UNIVERSITI PUTRA MALAYSIA

SLICING OBJECT ORIENTED PROGRAMS FOR MAINTENANCE
PURPOSES

HAMED JASEM KHALED AL-FAWAREH

FSKTM 2001 6

SLICING OBJECT ORIENTED PROGRAMS FOR MAINTENANCE PURPOSES

By

HAMED JASEM KHALED AL-FAWAREH

Thesis Submitted in Fulfilment of the Requirements for the Degree of Doctor of
Philosophy in the Faculty of Computer Science and Information Technology
Universiti Putra Malaysia

July 2001

[P

Q5% uﬁeﬁﬁ’;&wy s
A UCHE E PN (L EEA

0 JATHRC IR o @bw

In the name of Allah, the Beneficent, the Merciful.

Has there not been over Man a long period of Time when he was nothing-- (not even)
mentioned?

Verily We created Man from a drop of mingled sperm in order to try him so We gave him
(the gifts) of Hearing and Sight

We showed him the Way whether he be grateful or ungrateful (rests on his will)

“Holy Quran, Surat Al-Insan Ayah 1-3

To

Unconditional (Loves, Dua, Supports, Guidance, and Encouragement)

To My Mother, Eldest Brother Ali, and My Family

1

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the
requirement for the degree of Doctor of Philosophy

SLICING OBJECT ORIENTED PROGRAMS FOR MAINTENANCE PURPOSES

By
HAMED JASEM KHALED AL-FAWAREH
July 2001
Chairman: Associate Professor Abdul Azim Abd. Ghani, Ph.D.,

Faculty: Computer Science and Information Technology

Object oriented approach is growing very fast in various applications of the
computer science. Those applications may contain a lot of entity relationships which,
need to be understood by the maintainers. These relationships (involving classes.
message, variables, ... etc.) will make maintainers and developers face several problems
to understand, make changes, modify, or enhance a huge software system that contains
thousands of classes without automatic aids. Therefore several problems arise in the
maintenance of object oriented program that is software understanding, complex

dependencies, inheritance, polymorphism and dynamic binding.

An approach for formally defining slices for object oriented programs is an
important problem in the maintenance phase. This thesis proposes definitions of slices for
object oriented programs. Basic relations such as Usage, Affect and Inheritance are
defined, and they are extended to a family of dependence relations between entities in

object oriented programs and defines slicing techniques based on these relations. Slice

iii

collection methods for specified slice criteria are given. This approach shows how the
proposed slicing concepts and rules can be applied within the software maintenance
process by giving an illustration through examples written by Java and Delphi

programming languages.

The research also develop a prototype of an object oriented system tool (OZSMt)
which represent an automatically extractable and captures an object oriented software
system dependencies in order to aid in maintenance phase. The dependencies occurs and
explain in this research are control dependence, statement dependence on a variable,
statement dependence on a method, variable dependence on statement, variable
dependent on a method, Class-Class dependence through usage, Class-Class dependence
through inheritance, Class-Class dependence for causing side effects, method
dependence on another method, and method dependence on a variable. The O*SMt
captures program slicing according to the slicing concepts, rules and definitions to feature

out the dependencies with the basic object oriented relations.

This research also, discusses an object oriented dependence graph (O’°DG). The
0’DG categorized according levels. The first category is class-level involving a class to
another class. The second category is method-level involving a method or a statement
within a method to another method or variable in a class. The final category is statement-
level which is basically intra-method involving statements within a given method. Slices,
in turn, can also be categorized according to such levels of dependencies they intend to

capture.

v

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

SLICING OBJECT ORIENTED PROGRAMS FOR MAINTENANCE PURPOSES
Oleh
HAMED JASEM KHALED AL-FAWAREH
Julai 2001

Pengerusi: Profesor Madya Abdul Azim Abd. Ghani, Ph.D.,
Fakulti: Sains Komputer Dan Teknologi Maklumat

Pendekatan berorientasi objek berkembang dengan pesat dalam pelbagai aplikasi
sains komputer. Aplikasi-aplikasi itu mungkin mengandungi beberapa hubungan entiti
yang perlu difahami oleh penyenggara. Hubungan-hubungan ini (termasuk kelas, mesej,
pembolehubah, ...dll) akan meyebabkan penyenggara dan pembangun menghadapi
beberapa masalah untuk memahami, membuat penukaran, perubahan, atau penambahan
terhadap sistem perisian yang besar yang mengandungi ribuan kelas tanpa bantuan
automatik. Oleh kerana itu beberapa masalah timbul dalam penyenggaraan atur cara
berorientasi objek iaitu kefahama, kebergantungan yang kompleks, pewarisan,

polimorfisma dan ikatan dinamik.

Satu pendekatan untuk mentakrif secara formal keratan untuk atur cara
berorientasi objek 1alah masalah utama dalam fasa penyenggaraan. Tesis ini
mencadangkan takrifan keratan untuk atur cara berorientasi objek. Hubungan asas seperti
Usage, Affect dan Inheritence ditakrifkan, dan mereka dipanjangkan ke kelompok
hubungan kebergantungan diantara entiti-entiti dalam atur cara berorientasi objek dan

mentakrif teknik mengerat berasaskan hubungan ini. Kaedah pengumpulan keratan untuk

kriteria keratan tertentu diberi juga. Pendekatan ini menunjukkan bagaimana konsep dan
peraturan mengerat dapat digunakanke dalam process penyenggaraan perisian dengan
memberi ilustrasi melalui contoh-contoh yang ditulis dalam bahasa Java dan Delphi.

Kajian ini juga membangunkan satu prototaip sistem alatan berorientasi objek
(02SMt) yang mewakili ekstraksi secara automatik dan mengambil kebergantungan-
kebergantungan sistem perisian berorientasi-objek untuk membantu dalam fasa
penyenggaraan. Kebergantungan yang terjadi dan diterangkan dalam kajian ini ialah
kebergantungan kawalan, kebergantungan pernyataan ke atas pembolehubah,
kebergantungan pernyataan ke atas kaedah, kebergantungan pembolehubah ke atas
pernyataan, kebergantungan pembolehubah ke atas kaedah, kebergantungan kelas-kelas
melalui kegunaan, kebergantungan kelas-kelas melalui pewarisan, kebergantungan kelas-
kelas untuk menyebabkan kesan sampingan, kebergantungankaedah ke atas kaedah lain.
dan kebergantungan kaedah ke atas pembolehubah. O°SMt mengambil keratan aturcara
mengikut konsep, peraturan dan takrifan pengeratan untuk mencirikan kebergantungan
dengan hubungan berorientasi-objek asas.

Kajian ini juga membincangkan graf kebergantungan berorientasi objek (OZDG).
O’°DG dikategorikan menuruti peringkat-peringkat. Kategori pertama ialah peringkat
kelas yang melibatkan satu kelas kepada kelas lain. Kategori kedua ialah peringkat
kaedah yang melibatkan satu kaedah atau satu pernyataan dalam satu kaedah ke kaedah
lain atau pembolehubah dalam satu kelas. Kategori terakhir ialah peringkat pernyataan
yang secara asasnya lalah kaedah-intra yang melibatkan pernyataan di dalam keadah
yang diberi. Keratan boleh juga dikategorikan menuruti peringkat-peringkat

kebergantungan yang ingin ditawan.

vi

PERPUSTAKAAN
ACKNOWLEDGMENT@”VBRSITI PUTRA MALAYSIA

In the name of Allah, the Beneficent, the Merciful.

[would like to take this opportunity to record my gratitude towards the many

people who touched my life in significant ways; particularly those who help me during
the time I was enrolling in the Ph.D. program at University Putra Malaysia.
Associate Prof. Dr. Abdul Azim Abd. Ghani and Dr. Nor Adnan Yahaya my supervisor
and co-supervisor, guide and friend have shown me how wonderful a student-teacher
relationship can be. They have always takes time to listen to my ideas, and they have
patiently answered my questions, invaluable guidance, fruitful discussion, patience and
continued encouragement provided me at every stage of this thesis.

[would like to thank all the member of my Ph.D. supervision committee.
Dr. Ramlan Mahmod and Associate Prof. Dr. Md. Yazid for taking the time to review my
thesis and offer their invaluable suggestions. I would also like to thank Associate Prof.
Dr. Ali Mamat the member of my supervision committee during my master degree for his
help and suggestions.

[would like to convey my appreciation to the Faculty of Computer Science and
IT, The University Library and Universiti Putra Malaysia for providing assistance at one
time or another. [would like also to thank the faculty dean Secretary Puan Norhaidah for
her help and patient. My special thanks to the gentle honesty friends from Jordan,
Malaysia, Iraq, Libya, ... for their encouragement.

[owe very special thank to Associate Prof. Dr. Azim, Associate Prof. Dr. Bachog.
and Prof. Usmani to provide me work in the Software Development Institute (SDI) my
very gratefully acknowledgment to them.

My families are amongst the wisest teachers I have and they have taught me the
fine arts of survival, communication, and humanity. To covert my weaknesses into my
strengths; to comprehend the importance of understanding fundamental concepts in their
entirety; to fully realize the harm that any form of deception can cause; to learn to adapt
to new environments and coexist with a wide cross-section of humanity; to accept
disappointments, rewards and appreciation: to be honest, truthful, enterprising.
resourceful and hardworking. My mother, unconditional loves, prayer (Dua) and supports
have been my greatest source of solace, strength and security. Gentle guidance, support,
encourage and help a lot, my elder brother Ali I owe special thanks for urging me to
complete my studies. I would like also record my appreciation for the help extended,
support and concern shown by my brothers Khaled, Mammdoh, Mobarak, Omar and
Mohd. T would like to express my warmest gratitude to my sisters, nephews, nieces,
uncles, aunts. and cousins for their prayers, love, generous moral and support during my
study. Finally and most important, I would like to express my most sincere and warmest
gratitude to my wife for her patient and encouragement.

All praises for the Almighty, without whose will everything would cease to be.

vii

TABLE OF CONTENTS

Page
DEDICATION. ..., i
ABS T RACT ... iii
ABSTRAK v
ACKNOWLEDGEMENTS. ... vii
APPROV AL ... viil
DECLARATION ..., X
LIST OF TABLES oo e X1
LIST OF FIGURES X1v
CHAPTER
1 INTRODUCTION
1.1 INtroduction.ooiei i 1.1
1.2 Problem Definition..............ooooiiiiiiii 1.3
1.3 Aims of the Research...................oc 1.7
1.4 Research Methodology............ocooiiii 1.9
1.4.1 OverviewofO’SMtand O’DG..............ccooein.n 1.10
1.4 Thesis Organization..............coiiiiiiiiiiiii e 1.12
2 OVERVIEW OF SOFTWARE MAINTENANCE
2.1 INtroduCtion.oviuii 2.1
2.2 Historical Background.................c.oo 2.2
23 Definitions and ACtiVIty...........oooiiiiiiiiiiii 23
2.4 APPIOACHES. ... ettt 2.5
24.1 Forward Engineering..............c.cooooiiiiiiiiiinn. 2.6
2.4.2 ReStructuring.ooooviiiiiiiiiiae 2.6
2453 Reengineering............oooviiiiiiiiiiiiiii 2.9
2.4.4 Reverse Engineering..............cocooeviiiiiiiiiiiiinnnn, 29
2.4.4.1 Redocumentation.................cceoeviinninn.. 2.9
2442 Design Recovery..........coooovviiiiiiiiiin. 2.12
2.4.4.3 Reverse Engineering Purposes.................. 2.13
2.5 System Automated Support...........cooooviiiiiiiii 2.14
2.6 The Essence of Object Oriented Technique......................... 2.14
2.7 Maintaining Object Oriented System..................ccoevviinn.n. 2.17
2.8 Summary and Conclusion. ... 2.20
3 OVERVIEW OF PROGRAM SLICING
3.1 INtroduCtion.ovi 3.1
3.2 Program Slicing: Original Studies..................cooiiiint. 3.2
3.3 Program Slicing Techniques.................coooiiiiiiiiiinnn 3.3
3.4 Static SHCING. ...ovve i 3.4
3.5 Static Relation............oooiiiii 3.5
3.6 Dynamic SHCING. ..o 3.6
3.7 Dynamic Relation.............coooiii 3.9

Xi

3.11

DeEbUZZING. ... i 3.10

Control and Data Dependencies..............cccoeovviiiiiiininnn... 3.11
Related Research.............cooooii 3.12
3.10.1 XREF/XREFDB........cooiiiiiiiii 3.13
3.10.2 OOTM: Object Oriented Testing and Maintenance..... 3.14
3.10.3 SAMS: System Analysis and Maintenance System..... 3.14
3.104 SCRUPLE.......coiii 3.14
3.10.5 LLSA/LLDP.....oiii 3.15
3.10.6 Valhalla.........cooooiii 3.15
3.10.7 CIA/CIAH .. 3.16
3.10.9 Related Research in Program Slicing..................... 3.16
Summary and conclusion...............coooviiiiiiiii 3.17

CONCEPTS FOR SLICING OBJECT ORIENTED PROGRAMS

4.1
4.2

4.3
4.4
4.5
4.6
4.7

[NtroducCtion.ouii i 4.1
Work on Slicing Object Oriented Programs.......................... 4.1
42.1 [nheritance.o 4.4
422 Polymorphism.............cooooo 4.5
423 Dynamic Binding...............cooiiiiiiiiiii, 4.6
4.2.4 Object-Oriented Relationships..........c...coooviinn 47
Dependencies in Object-Oriented Programs.......................... 4.8
Basic Relationships......... ... 4.9
Dependencies.oooue i 4.11
Underlying Concepts for Slicing Object-Oriented Programs...... 4.15
Summary and Conclusion...............oooiiiiiiiiiii 4.24

TECHNIQUES AND ALGORITHMS FOR SLICING OBJECT

ORIENTED PROGRAMS
5.1 [NtrodUuCtion. 5.1
52 General Approach...........coooiiiiii 5.1
5.3 Slicing Algorithms...........oooiiiiii i 5.3
5.4 Apply Program Slicing to Maintenance phase....................... 5.18
5.5 Object Oriented Dependence Graph (O’DG)......................... 5.19
5.6 Summary and Conclusion.............ccoooviiiiiiiiiii 5.24
OBJECT ORIENTED SYSTEM MAINTENANCE TOOL (O*SMT)
DESIGN AND IMPLEMENTATION
6.1 [NtrodUCHION. ...t e 6.1
6.2 O%SMt Process and Environment.....................c..ocooooiii... 6.2
6.3 O%SMt Architecture and Design..................cocoeeieiiiiiiiin. 6.5
6.3.1 Syntax Module..............cooooiiiii 6.6
6.3.2 Extractor Module....................oo 6.9
6.3.3 Slicing Module...........c.ooooiii 6.10
6.3.4 Features (Users Interface)ooeiin. 6.13
6.3.5 Query Module..........oooiiiiiii 6.14
6.3.6 USAZE. . et 6.16
6.5 Summary and Conclusion.............c.cooviiiiiiiiiee, 6.17

Xii

7 TESTING METHODOLOGY

7.1 [NtrOdUCTION. ... vt 7.1
7.2 The Test Scenarioscoovviiiiii i, 7.2
7.2.1 The First Program: Hotel Reservation System Using Java
Language..........coooiiiiiiii 7.4
7.2.2 The Second Program: Compute Area System Using Java
Language........coouviiiiii i 7.16
7.2.3 The Third Program: Personal Book Inventory System
Using Javalanguage.............ocoveiiiiiiiiinnnin .. 7.20
7.2.4 The Fourth Program: Compute Area System Using
Delphi Language..............cooiiiiiiiiii 7.22
7.5 Summary and Conclusion................cooiiiiiiiii i 7.25
8 EVALUATING PROGRAM SLICES AS A MAINTENANCE
METHODOLOGY
8.1 Software Maintenance Process Model...........................o..... 8.1
8.2 Validation Approach ... 8.3
8.3 A POt StUdY. ... 8.6
8.3.1 Rules for Modifying the Program 8.6
8.3.2 Verifyingthe Change........................ 8.7
8.3.3 Background of the Subjects.................. 8.7
8.3.4 Subject Experiment 1 (without Slicing Technique):........ 8.8
8.3.5 Subject Experiment 1 (with Slicing Technique):............ 8.9
8.4 ANALYSIS. ..o 8.12
8.5 Experiment Subjects” Comments...............ccooeiiiiiiiiiininn 8.13
9 CONCLUSION AND FURTHER RESEARCH
9.1 CONCIUSION. ...t 9.1
9.2 ContrIBULION. ...t 9.3
93 Further Research.............o 9.6
REFERENCES . .. R.1
APPENDICES
Appendix A: Hotel Reservation System Using Java Language.............. A2
Appendix B: Compute Area System Using Java Language.................. A8
Appendix C: Example of Book Reservation Using Java Language......... A.ll
Appendix D Compute Area System Using Delphi
LanguUAGE.o A.l4
Appendix E: Coordinate System Using Java Language....................... A.l7
Appendix F: Java Program................oo A.19
Appendix G: Background Questionnaire.................c.cooeveviiineinan. A2l
Appendix H: Post-experiment questionnaire for experiment 2 only
(SHCING Group ONLY) ... v A.23
BIODATA OF THE AUTHOR............o e, B.1

xiii

LIST OF FIGURES

Figure Page
1 Software Restructure of COBOL programming ([25], p 129.
(Arnold1989). ... i 2.8
2 An Example of a Function Invocation in Object Oriented Program
(Kinget. al. 1995) ... 2.16
3 Static Slicing Example...........oooi 3.5
4 Dynamic slicing Example............o 3.9
5 CFG of the example program of Figure 3 (b)...............cocooooiiiine. 3.12
6 A Class Can Have Many Different Objects.............ccooeviiiiiiiiin..n. 4.3
7 A Cylinder Class Inherits Data and Method from Circle Class............. 4.4
8 A Polymorphism Example..............coo 4.6
9 A Diagram Illustrating the Steps in the Proposed Approach................ 5.2
10 Java Example one........ ..o 5.5
11 JavaExample TWo.. ... 5.5
12 Algorithm for Statement Number....................ocoo, 5.6
13 Algorithm for Slicing Rule One....................c 5.7
14 Algorithm for Slicing Rule Two...............oo 5.8
15 Algorithm for Slicing Rule Three...................... 5.9
16 Algorithm for Slicing Rule Four....................o 5.11
17 Algorithm for Slicing Rule Five................o 5.12
18 Algorithm for Slicing Rule SiX.............oooiiii 5.13
19 Algorithm for Slicing Rule Seven...................oo, 5.14

Xiv

25

26

27

28

29

4]

42

Algorithm for Slicing Rule Eight...............o 5.15

Algorithm for Slicing Rule Nine...............coco 5.16
Algorithm for Slicing Rule Ten..............oooooi i 5.17
Level of Dependence Graph..............ocooiiiiiiiiiiiiiiiiiii 5.20
[llustration of Class Level............cooo 5.21
Hierarchical O’DG with Method Level......................ccccccccocii. 5.22
Hierarchical O’DG with Statement Level....................................... 5.24
OPSMUEPLOCESS. ..o 6.3
O’SMt ENVIFONMENT. ... oo, 6.4
OSMt ATCRItECIUTE.t 6.6
Interaction of Scanner with Parser......................c 6.7
Scanner INteraction.............o.voiiiiiit i 6.8
Parser INteraction..........o.vuiiuiie it e 6.8
Hashtable....... ... 6.10
Structure of Slicing Representation...............coooovviiiii i, 6.11
Dynamic Structure of Slicing Representation..................coooviiin... 6.12
Main WIndoW..... .o 6.14
Class Selections MenU............ooiiiiiiiiiiii 6.15
Method Selections Menu.............coooiiiiiiiiiiiiii e 6.15
Variable Selections Menu.................ooiii i 6.16
Maintaining steps using slicing program................ccceovveiiieiennnnnnne, 7.4
Slice(<:u>, Discount.increase. 1, Discount.increase.10, {Rate}>).......... 779
Slicing Menu for Slicing Criteria 1............coooiiiiiiiiiiii e, 7.8

XV

44

45

46

47

48

49

50

51

(9
Slice(<= Discount increase 1, Discount increase 10, {discount}>)

Slicing Menu for Slicing Criteria 2

[
Slice(<=, Discount increase 1, Discount increase 7,{Rate,discount}>)

Slicing Menu for Slicing Criteria 3

Slice(< :l:[>, Hotel_Reservation main, ListLinkB print, {length, node2}
>)

C=< =, TestComputeArea main 2, Circle Circle, {radius, weight}>

Slice(< =, TestComputeArea main 4, Mylnput x, _>)

C=< ;>, bookMain main 53, Bookshelf count, >

C=< =, InnerCylinder Area InnerArea I, Cylinder CylinderArea, {r,
h}>

Software Maintenance Process Model (Gallagher 1991, 1992)

XVl

79

710

717

718

721

724

CHAPTER 1

INTRODUCTION

1.1 Introduction

The last decade of the twentieth century has seen a rapid increase in the use of
object-oriented approach to software development. This trend is expected to continue in
this new millennium in light of the continuing progress and utilization of the Java-based
technology particularly in the area of distributed computing. Even though advocates of
the object-oriented approach generally believe that it can help in improving the
readability of programs, the basic maintenance tasks to be carried out on them are
something that still cannot be avoided. In other words, during the maintenance phase,
object-oriented programs still need to be understood and later modified be it for the
purpose of performing corrective or adaptive maintenance, functional enhancement as
well as efficiency improvement. Therefore, if thus far various software maintenance
systems have been developed to help in maintaining software systems developed through
the use of the traditionally popular procedure-oriented approach, we can expect for the

similar situation which, is applicable to the maintenance of object-oriented systems.

Analyzing dependencies between software components is one of the basic

activities used by a maintainer to identify various relationships among program elements

(Harrold and Mally 1993, Horwitz et. al. 1990, Podgurski and Lori 1990). In the case of

1.1

procedure-oriented programs, control and data dependencies are normally sufficient in
helping a maintainer to understand and trace the program behavior. Although the
expected benefits that one can gain through object-oriented development can be high,
unfortunately maintaining object-oriented programs can be problematic if it is not done
systematically. The salient features of object-oriented techniques such as polymorphism,
inheritance, encapsulation, and dynamic binding are the main reasons for many
maintenance problems. These additional features create additional dependencies between
program elements and thus make the problem of understanding object-oriented systems

more tedious and can be more complex than the procedure-oriented counterparts.

In this thesis we adapt the concept of program slicing to capture various
dependencies which are useful for maintaining object-oriented programs. To support this,
we propose several new concepts that form the basis for slicing object-oriented programs
in general, with special attention given to those written in Java programming language.
This extends the original notion of program slicing (Wieser 1979, 1982, 1984) to cover
several types of program fragments that are believed to be useful in carrying out the
maintenance of object-oriented programs. Finally, we propose a software tool called
Object-Oriented System Maintenance tool (O*SMt) which primarily allows the inspection
of object-based relations with the help of a powerful slicing subsystem (Fawareh, and
Ghani 1999B). This thesis outlines the architecture of O*SMt and illustrates its potential
use by providing several scenarios for its application in maintaining examples using Java,

and Delphi programming languages.

12

1.2 Problem Definition

Object oriented technique is growing very fast in various applications of the
computer science, programming languages, design methodologies, user interfaces
databases, and operating systems. An object oriented program written for those
applications may contain a lot of entity relationships which, need to be understood by the
maintainers. These relationships (involving classes, message, variables, ... etc.) will
make maintainers and developers face several problems to understand, make changes,
modify, or enhance a huge software system that contains thousands of classes without

automatic aids. Problems posed by object oriented technique include the following:

1. Software understanding.
2. Complex dependencies.

3. Inheritance, polymorphism and dynamic binding.

1. Software Understanding

Understanding a software system is a difficult problem. This is because,
understand something is to know its meaning and in order to grasp the full meaning of

something, one must know the reason for its existence and its nature.

There are two aspects contributing to the complex nature of software system,
which are behavior and structure. The response of a system to some input is referred to as
the behavior of the system. To understand the behavior of a software system means to

understand the behavior of the system components and the relationships between these

1.3

components. In object oriented programs the dependencies between various components
of the software are the most important to understand the behavior of the software system.
Furthermore, to understand the software system for the purpose of modification and
enhancement, the maintainers are required to fully understand the relations that exist
within the software. The structure of a software system is determined by the logical and
physical organisation of the source code and the relationships that exist within it. A
thorough understanding of a software system is possible if the structure and behavior can
be explained. The structure and behavior of a system are mutually dependent aspects; the
structure of the system permits the software to behave in the desired way and the
behavior that is expected from software is the reason as to why the software is structured

in a particular way (Shrivastava 1996).

Performing a walk through various inputs and examining them can help in
understanding a software system. The traces of the output of a software system is done

based on complete path of execution that it follows on a particular input.

To exhaustively determine whether a software system behaves correctly (not
contains any latent error) will be influenced by the input to the system. It is entirely
possible for a system to behave correctly with respect to some input and not with respect
to others. To exhaustively determine a software system is correct with respect to all input
is impossible. Therefore any model that attempts to represent the behavior of a software

system must help in understanding both kinds of behavior.

1.4

Static and dynamic relationships are two kinds of relationship that can exist
between logical components of a system. A static relationship is a fixed, unchanging
relationship that establishes a strong and predictable connection between components. A
dynamic relationship is an indicative of a weak association between components. This
kind of relationship occurs within the context of some event. An event is an occurrence
that causes the system to change its configuration or state. Events cause components to
associate dynamically in order to affect the change in configuration. Once the
configuration has changed, the association is no longer necessary and ceases to exist.
Different events cause different dynamic relationships between components. Therefore
determining dynamic relationships is then based on the understanding of the events that
occur in the system. The statically related components lay the groundwork for dynamic
interactions to occur in a system and therefore the dynamic relationships that can be

discermed from the code itself.

2. Complex dependencies

There are a lot of dependencies in an object oriented systems, such as data
dependence, control dependence, calling dependence, ... etc. These dependencies are
represented as X—Y, such that any modification in a program X must have possible effect
on Y (Podgurski and Lori 1990). Furthermore, object oriented languages have special

entities, such as: classes entities, methods, and messages.

The complex relationships that exist in object-oriented systems are the main cause

of the dependency problem. These relationships may include indirect relations, for

1.5

example, when one class imposes indirect dependence on other classes. The traditional
maintenance techniques for the structured programming are inadequate for the new object
oriented programming, because they do not take into account the complexity due to
special features in the unique object oriented programming. When a class is modified
other classes may have to be understood and traced in order to make modification,

enhancement, or correction.

3. Inheritance, polymorphism and dynamic binding

Object oriented software defines an object as an instance of a class and takes this
step further to allow classes to be defined in terms of other classes. Each subclass can
either inherits or override the attributes and behavior of superclass. However, subclasses
are not limited to the attribute and behavior provided to them by their superclass. They
can add variables and methods to the ones they inherit from the superclass. Subclasses
can override inherited methods by providing specialized implementations for those
methods. Subclasses provide specialized behaviors from the basis of common elements
provided by the superclass. Through the use of inheritance, programmers can reuse the

code in the superclass many times.

In object oriented languages, variables are used not only in the scope of the class
but may also be used in other classes. The variable may be referenced by other objects of
any other class using polymorphism. Furthermore, a given class can use a method, which

is declared in another class, when a given message is sent to execute this method.

1.6

1.3 Aims of the Research

This research aims to provide a new set of concepts, rules and algorithms for
slicing object-oriented programs to produce slices to help the maintainer in understanding
these programs. The purpose is also to allow the maintainer to modify and enhance

software components with the knowledge on linkages with other components.

Program slicing is known to help maintainers in understanding a foreign code.
The technique in this thesis provide concepts and rules for slicing object-oriented
programs according to several new dependency relations between various object oriented
program entities. These dependencies according to our basic definition will help trace the
impact of any proposed modifications, help in understanding object-oriented systems, and
perhaps reduce the resources and efforts required for maintenance activities. The slicing
concepts and rules presented are meant to cater for all object-oriented languages. Also
they should work for all maintenance activities whether the maintenance is corrective,

adaptive, perfective or preventive.

This research is also aimed at the developing a prototype of a software tool that
provides software maintainers with a conceptual model of the architecture of the software
system which is being maintained in order to help the process of understanding it. The
Object Oriented System Maintenance tool (O*SMt) allows the construction of abstract

representation of object oriented software systems. The O?SMt representation of an

1.7

object oriented software system captures basic relationships and dependencies among

software components.

The object oriented dependence graph (O?DG) is introduced to provide a graphic
visualization of object oriented dependencies. This tool also provides the maintainer with
an implied methodology for maintenance. The notation in this tool forms the object

oriented program dependence on the sets of concepts, rules and algorithms.

The research approach gives an abstract view of the source code by capturing
dependencies between software components. The dependencies between the software
component are defined through a specific set of slicing concepts. Based on these, rules
for slicing an object-oriented program are developed. Each rule has a special slicing
algorithm. The algorithm describes the direct and indirect relationships of the software

component.

In an object-oriented system, the software entities, the object oriented
characteristics and relationships are specified in term of the basic constructs of the
language of implementation. The presence of multiple relationships is one of the reasons
for the complex dependencies within object oriented systems. The dependencies between
code fragments can be determined when there is a direct and indirect relationship
between the code fragments. Code fragments are related in more than one way and more
than one kind of dependency between object oriented entities. Moreover different

relationships may create more dependencies. From the maintenance point of view

1.8

