UNIVERSITI PUTRA MALAYSIA

EXTRACTING OBJECT ORIENTED SOFTWARE ARCHITECTURE
FROM C++ SOURCE CODE

ALI HUSSEIN A. MRESA

FSKTM 2000 6

EXTRACTING OBJECT ORIENTED SOFTWARE ARCHITECTURE
FROM C++ SOURCE CODE

By

ALI HUSSEIN A. MRESA

Thesis Submitted in Fulfilment of the Requirements for the
Degree of Master of Science in the Faculty of
Computer Science and Information Technology
Universiti Putra Malaysia

October 2000

To the Soul of My Sisters Al-forjania and Soad

To My Parents

I

Abstract of thesis presented to Senate of University Putra Malaysia in fulfilment of the
requirements for the degree of Master Science.

EXTRACTING OBJECT-ORIENTED SOFTWARE ARCHITECTURE
FROM C++ SOURCE CODE
By
ALI HUSSEIN A. MRESA

October 2000

Chairman: Abdul Azim Abdul Ghani, Ph.D.

Faculty: Computer Science and Information Technology

Software architecture strongly influences the ability to satisfy quality attributes
such as modifiability, performance, and security. It is important to be able to analyse
and extract information about that architecture. However, architectural documentation
frequently does not exist, and when it does, it is often out of sync with the implemented
system. In addition, it is not all that software development begins with a clean slate;
systems are almost always constrained by the existing legacy code. As a consequence,
there is a need to extract information from existing system implementations and reason

architecturally about this information.

This research presents a reverse engineering tool VOO++ that will read an Object-
Oriented C++ source code using UML notation in order to visualise its Class structure
and the various relationships that may exist including, inheritance, aggregation, and

dependency relationships based on the modified Cohen-Sutherland clipping algorithm.
I

The idea of clipping is reversed, instead of clipping inside the rectangle, the clipping is
done out side the rectangle in terms of four directions (left, right, top, and bottom) and

two points represent the centre point for each rectangle.

An Object-Oriented approach is used to design and implement the tool. Reverse
engineering, design pattern, and graphics are the underlying techniques supplied.
VOO++ aids an analyst in extracting, manipulating and interpreting the Object-Oriented
static model information. By assisting in the reconstruction of static architectures from
extracted information, VOO++ helps an analyst to redocument and understand
architectures and discover the relationship between “as-implemented” and “as-

designed” architectures.

v

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia bagi
memenuhi keperluan untuk ijazah Master Sains.

PENGHASILAN SENI BINA PERISIAN BERASASKAN
OBJEK DARI KOD SUMBER C++

Oleh

ALI HUSSEIN A. MRESA

Oktober 2000

Pengerusi: Dr. Abdul Azim Abd Ghani, Ph.D.

Fakulti: Sains dan Pengajian Alam Sekitar

Seni bina perisian sangat mempengaruhi keupayaan untuk memenuhi atribut
kualiti seperti kebolehubahan, prestasi dan sekuriti. Adalah penting untuk mampu
menganalisa dan menaakul mengenai seni bina tersebut. Walau bagaimanapun
dokumentasi seni bina kadang kala wujud, dan bila ianya wujud, ianya tidak selaras
dengan sistem yang diimplemen. Tambahan pula tidak semua pembangunan perisian
bermula dengan keperluan baru sepenuhnya; sistem dikekang oleh kewujudan kod
legasi. Akibatnya kita perlu mampu menghasilkan maklumat dari implementasi sistem

yang sedia ada dan menaakul secara seni bina mengenai maklumat ini.

Penyelidikan ini mempersembahkan satu alatan kejuruteraan songsang VOO++

yang dapat membaca kod sumber berorientasi objek C++ dan menghasilkan notasi

UML untuk mengyvisualisasi struktur kelas dan pelbagai hubungan yang mungkin wujud
termasuk pewarisan, agregasi dan hubungan kebergantungan berdasarkan kepada
algoritma perubahan kepitan Cohen-Sutherland. Idea kepitan disongsangkan, sebagai
gantian kepada kepitan dalam segi empat, kepitan dilakukan di luar segi empat dalam
rangkaian empat arah (kiri, kanan, atas, bawah) dan dua titik mewakili titik tengah

untuk setiap empat segi.

Pendekatan berorientasikan objek digunakan untuk mereka bentuk dan
mengimplemen alatan tersebut. Teknik kejuruteraan songsang, corak reka bentuk dan
grafik digunakan sebagai asas. VOO++ membantu penganalisa dalam menghasil,
memanipulasi dan menginterpretasi maklumat statik model berorientasikan objek.
Dengan membantu dalam membina semula seni bina statik dari maklumat yang terhasil,
VOO++ menolong penganalisa untuk mendokumen semula dan memahami seni bina
dan mengetahui hubungan diantara seni bina “yang diimplemen” dan “yang direka

bentuk”.

ACKNOWLEGEMENTS

In the name of Allah, Most Gracious, Most Merciful

I would like to take this opportunity to convey my sincere thanks and deepest
gratitude to my chairman supervisor Dr. Abdul Azim Abdul Ghani for his advises,
comments, suggestions, help, and invaluable guidance, and fruitful discussions

throughout my research.

I am also indebted to Dr. Ramlan Mahmod and Dr. Md. Nasir sulaiman, members
of the supervising committee, for their technical support, suggestions and insights are

priceless.

I am greatly indebted to the Libyan Ministry of Education for financial support

during my study. The contribution of the people at the Libyan Bureau is highly

appreciated.

I owe the biggest debt to Engineering Academy and my family for their assistance

and support. They are the biggest contributors to my success.

VII

Finally, special mention must be made of all my friends at faculty of computer
science and information technology without their knowledge this work would not have
been done. These people deserve to be recognised and so I want to do, but I am afraid if

I do, I will definitely miss some names.

Vil

TABLE OF CONTENTS

Page
DEDICATION ... e I
ABSTRACT ... 1
ABSTRAK ... \Y
ACKNOWLEDGEMENTS VIl
APPROVAL SHEETS e IX
DECLARATION ... e e e X1
LISTOFTABLES ... e XVI
LISTOF FIGURES ... e XvIl
CHAPTER
1 INTRODUCTION ... e, 1
1.1 Background ... 1
1.2 Software Architecturec 2
13 Importance of Software Architecture 2
1.4 Software Architecture Issues 3
1.5 Research Objectivesccooiviiiiiiiiiiinn. 5
1.6 Thesis Organisationccooeviiieeinienen.... 6
2 OBJECT-ORIENTED SOFTWARE DESIGN:
PRINCIPLES, BENEFITS, ARCHITECTURE AND
REVERSE ENGINEERINGTOOLS 8
2.1 Introductioncociiiiiiiiii e 8
2.2 Object-Oriented Design...................coooeviviiiiniien.. 8
2.3 Principles of Object-Oriented Software......................... 10
23.1 ObJectsooiiniiii e, 10
232 ClaSSESovtiiiii e 11
233 Abstractionccoiiiiiiiiii 11
2.3.4 Encapsulationcoi 12
2.3.5 Polymorphism............................ 13
23.6 Modularitycc 13
237 Hierarchy..................ooii 14
24 Benefits of Object-Oriented Approach.......................... 16
2.5 Software Architecture........................coi 16
2.6 Architectural Structuresooe i 20
2.7 Object-Oriented Software Architecture 22

XII

2.8 Object-Oriented Methodsccooeiiiiiiin.
28.1 BoochMethodcooiiiii
282 OMTMethod ...,
2.8.3 OOSE/Objectory Method
284 OORAMethodccoiiiiiiiii
2.8.5 Unified Modelling Language
29 ReverseEngineeringo
29.1 Redocumentationccociiiiiiiiiinn..
292 DesignRecovery......................ococoiiiiiii,
2.9.3 Reverse Engineering Purposes
2.10 ReverseEngineering Toolsc.ooi
2101 Dali ..o
2.10.2 CC-RIDERc.ooiiiiiiiiiie i
2.10.3 Imagix 4D & Imagix 2000cennee.
2.10.4 Extracting and Preserving Low-Level
Program ...
2.10.5 Rational Rose Case Toolc.
2.11 Characteristics of Reverse Engineering Tools
2,12 SUMMATY ...t e

OBJECT-ORIENTED METHODOLOGY
3.1 Introductioncociiiiiiii
3.2 Object-Oriented Development Methodology
3.3 Object-Oriented Development Inputs
3.4 Methodology Stepsccooiiiiiiiiiiiiii e
341 UseCasescooviniinieiiiiiiiiiiiieiieieee,

3.4.2 Develop Message Flow Diagrams

3.4.3 Develop Collaboration Diagrams
3.43.1 IdentifyClasses...............................

3.43.2 Identify Class Attributes

3.43.3 Identify Responsibility

3.43.4 Identify Subsystems
3.43.5 Identify Contracts

3.4.4 Develop Hierarchy Diagrams

3.5 Summary ...

VOO++ SOFTWARE DESIGN AND IMPLEMENTATION. ..
4.1 Introductionccoeiiiiiiiiii
42 BusinessPhasecc
42.1 Prerequisitesooiiiiiiiiiiiii

422 ACHVILIEScooovititiiiiiiiiiee e e

423 Deliverablesccoiiiiiiiiii,

4.2.3.1 VOO+t Functional Requirement

4.2.3.2 VOO++ Non-Functional Requirement

X111

43

4.4

4.5

4.6
4.7

AnalysisPhasec
4.3.1 PrerequiSitesccoviiiiiiiiiii
432 ACHVILIESooiviiiiiiiiii e
4321 WriteUseCases
4322 Extract Noun List From Use Cases And
Initial Requirements Documentation
43.2.3 Identify and Document Application
Classes from the Noun List
DesignPhasecocooiiiiiiii i,
441 PrerequiSitesccovreririniiiiiiiiaiann,
442 ACHVILIEScoi ittt ie e,
4.42.1 Identify Classes and its Responsibilities ...
4.4.22 Search the Reuse Library for Applicable
Componentsooeeinennnn
Implementation Phaseo
4.5.1 Document the Target Language, Hardware, and
Software Platforms
4.5.2 Major Data Structures In VOO++ Application
4521 ClassTable....................ooooivinn .
4522 ClassTableRelationships
4523 DataBase....................c..oii il
4.5.3 Major Graphics Techniques of VOO++
Applicationocoii
4.5.4 Mathematics Preliminaries
4.5.5 Modified Cohen-Sutherland Clipping
Implementationoceiien s,
4.5.6 Class Relationships Implementation
UserInterfacecoooiiiiiiiiii e,

RESULTS AND DISCUSSIONcocoiiiiiiiiiiiiiieines

5.1
52

53

Introductioncooooiiiiii
Bill-of-Material Case Study
5.2.1 Bill-of-Materials Classes
5.2.2 Bill-of-Materials Aggregation Relationships
5.2.3 Bill-of-Materials Inheritance Relationships
5.2.4 Bill-of-Materials Dependency Relationships
5.2.5 Bill-of-Materials Class Diagrams
Buffer-Module Case Studycoinlll
5.3.1 General Class Specification
5.3.2 Operations Class Specification
5.3.3 Attributes Class Specification
5.3.4 Member List Class Specification
535 RepOItscooiviiiiiiii i

5.3.5.1 Logical ViewReport 131

5.3.5.2 File Summary Report 133

5.3.5.3 Class Summary Report 133

5.4 Documentation CONsequencec..... 133

55 Summary ... 135

6 CONCLUSION AND FUTUREWORK 137

6.1 ConClusionocoiiiiiiiiiiii 137

62 Future Work ... 140
REFERENCES, 141
APPENDIX 147
A UML NOatiON ...ttt e et 148

B Complete VOO++ Software Application 153

C Summary of the C++ language (Subset of C++) 181

D Buffer-Module Case Study Source File 185

VT A o 193

Table

5.0
5.1
52
53
54

LIST OF TABLES

Page
TListBuffer Class Operations Specification 128
TListBuffer Class Attributes Specification 130
TListBuffer Class Members Listccooooiiiiiiiii, 130
VOO++ File Summary Report of Bill-of-Materials.......................... 133
VOO++ Class Summary Report of Bill-of-Materials........................ 133

Figure

2.0
2.1
22
23
2.4
25
2.6
2.7
2.8
2.9
3.0
3.1
32
33
34
4.0
4.1

4.2
43
44
4.5
4.6
4.7
438
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
419

LIST OF FIGURES

Page
Communication Between Objectscocoiii i, 9
Dali Workbench 34
A Derived Relationshipscooiiiiii 35
CC-RIDER Architecturecccoovniiiiiiii e 37
File Used Tree CC-RIDDER Sample Output 39
Class Hierarchy CC-RIDDER Sample Output 39
File Structure (IMagix)cooiiiii i e e, 42
Class Structure (Imagix)ccooviiiii i 43
Module Diagrams Using UML Notationc.coeeeennnn ... 46
Class Diagrams Using UML Notationco.oeiviineennnn.. 47
Object-Oriented Development Methodology 51
Inheritance Use Casecc.oiiiiiiiiiii e 55
ScanUse Casec.oeiuiiiiiii e 57
Part of Visualisation Subsystem of VOO++ Application 58
VOO+H Subsystems.oooiiiiiiii i, 62
Analysis Phase Prerequisites and Deliverables 72
Basic Architecture for Reverse Engineering,
Reengineering TOOIS..............cocoeiiiii i 76
Document/View Interfaceccooiiiiiiiiiii . 76
VOO Primitive Classesccoviieiiiiiiiiiiiiiiiiieeneane. 77
VOO++ Collaboration Diagramscocoviiiiiiiieeiinnnnn.. 79
Design Phase Prerequisites and Deliverables 80
Class Table Implementationcoooiiiiiiiiin e 89
Class Table Dynamic Structurec..ccooiveiiiiiiiiiiiiinn. 90
Class Table Relationships Implementation 91
Class Table Relationships Structurecocooiinl, 91
DataBase StruCturecooviiniiiint e e, 93
DataBase Implementationoccoiiiiiiii i 93
Mand Nrelationship ..., 95
Start and End Points Relationship ... 96
The Slope Relation ..., 97
Two Equality Casesccooiviiiin et i, 100
Relationships Structure and Notationcooi 103
Shapes Generationccooiiiiiiiie it e 106
VOO+HMain Windowoooiiiiiiiii e e 107
VOO++ PopUpand BarMenuscoooiiiiiiiiii e 108

420 VOO+H About Dialogc.cooivii i 109

421 VOO++ Context Menucooiuitiiiiiiiiiie e, 110
422 VOO+HReport Dialogccoviiiniii i, 111
5.0 Bill-of-Material Classes Definitionsoooiienen. 115
5.1 Bill-of-Material Classes Rectangleso.n 116
5.2 Bill-of-Material Aggregation Relationships 117
5.3 Bill-of-Material Inheritance Relationships 119
5.4 Bill-of-Material Dependency Relationships 120
5.5 Bill-of-Material StaticModelc 121
5.6 Buffer-Module Classes Definitionscoooeiiiiinnn. 122
5.7 Buffer-Module Inheritance Relationships 124
5.8a Buffer-Module General Class Specification 126
5.8b Buffer-Module General Class Specification 126
5.8c Buffer-Module General Class Specification 127
5.8d Buffer-Module General Class Specification 127
5.9 TListBuffer Class Operations Specification 129
5.10 TListBuffer Class Attributes Specification.................................... 129
5.11 TListBuffer Class Members Listc..cooeviiiiiiiiieiiniinn.. 131
5.12 VOO++ Logical View Partial Reportooiini, 132
5.13 Bill-of-Material asDesignedcoooiiiiiiiiiiii 134
Al ClassRectanglecooiiiiiiiiiiii 148
A2 ObjectRectanglecoooiiiiiii i 148
A3 Dependency Relationshipcooi 149
A4 Association Relationship 149
A5 Unidirectional Association Relationship 149
A6 Aggregation Relationship by Reference 150
A7 Aggregation Relationship by Value ... 150
A8 OnetoOneMultipliCitycooviviiiiiiiiiiiiiie e e 150
A9 OnetoMany Multiplicitycoooviiiiiiii e, 150
A.10 Inheritance Relationshipccocoiii i 151
A.11 Multiple Inheritance Relationshipooeiii i, 152
A12 Sequence DIagramscccoviiiiiiiiiiiiniiiine et 152
B.1 Open Document Sequence Diagramc..ocovenininnnnn... 153
B2 Scan Document Sequence Diagramooo 154
B.3 Inheritance Sequence Diagramoooiiiiiiiiiii 155
B.4 Dependency Sequence Diagramcoooiiiiiiiiiiiiiin e, 156
B.5 Aggregation Sequence Diagramocoiiiiiiiii 156
B.6 Application Classes Sequence Diagramocnne, 157
B.7 Class Diagrams Sequence Diagramcooviineiiinninn.n 158
B.8 Class Functionality Sequence Diagram (First Scenario) 158
B.9 Class Functionality Sequence Diagram (Second Scenario) 159
B.10 Class Attributes Sequence Diagram (First Scenario) 160
B.11 Class Attributes Sequence Diagram (Scenario) 160

B.12 Class Specification Sequence Diagram (First Scenario) 161

XVIII

B.13
B.14
B.IS
B.16
B.17
B.18
B.19
B .20
B21
B.22
B.23
B.24
B.25

Class Specification Sequence Diagram (Second Scenario) 162

Class Functions and Attributes Sequence Diagram 163
Mouse Facilities Sequence Diagramcooii. 164
General Report Sequence Diagramooo 165
Logical View Report Sequence Diagramoooini, 166
Statistics Model Report Sequence Diagram 167
File Summary Report Sequence Diagram 168
Class Summary Report Sequence Diagram 169
VOO++ Collaboration Diagram—(Module Architectures) 170
VOO++ Collaboration Diagram—Extraction Subsystem 171
VOO++ Collaboration Diagram— Data Base Subsystem 172
VOO++ Collaboration Diagram— Visualisation Subsystem 173
VOO++ Application Reused Classesccocoviiinniinn.n. 176

CHAPTER 1

INTRODUCTION

“If a project has not achieved a system architecture, including
its rationale, the project should not proceed to full-scale system
development. Specifying the architecture as a deliverable enables its
use throughout the development and maintenance process” (Boehm,
1995).

1.1 Background

Architectural design has always played a strong role in determining the
success of complex software-based systems, the choice of an appropriate
architecture can lead to a product that satisfies its requirements and is easily
modified as new requirements present themselves, while an inappropriate

architecture can be disastrous (Garlan, 1997; Buxton & McDermid, 1991).

Despite its importance to software systems engineers, the practice of
architectural design has been largely ad hoc, and informal. As a result, architectural
designs are often poorly understood by developers; architectural choices are based
more on default than solid engineering principles; architectural designs cannot be

analysed for consistency or completeness; architectural constraints assumed in the

initial design are not enforced as a system evolves; and there are virtually no tools to

help the architectural designers with their tasks (Garlan, 1997).

1.2 Software Architecture

Software architecture concems the structures of large software systems. The
architectural view of a system is an abstract view that distils away details of
implementation, algorithm, and data representation and concentrates on the
behaviour and interaction of "black-box" components. Software architecture is
developed as the first step toward designing a system that has a collection of desired
properties. Also the product of software design activities are the definition of the

software architecture specification.

1.3 Importance of Software Architecture

Fundamentally, there are three reasons why software architecture is important,

as follows (Bass er al., 1998).

e Communication among stakeholders. Software architecture represents
common high-level abstraction of a system that most if not all of the
system's stakeholders can use as a basis for creating mutual understanding,

forming consensus, and communicating with each other.

e Early design decisions. Software architecture represents the manifestation
of the earliest design decisions about a system, and these early bindings
carry weight far out of proportion to their individual gravity with respect to
the system's remaining development, its deployment, and its maintenance
life. It is also the earliest point at which the system to be built can be
analysed.

e Transferable abstraction of a system. Software architecture constitutes a
relatively small, intellectually graspable model for how a system is
structured and how its components work together this model is transferable
across systems; in particular, it can be applied to other systems exhibiting

similar requirements and can promote large-scale reuse.

1.4 Software Architecture Issues

The formal study of software architecture has been a significant addition to the
software-engineering repertoire in the 1990s. It has promised much to designers and
developers: help with the high-level design of complex systems. Early analysis of
high-level designs; particularly with respect to their satisfaction of quality attributes
such as modifiability, security, and performance; higher level reuse such as that of
designs and enhanced stakeholders communication (Garlan, 1993). These benefits
seem enticing. However, much of the promise of software architecture has as yet
gone unfulfilled. Some of the problems simply stem from the fact that architectures

are seldom documented properly (Kazman & Carriere, 1997) where:

e Many systems have no documented architecture at all. (All systems have
an architecture, but frequently it is not explicitly known or recorded by the
developers and therefore evolves in an ad hoc fashion.)

e Architectures are represented in such a way that the relationship between
the architectural representation and the actual system, particularly its
source code, is unclear.

e In systems that do have properly documented architectures, the
architectural representations are frequently out of sync with the actual
system, because maintenance of the system occurs without a similar effort
to maintain the architectural representation.

e There is little completely new development. Development is typically
constrained by compatibility with, or use of, legacy systems. And it is rare
that such systems have an accurately documented architecture. Because of
these issues, a serious problem in assessing architectural conformance
arising, which makes system understanding and maintaining unbearable.
Mismatch between “as designed” and “as implemented” system

architectures cause much of the value of having an architecture is lost.

In addition, when a system enters the maintenance phase of its life cycle, it
may sustain modifications that alter its architecture. Hence, a second problem arises:
how to ensure that maintenance operations are not eroding the architecture, breaking

down abstractions, bridging layers, compromising information hiding, and so forth?

All of these are manifestations of two underlying causes. The first is that a
system does not have “an architecture”. It has many: its runtime relationships, data
flows, control flows, code structure, and so on. The second, more serious, cause is
that the architecture that is represented in a system’s documentation may not

coincide with any of these views.

1.5 Research Objectives

With reference to the software architecture issues the research is aiming to
develop a prototype reverse-engineering tool base on an Object-Oriented approach
with reverse engineering underlying. The proposed tool called VOO++
(Visualisation of Qbject Oriented Architecture from C++ source code) that helps the

stakeholders to:

e Re-document Object-Oriented software architecture using an Object-
Oriented reverse engineering tool, which implies using standard notations
UML (unified modelling language) to facilitate the communications
between project teams. As a result of documentation, the relationship
between “as designed” and “as implemented” system architecture is
presented, which is provided that the software under analysis should be

documented during its development process.

However, the research undertaken will cover the following:

