Enzymatically synthesised fructooligosaccharides from sugarcane syrup modulate the composition and short-chain fatty acid production of the human intestinal microbiota

ABSTRACT

Fructooligosaccharides can be produced by direct enzymatic conversion from sucrose-rich sugarcane syrup (SS) consisting of 58.93% sucrose yielding 21.28 g FOS/100 g sucrose. This study evaluated the prebiotic effect of unpurified/purified SS containing FOS for the modulation of the human intestinal microbial composition and short-chain fatty acid production. The unpurified and purified FOS substrates, which were a mixture of 1-kestose, nystose and 1F-fructosylnystose, were supplemented into human faecal culture using a pHcontrolled batch fermentation system and significantly increased the Bifidobacterium counts after 5 h fermentation, while Bacteroides/Prevotella counts were highest throughout 24 h fermentation. Meanwhile, Lactobacillus/Enterococcus exhibited a slight increase after 5 h fermentation before reaching a plateau afterwards. The steady Bacteroides/Prevotella growth and increased Bifidobacterium population promoted an increase in the production of shortchain fatty acids acetate (58 \pm 2.70 mM), propionate (9.19 \pm 5.94 mM) and butyrate (7.15 \pm 2.28 mM). These results provide evidence that representative gut microbiota could utilise the enzymatically synthesised FOS to generate short-chain fatty acids as metabolites in pHcontrolled conditions, thus FOS from SS are a potential prebiotic ingredient for foods and health drinks.

Keyword: Prebiotic; Fructooligosaccharides; Enzymatic synthesis; Sugarcane; SCFA