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Iron oxide nanoparticles (Fe3O4 NPs) has a great potential to boost up plant growth. 
However, depending on the size, concentration and the plant type used, controversial 
results have been obtained. Therefore, their fate in the plant body should be investigated 
to lower the negative impacts and raising the beneficial impacts of the Fe3O4 NPs 
utilization on oil palm, major crop cultivated in Malaysia. Thus, the objectives of this 
study are 1) to investigate the impact of different Fe3O4 NPs concentrations i.e. (0, 800, 
1600 and 2400 mg/L) on the growth, leaf gas exchange and biochemical changes of 3-
months old oil palm seedlings and; 2) to study the physiological adaptation (growth, leaf 
gas exchange and biochemical properties) and uptake of Fe3O4 NPs by the 3-months old 
oil palm seedlings when exposed to low Fe3O4 NPs concentrations, i.e. (0, 200, 400 and 
600 mg/L). Both experiments were arranged in a randomized complete block design 
(RCBD) and replicated three times. The first experiment revealed that the oil palm 
seedlings unable to tolerate even the lowest concentration of Fe3O4 NPs (800 mg/L). The 
plant growth was not significantly affected by Fe3O4 NPs, but it significantly (p ≤ 0.05) 
reduced the SPAD chlorophyll value and the leaf total stomata density as compared to 
the control. Besides, the net photosynthesis is significantly reduced due to damage of 
photosynthetic apparatus of Fe3O4 NPs-stressed seedlings, in comparison to control. 
Moreover, the production of malondialdehyde (MDA) is positively correlated with the 
total volume of phenolics and total flavonoids. This observation indicates that an increase 
in MDA might be responsible for the up-regulation of the secondary metabolites 
production under high Fe3O4 NPs concentration application. Meanwhile, in the second 
experiment, the long-term exposure of low Fe3O4 NPs concentration application 
significantly reduced the plant height, total biomass, basal diameter, leaf number, total 
leaf area, and relative growth rate. Leaf gas exchange and chlorophyll fluorescence 
characteristics of treated seedlings decreased under high Fe3O4 NPs application, 
compared to the control. Electrolyte leakage (EL) and leaf respiration rate were gradually 
increased as the Fe3O4 NPs application elevated up to 600 mg/L. Proline, total phenolics, 
and iron content were significantly increased with Fe3O4 NPs application. The increasing 
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magnetic signal of electron spin resonance (ESR) spectra confirmed the existence of 
Fe3O4 NPs in root cells of the treatment plants. In conclusion, the uptake of Fe3O4 NPs 
at 200 to 2400 mg/L concentration dramatically reduced the oil palm seedlings growth 
as well as photosynthesis efficiency and production of secondary metabolites were 
elevated as physiological adaptation responses of oil palm seedlings to withstand the 
impact of Fe3O4 NPs application.  
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Nanopartikel besi oksida (Fe3O4) mempunyai kebolehan untuk meningkatkan 
pertumbuhan pokok. Walaubagaimanapun, bergantung pada saiz, kepekatan dan jenis 
pokok, keputusan kontroversi telah ditemui. Oleh itu, kehadiran Fe3O4 dalam system 
pokok perlu dikaji untuk mengurangkan kesan negative dan meningkatkan kesan 
berguna bagi tujuan penggunaan pada pokok kelapa wait. Dengan itu, objektif 
eksperimen pertama adalah untuk menyiasat impak konsentrasi Fe3O4 yang berlainan (0, 
800, 1600, 2400 mg/L) terhadap pertumbuhan, pertukaran gas daun dan perubahan 
biokimia anak pokok kelapa sawit berumur 3 bulan apabila dideahkan pada kepekatan 
yang tinggi dan; 2) untuk mengkaji adaptasi fisiologi (pertumbuhan, pertukaran gas daun 
dan biokimia) dan pengambilan Fe3O4 oleh anak pokok kelapa sawit berumur 3 bulan 
apabila terdedah kepada kepekatan Fe3O4 yang rendah iaitu (0, 200, 400 dan 600 mg/L). 
Kedua-dua eksperimen disusun dalam reka bentuk blok lengkap rawak (RCBD) dan 
direplikasi tiga kali. Eksperimen pertama menunjukkan bahawa anak kelapa sawit tidak 
dapat bertahan walaupun dengan kepekatan terendah Fe3O4 (800 mg/L). Pertumbuhan 
anak kelapa sawit tidak terjejas dengan ketara oleh Fe3O4, tetapi pengurangan nilai 
klorofil SPAD dan kepadatan keseluruhan stomata daun adalah ketara (p ≤ 0.05). Selain 
itu, kadar fotosintesis menurun dengan ketara disebabkan gangguan pada peralatan 
fotosintesis pada pokok yang dirawat dengan Fe3O4. Tambahan pula, pengeluaran 
malondialdehid (MDA) telah membentuk korelasi positif dengan jumlah fenolik dan 
jumlah flavonoid. Ini menunjukkan bahawa peningkatan MDA mungkin 
bertanggungjawab terhadap pengawalseliaan pengeluaran metabolit sekunder di bawah 
kepekatan Fe3O4 yang tinggi. Sementara itu, dalam eksperimen kedua, pendedahan 
jangka panjang konsentrasi rendah Fe3O4 telah mengurangkan ketinggian anak pokok, 
jumlah biojisim, ukur lilit pangkal, jumlah daun, luas daun, dan kadar pertumbuhan 
relatif dengan ketara. Pertukaran gas daun dan ciri-ciri pendarfluor klorofil anak pokok 
yang dirawat telah menurun di bawah konsentrasi Fe3O4 yang tinggi, berbanding dengan 
kawalan. Kadar kebocoran elektrolit (EL) dan kadar pernafasan daun didapati telah 
menaik secara beransur-ansur dipertingkatkan dengan peningkatan kepekatan Fe3O4
sehingga 600 mg/L. Peningkatan pengeluaran proline, jumlah fenol dan kandungan besi 
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diperhatikan di bawah kepekatan Fe3O4 yang tinggi. Peningkatan isyarat magnetik 
spektrum oleh resonans spin elektron (ESR) mengesahkan kewujudan Fe3O4 dalam sel 
tisu akar anak pokok yang terawat. Kesimpulannya, pengambilan Fe3O4 dari konsentrasi 
200 hingga 2400 mg/L telah menurunkan kadar pertumbuhan anak pokok sawit, 
kecekapan pertukaran gas daun dan peningkatan metabolit sekunder sebagai adaptasi 
fisiologi anak pokok sawit untuk bertahan dari kesan penggunaan Fe3O4. 
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CHAPTER 1

INTRODUCTION

Nanotechnology is an expanding industry that has practiced worldwide in all sectors of 
life including agriculture. A wide range of nanoparticles (NPs) impacts on plants has 
been proven, which exhibits that the positive and negative impacts depend on their size, 
concentration and the plant type used (Tombuloglu et al., 2019). It has been estimated 
that the production of NPs will rise to 58,000 tons by 2020 and iron oxide NPs will be 
the major contributor (Maynard et al., 2006). 

Bulk iron oxides have been modified to nanosized particles (1-100nm size), which 
increasing supply of iron to plants. Thus, iron oxide NPs have a great potential in making 
their way in agriculture and other industries development due to their unique properties, 
such as high surface energy, increased surface area-to-volume ratio, and a number of 
catalytic properties (Sun et al., 2015). Based on the uniqueness of these characteristics, 
magnetite (Fe3O4), have gained more importance among the other iron oxide NPs (Wu
et al., 2015). 

The first research using Fe3O4 NPs in plants was made by Zhu et al. (2008), who showed 
a significant Fe3O4 NPs uptake, translocation and accumulation in various tissues of 
pumpkin (Cucurbita maxima) plants without toxic effects at concentration of 500 mg/L.
Ghafariyan et al. (2013) showed that Fe3O4 NPs enter from soybean roots, translocated 
in the aerial part and increase the chlorophyll content and enzymatic efficiency of 
photosynthesis. 

Differ from the beneficial uses of Fe3O4 NPs, researchers have identified contradicting 
findings when plants were treated with high concentration for long durations of exposure 
(Bombin et al., 2015; Shukla et al., 2003). The inhibitory effects impacted the seed 
germination, growth of seedling and metabolic process that are directly proportional to 
yield production (Bombin et al., 2015).

Along with positive and negative effects of Fe3O4 NPs on plant growth and development, 
the extensive use of Fe3O4 NPs in every aspect of life have raise concerns about its 
impacts on environmental issues. In example, Malaysia export huge amount of iron ore 
that mostly carrying 60% magnetite, which is one of the main raw materials to make 
steel. In Pengerang Johor, 146-hectare ex-bauxite mine land (formerly occupied by 
oxisols) have been planted with oil palm. Oxisols is soil of tropical region dominated by 
iron oxide. Over years, the oil palm trunk became smaller due to lack macronutrients and 
excess toxic metals present cause nutrient imbalance (Shamshuddin, 2016).

Hence, to obtain the maximum benefits from Fe3O4 NPs instead of adverse impacts, it is 
a crucial need for further research and more critical investigation about effects of Fe3O4
NPs on physiological, photosynthesis and biochemical in gaining a better understanding 
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about the plant health status after exposed to Fe3O4 NPs application. With that, the 
current study investigates the impact of Fe3O4 NPs to the growth and development of oil 
palm (Elaeis guineensis Jacq.), one of the widely cultivated and economically important 
crop in the world. The objectives of this study are 1) to investigate the impact of different 
Fe3O4 NPs concentrations i.e. (0, 800, 1600 and 2400 mg/L) on the growth, leaf gas 
exchange and biochemical changes of 3-months old oil palm seedlings and; 2) to study 
the physiological adaptation (growth, leaf gas exchange and biochemical changes) and 
uptake of Fe3O4 NPs by the 3-months old oil palm seedlings when exposed to low 
concentrations, i.e. (0, 200, 400 and 600 mg/L). 
 
 
It is hypothesized that oil palm treated with high concentration of Fe3O4 NPs would 
initiate clogging effects and their potential adherence to the root surface causes adverse 
effects on growth due to decreasing leaf gas exchange characteristics. It is also 
hypothesized that secondary metabolites (total phenolics and total flavonoids) would be 
enhanced as adaptive response towards long exposure of low Fe3O4NPs concentration. 
The Fe3O4 NPs would be expected to show less aggregation and lead to higher uptake 
that has been shown with increased electron spin resonance signal. 
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