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ABSTRACT 
Seasonality is one of the components in time series analysis and this seasonal component may occur 

more than one time. Thus, modelling the seasonality by using one seasonal component is not enough 

and could produce less forecast accuracy. Autoregressive Integrated Moving Average (ARIMA) models 

is the fundamental method in developing the seasonal ARIMA for one seasonality or more than one 

seasonality.  Therefore, to validate the method performance, the hourly air quality data with double 

seasonality were carried out as the case study.  The model identification step to determine the order of 

ARIMA model was done by using MINITAB program and the model estimation step by using SAS 

program and Excel. The results showed that the double seasonal ARIMA able to model and forecast the 

air quality data with high frequency.  
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INTRODUCTION 

 

Time series is a set of observations that have been recorded at a specific time. The main objective 

of time series analysis is to develop a mathematical model that can forecast future observations 

based on previous data. Time series data may involve four different components which are trend, 

seasonal, cyclical, and irregular. Trend is an upward and downward movement that shows in the 

time series data over a period of time. Seasonal is refer to the same pattern that repeats periodically 

within a calendar year meanwhile cyclical also refers to recurring up and down movements around 

trend levels however the period of cycle is greater than a year and not regular as seasonal variations. 

Irregular is refer to the erratic movements in a time series caused by unpredictable events usually 

define as error. 

The Box-Jenkins or ARIMA is classified as a linear model that is capable in presenting 

different type of series components and able to model both stationary and non-stationary series. 

Therefore, Box-Jenkins method widely used in many fields especially in statistics, management 

science, marketing and business operation (Azka et al., 2020; Benvenuto et al., 2020; Khanarsa 

and Sinapiromsaran, 2017; Urrutia et al., 2017). Box-Jenkins methods is crucial in forecasting 

which it inclusive Autoregressive (AR) model, the Integrated (I) model and the Moving Average 

(MA) model (Hanke and Wichern, 2005). Autoregressive (AR) model provides forecast as linear 

function of finite number of past values, while Moving Average (MA) model forecasts based on a 

linear combination of a finite number of past errors. Autoregressive Moving Average (ARMA) 

model is a mixed between Autoregressive (AR) and Moving Average (MA) model.  

ARMA, AR and MA models are suitable for stationary data. On the other hand, 

Autoregressive Integrated Moving Average (ARIMA) model is used when the data is non-

stationary. Since there are seasonality that repeatedly occur in many types of data, researcher tend 

to develop seasonal ARIMA (SARIMA) model and mainly used for non-stationary data with 

seasonal pattern (Rahman et al., 2019; Azka et al., 2020). However, time series could contain 

multiple seasonal cycles of different lengths (Hassan, et al., 2012). As an example, in a time series 

data, the seasonality may occur in yearly, weekly, and daily variations. Due to the presence of 

double seasonal pattern in the data such as hourly and weekly seasonality, the double seasonal 
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ARIMA model is more suitable in modelling such data. This study will present the step in 

modelling double SARIMA and study the accuracy of the model building. 

 

MATERIALS AND METHODS 

 

The stationary test is used to determine either the series is stationary or non-stationary. For this 

study, the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test is used. The purpose of KPSS test is 

to test the null hypothesis which is stationary based on p-value where, 

 

H0: A series is stationary. 

Ha: A series is nonstationary 

 

According to Shin and Schmidt (1992), the components of KPSS are representation of 𝑦𝑡 as the 

sum of a linear deterministic trend, a random walk, and a stationary error: 

 

𝑦𝑡 = 𝜓𝑡 + 𝑟𝑡 + 𝜀𝑡 (2) 

where 𝑟𝑡 is a random walk: 

𝑟𝑡 = 𝑟𝑡−1 + 𝑢𝑡, 𝑢𝑡~𝑊𝑁(0, 𝜎𝑢
2) (3) 

The error 𝜀𝑡  is stationary that makes stationarity hypothesis is 𝜎𝑢
2 = 0 and 𝑦𝑡 is trend stationary. 

KPSS test statistics can be expressed in the form of: 

𝐾𝑃𝑆𝑆 = (𝑇−2 ∑ �̂�𝑡
2

𝑇

𝑡=1

) /�̂�2 
(4) 

 

Double seasonal ARIMA (SARIMA) model was developed due to the occurrence of double 

seasonal pattern in the data set. This model of the general multiplicative double seasonal ARIMA 

(SARIMA) can be written as: 

 

𝜙𝑝(𝐵)Φ𝑃1(𝐵𝑆1)Π𝑃2(𝐵𝑆2)(1 − 𝐵)𝑑(1 − 𝐵𝑆1)𝐷1(1 − 𝐵𝑆2)𝐷2𝑌𝑡

= 𝜃𝑞(𝐵)Θ𝑄1(𝐵𝑆1)Ψ𝑄2(𝐵𝑆2)𝜀𝑡 

(1) 

 

where 

 
𝜙𝑝(𝐵) = 1 − 𝜙1𝐵1 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑝 

Φ𝑃1(𝐵𝑆1) = 1 − Φ1𝐵𝑆1 − Φ2𝐵2𝑆1 − ⋯ − Φ𝑃1𝐵𝑃1𝑆1 

Π𝑃2(𝐵𝑆2) = 1 − Π1𝐵𝑆2 − Π2𝐵2𝑆2 − ⋯ − Π𝑃2𝐵𝑃2𝑆2 

𝜃𝑞(𝐵) = 1 − 𝜃1𝐵1 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞 

Θ𝑄1(𝐵𝑆1) = 1 − Θ1𝐵𝑆1 − Θ2𝐵2𝑆1 − ⋯ − Θ𝑄1𝐵𝑄1𝑆1 

Ψ𝑄2(𝐵𝑆2) = 1 − Ψ1𝐵𝑆2 − Ψ2𝐵2𝑆2 − ⋯ − Ψ𝑄2𝐵𝑄2𝑆1 

 

where 𝐵 denotes the backward shift operator; 𝑑, 𝐷1 and 𝐷2 denote the non-seasonal, first seasonal 

and second seasonal order of differences, respectively. The model can be abbreviated as SARIMA 

(𝑝, 𝑑, 𝑞)(𝑃1, 𝐷1, 𝑄1)𝑆1(𝑃2, 𝐷2, 𝑄2)𝑆2. 

Three main steps that must be considered in building the ARIMA model for forecasting 

include; (a) tentative identification, (b) parameter estimation, and (c) diagnostic checking 

(Hyndman and Athanasopoulos, 2018). The tentative identification step is used to identify an 
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appropriate Box-Jenkins model. The identification is based on autocorrelation function (ACF) and 

partial autocorrelation function (PACF). When the tentative model is specified, the historical data 

are used to estimate the parameters of the tentatively identified model.  In this study, least square 

method is used to estimate the parameters. Finally, the adequacy of the model is check in 

diagnostic checking step. These three steps could be repeated for several times until a satisfactory 

of model is finally selected. This process can be simplified as Figure 1 below: 
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Source: Hanke, J. E., & Wichern, D. W. (2005) 

 

Figure 1: Flow Diagram for the Box-Jenkins Model-Building Strategy 

 

Finally, the accepted model will be use in forecasting and the performance will be validate by 

using mean absolute percentage error (MAPE). MAPE is often used in practice because of its very 

intuitive interpretation in terms of relative error (de Myttenaere et al., 2016). Then, the Lewis’ 

judgement scale (Table 1) is referred to determine the forecast accuracy from the computed MAPE 

values (Lewis, 1982). 

 

Table 1: Lewis’ judgement scale 

MAPE Accuracy 

≤ 10% High 

10% to 20% Good 

21% to 50% Reasonable 

≥ 51% Inaccurate 

 

RESULTS AND DISCUSSION 

 

The following were the results in building an ARIMA model based on the procedure from Box-

Jenkins model. Three years (2014-2016) hourly air quality data were used as case study. The data 

were divided into two data sets, namely: (1) a training data set from 1st January 2014 until 30th 

November 2016 (25563 observations) to identify the model, and (2) a test data set in December 

2016 with a total of 744 observations to check the model performance. The data plot was shown 

in Figure 1.  

Postulate General Class of Models 

Identify Model to be Tentatively Entertained 

Estimate Parameters in Tentatively Entertained Model 

Diagnostic Checking (Is the model adequate?) 

Use Model for Forecasting 
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Figure 1: Time series plot 

 

  
(a) (b) 

 

Figure 2: (a) Autocorrelation Function; (b) Partial Autocorrelation Function from original data 

 

 

The plot based on Figure 1 shows the data was nonstationary since exist seasonality and increasing 

variations. Meanwhile, the correlation dies down slowly in ACF indicated nonstationary 

characteristic in Figure 2. The argument also proven by using stationary test, KPSS test. The p-

value was 0.01, smaller than α=0.05. Transformation and three times differencing had been 

performed which are non-seasonal differencing (d = 1), hourly seasonal differencing (D1 = 1; S1 

= 24) and weekly seasonal differencing (D2 = 1; S2 = 168) to fulfil stationary condition. By using 

KPSS test to the new data, the p-value become 0.10 which was greater than α=0.05. Therefore, the 

new data was stationary. 

The stationary ACF and PACF were shown in Figure 3. Four double seasonal models had 

been identified from Figure 3. SARIMA (0,1,1)(0,1,1)24(0,1,1)168 , 

SARIMA (0,1,3)(0,1,1)24(0,1,1)168 , SARIMA (1,1,0)(0,1,1)24(0,1,1)168  and 

SARIMA (1,1,1)(0,1,1)24(0,1,1)168  denoted as Model 1, Model 2, Model 3, and Model 4, 

respectively. The models then were validated using in-sample data and four forecast horizons (out-

sample) for one week, two weeks, three weeks and four weeks ahead. The results were shown in 

Table 2. 
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(a) (b) 

 

Figure 3: (a) Autocorrelation Function; (b) Partial Autocorrelation Function from stationary data 

 

Table 2: MAPE for in-sample and out-sample forecast 

Forecast Model 1 Model 2 Model 3 Model 4 

In-Sample 2.6901 2.6820 0.6189 0.5077 

Out-Sample     

One week 5.1084 5.1068 1.0578 0.9448 

Two weeks 4.2608 4.2634 1.001 0.9509 

Three weeks 4.2595 4.2559 1.1574 1.0108 

Four weeks 4.1797 4.1805 1.4430 1.3077 

 

 

From Table 2, all the models gave high accuracy since the forecast errors were below 10%. 

However, Model 4 provide the best forecasting model compared to other three models. As shown, 

the errors were 0.5077%, 0.9448%, 0.9509%, 1.0107% and 1.3077% for in-sample, one week, two 

weeks, three weeks, and four weeks ahead, respectively. Thus, Model 4 can be written as: 

 
(1 − 𝜙𝐵)(1 − 𝐵)(1 − 𝐵24)(1 − 𝐵168)𝑌𝑡 = (1 − 𝜃𝐵)(1 − Θ1𝐵24)(1 − Ψ1𝐵𝑆2)𝜀𝑡 (2) 

 

 

CONCLUSION 

 

This paper has discussed double seasonal ARIMA in forecasting data with two seasonality, hourly 

and weekly. The forecast accuracy for in-sample and out-sample real data were tested using mean 

absolute percentage error (MAPE). All the identified model produced higher accuracy since below 

10% of error with Model 4, SARIMA  (1,1,1)(0,1,1)24(0,1,1)168 gave the best forecast result. This 

study gives valuable contribution into forecasting the data with multiple seasonal components. In 

addition, this model can be set as the benchmark method for modelling and forecasting time series 

data with great accuracies. Future work can include other model identification, subset and additive 

into Box-Jenkins method. 
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