earthquake 
event is unnecessary (Tavafoghi & Eshghi, 2008). Although such structural 
systems are extensively being used in densely populated urban areas and 
industrial projects, relatively few studies in this field have been performed. 
There is absolutely no specification or standard that describes this novel 
system as a different load-bearing structural system. An analysis of the code-
based relationships for determining the fundamental vibration period found that 
the values obtained from the empirical relationships were either notably 
underestimated or overestimated; this inconsistency between the actual and 
empirical results demonstrated a deficiency in predicting the seismic demands 
(Mohsenian et al., 2019). 

Balkaya and Kalkan (2003) and Balkaya and Kalkan (2004) suggested some 
mathematical relationships to measure the fundamental vibration periods of 2 
and 5-story tunnel-form building structures with a varying number of stories and 
plans through performing a variety of pushover analyses. Correspondingly, the 
3D membrane behavior was observed to be a dominant force function in such 
buildings. Finally, for both shorter and taller buildings, response modification 
factors equal to 5 and 4 have been suggested. Yuksel and Kalkan (2007) and 
Kalkan and Yüksel (2008) examined the 3D behavior of intersection walls by 
conducting several tests on samples containing minimum reinforcement 
percentage for the small longitudinal reinforcement ratio. Using computer-aided 
design software, the analysis results showed that increasing longitudinal 
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reinforcement bars in the corners of the walls would have a desirable effect on 
their response and could vary the brittle fracture failure even in small 
reinforcement ratios. Tavafoghi and Eshghi (2008) performed different studies 
on tunnel-form building structures and their findings revealed that the 
fundamental period of vibration has depended on the building’s height in both 
directions. Thus, the number of walls, as well as the aspect ratio, were having a 
negligible impact on the building’s fundamental vibration period. Besides, Aval 
et al. (2018) assessed the seismic performance of the tunnel-form building that 
was subject to both near-field and far-field ground motion records using the 
effects of forward directivity. Based on the results, it has been indicated that 
forward directivity can affect the modes of failure of a tall tunnel-form building 
structure and minimize the design reliability. Recently, Mohsenian et al. (2019) 
evaluated the seismic performance of tunnel-form building structures, 
considering the soil-structure interaction effect. Depending on their numerical 
findings, the effects of SSI on the structural response such as story 
displacement, story shear force, and position of damage initiation became 
more significant with an increase in building heights and earthquake intensities. 

1.4  Problem Statement 

The problem statement of this study which derived through reviewing of the 
literature is summarized as follow: 

1- Currently, the most common isolators are available in a circular or 
square shape which is not applicable for the tunnel-form buildings as 
isolation systems, since the distribution of the shear wall loads (gravity 
loads) does not create a uniform support condition along the walls. 

2- The majority of conventional isolators have a single lead core which is 
insufficient for a tunnel-form structure due to its great weight and 
stiffness. Therefore, increasing the number and amount of lead core is 
essential to enhance the efficiency of the rectangular isolators along 
the wall direction of the tunnel-form system. 

3- Pervious research studies and international organizations are 
suggested to eliminate lead material due to its harmful effects on the 
environment and human health. Thus, an alternative material instead 
of the lead material is required to implement. 

4- The literature revealed that the rubber cores in the seismic isolators are 
unconfined, which resulted in a low energy absorption capacity. 
Therefore, confining the rubber cores with CFRP/steel layers is crucial 
since it acts as a full bounded jacketing to provide a remarkable lateral 
shear capacity and damping ratio for the rectangular isolators. 

1.5  Objectives of The Study 

The primary objectives of this research work can be summarized as follow: 
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1- To increase the viscous damping ratio of the rectangular rubber 
isolators for a tunnel-form structure subjected to seismic events. 

2- To experimentally investigate five full-scale rectangular rubber isolators 
with double lead and rubber cores under combined vertical and 
horizontal loads.  

3- To numerically propose rectangular rubber isolators with different 
square lead and rubber cores based on the validated finite element 
models. 

4- To apply the developed rectangular rubber isolators into 5-story base-
isolated tunnel-form structures and compare the results with the 
seismic performance of the fixed base structure. 

1.6  Scopes of The Study 

The primary scopes of this study are summarized as follow: 

1- The energy dissipation capacity of the rectangular isolators was 
increased by increasing the amount of the lead cores and confining the 
rubber cores with a CFRP sheet and stainless steel tube. 

2- The proposed design for the rectangular rubber isolators was 
evaluated through finite element simulations and experimental tests 
under combined vertical compressive and shear loadings. 

3- The finite element parametric study was conducted based on the 
validated models in order to propose rectangular isolators with a 
variety of square lead and rubber cores. 

4- The Incremental Dynamic Analysis (IDA) was performed and the 
fragility curves were generated in order to assess the seismic 
performance of the base-isolated buildings. 

1.7  Thesis Outlines 

Chapter One presents the introduction and general philosophy of the study. 
The problem statement and objectives of the present study are also illustrated 
in this chapter. Chapter Two reviews the previous research works related to 
the base isolation devices and their applications in the buildings. The seismic 
performance of the tunnel-form structures, including earlier researches in this 
field, is also presented. The experimental and numerical procedures of the 
proposed rectangular isolators are described in Chapter Three along with a 
brief explanation of the material properties and specifications used in this 
study. Experimental and numerical results are summarized and discussed in 
Chapter Four. The finite element parametric study based on the validated 
models is also conducted and its results are examined in this chapter. Chapter 
Five draws attention to embody the study’s conclusions and additional 
recommendations intended for future research works. 
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