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Software architecture strongly influences the ability to satisfy quality attributes
such as modifiability, performance, and security. It is important to be able to analyse
and extract information about that architecture. However, architectural documentation
frequently does not exist, and when it does, it is often out of sync with the implemented
system. In addition, it is not all that software development begins with a clean slate;
systems are almost always constrained by the existing legacy code. As a consequence,
there is a need to extract information from existing system implementations and reason

architecturally about this information.

This research presents a reverse engineering tool VOO++ that will read an Object-
Oriented C++ source code using UML notation in order to visualise its Class structure
and the various relationships that may exist including, inheritance, aggregation, and

dependency relationships based on the modified Cohen-Sutherland clipping algorithm.
I



The idea of clipping is reversed, instead of clipping inside the rectangle, the clipping is
done out side the rectangle in terms of four directions (left, right, top, and bottom) and

two points represent the centre point for each rectangle.

An Object-Oriented approach is used to design and implement the tool. Reverse
engineering, design pattern, and graphics are the underlying techniques supplied.
VOO++ aids an analyst in extracting, manipulating and interpreting the Object-Oriented
static model information. By assisting in the reconstruction of static architectures from
extracted information, VOO++ helps an analyst to redocument and understand
architectures and discover the relationship between “as-implemented” and “as-

designed” architectures.
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OBJEK DARI KOD SUMBER C++
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Seni bina perisian sangat mempengaruhi keupayaan untuk memenuhi atribut
kualiti seperti kebolehubahan, prestasi dan sekuriti. Adalah penting untuk mampu
menganalisa dan menaakul mengenai seni bina tersebut. Walau bagaimanapun
dokumentasi seni bina kadang kala wujud, dan bila ianya wujud, ianya tidak selaras
dengan sistem yang diimplemen. Tambahan pula tidak semua pembangunan perisian
bermula dengan keperluan baru sepenuhnya; sistem dikekang oleh kewujudan kod
legasi. Akibatnya kita perlu mampu menghasilkan maklumat dari implementasi sistem

yang sedia ada dan menaakul secara seni bina mengenai maklumat ini.

Penyelidikan ini mempersembahkan satu alatan kejuruteraan songsang VOO++

yang dapat membaca kod sumber berorientasi objek C++ dan menghasilkan notasi



UML untuk mengyvisualisasi struktur kelas dan pelbagai hubungan yang mungkin wujud
termasuk pewarisan, agregasi dan hubungan kebergantungan berdasarkan kepada
algoritma perubahan kepitan Cohen-Sutherland. Idea kepitan disongsangkan, sebagai
gantian kepada kepitan dalam segi empat, kepitan dilakukan di luar segi empat dalam
rangkaian empat arah (kiri, kanan, atas, bawah) dan dua titik mewakili titik tengah

untuk setiap empat segi.

Pendekatan berorientasikan objek digunakan untuk mereka bentuk dan
mengimplemen alatan tersebut. Teknik kejuruteraan songsang, corak reka bentuk dan
grafik digunakan sebagai asas. VOO++ membantu penganalisa dalam menghasil,
memanipulasi dan menginterpretasi maklumat statik model berorientasikan objek.
Dengan membantu dalam membina semula seni bina statik dari maklumat yang terhasil,
VOO++ menolong penganalisa untuk mendokumen semula dan memahami seni bina
dan mengetahui hubungan diantara seni bina “yang diimplemen” dan “yang direka

bentuk”.
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CHAPTER 1

INTRODUCTION

“If a project has not achieved a system architecture, including
its rationale, the project should not proceed to full-scale system
development. Specifying the architecture as a deliverable enables its
use throughout the development and maintenance process” (Boehm,
1995).

1.1 Background

Architectural design has always played a strong role in determining the
success of complex software-based systems, the choice of an appropriate
architecture can lead to a product that satisfies its requirements and is easily
modified as new requirements present themselves, while an inappropriate

architecture can be disastrous (Garlan, 1997; Buxton & McDermid, 1991).

Despite its importance to software systems engineers, the practice of
architectural design has been largely ad hoc, and informal. As a result, architectural
designs are often poorly understood by developers; architectural choices are based
more on default than solid engineering principles; architectural designs cannot be

analysed for consistency or completeness; architectural constraints assumed in the



initial design are not enforced as a system evolves; and there are virtually no tools to

help the architectural designers with their tasks (Garlan, 1997).

1.2 Software Architecture

Software architecture concems the structures of large software systems. The
architectural view of a system is an abstract view that distils away details of
implementation, algorithm, and data representation and concentrates on the
behaviour and interaction of "black-box" components. Software architecture is
developed as the first step toward designing a system that has a collection of desired
properties. Also the product of software design activities are the definition of the

software architecture specification.

1.3 Importance of Software Architecture

Fundamentally, there are three reasons why software architecture is important,

as follows (Bass er al., 1998).

e Communication among stakeholders. Software architecture represents
common high-level abstraction of a system that most if not all of the
system's stakeholders can use as a basis for creating mutual understanding,

forming consensus, and communicating with each other.



e Early design decisions. Software architecture represents the manifestation
of the earliest design decisions about a system, and these early bindings
carry weight far out of proportion to their individual gravity with respect to
the system's remaining development, its deployment, and its maintenance
life. It is also the earliest point at which the system to be built can be
analysed.

e Transferable abstraction of a system. Software architecture constitutes a
relatively small, intellectually graspable model for how a system is
structured and how its components work together this model is transferable
across systems; in particular, it can be applied to other systems exhibiting

similar requirements and can promote large-scale reuse.

1.4 Software Architecture Issues

The formal study of software architecture has been a significant addition to the
software-engineering repertoire in the 1990s. It has promised much to designers and
developers: help with the high-level design of complex systems. Early analysis of
high-level designs; particularly with respect to their satisfaction of quality attributes
such as modifiability, security, and performance; higher level reuse such as that of
designs and enhanced stakeholders communication (Garlan, 1993). These benefits
seem enticing. However, much of the promise of software architecture has as yet
gone unfulfilled. Some of the problems simply stem from the fact that architectures

are seldom documented properly (Kazman & Carriere, 1997) where:



e Many systems have no documented architecture at all. (All systems have
an architecture, but frequently it is not explicitly known or recorded by the
developers and therefore evolves in an ad hoc fashion.)

e Architectures are represented in such a way that the relationship between
the architectural representation and the actual system, particularly its
source code, is unclear.

e In systems that do have properly documented architectures, the
architectural representations are frequently out of sync with the actual
system, because maintenance of the system occurs without a similar effort
to maintain the architectural representation.

e There is little completely new development. Development is typically
constrained by compatibility with, or use of, legacy systems. And it is rare
that such systems have an accurately documented architecture. Because of
these issues, a serious problem in assessing architectural conformance
arising, which makes system understanding and maintaining unbearable.
Mismatch between “as designed” and “as implemented” system

architectures cause much of the value of having an architecture is lost.

In addition, when a system enters the maintenance phase of its life cycle, it
may sustain modifications that alter its architecture. Hence, a second problem arises:
how to ensure that maintenance operations are not eroding the architecture, breaking

down abstractions, bridging layers, compromising information hiding, and so forth?



All of these are manifestations of two underlying causes. The first is that a
system does not have “an architecture”. It has many: its runtime relationships, data
flows, control flows, code structure, and so on. The second, more serious, cause is
that the architecture that is represented in a system’s documentation may not

coincide with any of these views.

1.5 Research Objectives

With reference to the software architecture issues the research is aiming to
develop a prototype reverse-engineering tool base on an Object-Oriented approach
with reverse engineering underlying. The proposed tool called VOO++
(Visualisation of Qbject Oriented Architecture from C++ source code) that helps the

stakeholders to:

e Re-document Object-Oriented software architecture using an Object-
Oriented reverse engineering tool, which implies using standard notations
UML (unified modelling language) to facilitate the communications
between project teams. As a result of documentation, the relationship
between “as designed” and “as implemented” system architecture is
presented, which is provided that the software under analysis should be

documented during its development process.

However, the research undertaken will cover the following:





