SATU RANGKA KERJA SISTEM PENGESANAN RALAT DALAM SISTEM TAHAN ROSAK

AZIZI BIN ABAS

FSKTM 1999 7
SATU RANGKA KERJA SISTEM PENGESANAN RALAT DALAM
SISTEM TAHAN ROSAK

AZIZI BIN ABAS

MASTER SAINS
UNIVERSITI PUTRA MALAYSIA

Jun 1999
SATU RANGKA KERJA SISTEM PENGESANAN RALAT DALAM SISTEM TAHAN ROSAK

Oleh

AZIZI BIN ABAS

Tesis ini dikemukakan sebagai memenuhi keperluan bagi mendapatkan Ijazah Master Sains di Fakulti Sains Komputer dan Teknologi Maklumat Universiti Putra Malaysia

Jun 1999
PENGHARGAAN

Penghargaan ini ditujukan kepada Jawatankuasa Penyeliaan yang dianggotai oleh Dr. Md Yazid Mohd. Saman selaku Pengerusi, Dr. Mohamed Othman dan Azizol Abdullah. Tunjuk ajar yang diberikan oleh tuan-tuan amat dihargai dan berguna sepanjang kajian ini. Tunjuk ajar dan semangat yang diberikan oleh Dr. Yazid amat dikagumi dan semoga menjadi penyelia contoh kepada penyelia-penyelia lain di UPM.

Begitu juga kepada keluarga tersayang atas kesabaran dan pengorbanan mereka sepanjang tempoh pembelajaran ini terutamanya isteri Zuraida Binti Saad dan Alia Qistina. Kepada ibu, keluarga dan mertua tersayang, terima kasih diucapkan kerana memberi dorongan yang tidak ternilai harganya.
KANDUNGAN

Muka Surat

PENGHARGAAN ... i
SENARAI JADUAL .. vi
SENARAI RAJAH .. vii
SENARAI NAMA SINGKATAN .. x
ABSTRAK .. xii
ABSTRACT .. xiv

BAB

I PENGENALAN
Penggunaan Komputer .. 1
Rangkaian Komputer ... 2
Sistem Tahan Rosak .. 4
Latar Belakang Masalah .. 5
Objektif Kajian ... 7
Skop Kajian .. 7
Struktur Organisasi Tesis ... 8

II SOROTAN LITERATUR
Pengenalan .. 10
Pengenalan kepada Kawalan Proses ... 10
Ciri–ciri Kawalan Proses .. 12
Perisian Kawalan Proses ... 14
Bahasa Pengaturcaraan Proses Kawalan 15
Keperluan Kebolehpercayaan dalam Kawalan Proses 16
Antara Muka dan Komunikasi di dalam Kawalan Proses 17
Tahan Rosak .. 20
Definisi Kerosakan, Ralat, Kegagalan dan Tahan Rosak 22
Hubungan Antara Kerosakan, Ralat dan Kegagalan 26
Ciri–ciri Tahan Rosak ... 30
 Pengesanan Ralat .. 31
 Pembatasan Kerosakan ... 31
 Baik Pulih Ralat ... 31
 Rawatan Kerosakan Penyambungan Perkhidmatan Sistem 32
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tahan Rosak di Kawalan Proses</td>
<td>32</td>
</tr>
<tr>
<td>Perkakasan Tahan Rosak</td>
<td>33</td>
</tr>
<tr>
<td>Pengelasan Persekitaran Pengkomputeran Tahan Rosak</td>
<td>35</td>
</tr>
<tr>
<td>Kegunaan Am Sistem Komersial</td>
<td>35</td>
</tr>
<tr>
<td>Rangkaian Komputer</td>
<td>35</td>
</tr>
<tr>
<td>Kebolehsediaan Tinggi</td>
<td>36</td>
</tr>
<tr>
<td>Kadar Hayat Panjang</td>
<td>36</td>
</tr>
<tr>
<td>Aplikasi dan Pengkomputeran Kritikal</td>
<td>38</td>
</tr>
<tr>
<td>Teknik-Teknik Perkakasan Tahan Rosak</td>
<td>38</td>
</tr>
<tr>
<td>Perisian Tahan Rosak</td>
<td>42</td>
</tr>
<tr>
<td>Penerapan Pelakuan</td>
<td>44</td>
</tr>
<tr>
<td>Pengawalan Pengecualian</td>
<td>45</td>
</tr>
<tr>
<td>Kompensasi</td>
<td>46</td>
</tr>
<tr>
<td>Perisian Berbilang Versi</td>
<td>46</td>
</tr>
<tr>
<td>Pemulihan Blok</td>
<td>49</td>
</tr>
<tr>
<td>Sistem Kawalan Proses MODENAS</td>
<td>53</td>
</tr>
<tr>
<td>Isu Punca Ralat atau Kerosakan dan Penyelesaiannya di Kawalan Proses</td>
<td>55</td>
</tr>
<tr>
<td>Perisian untuk Sistem Tahan Rosak</td>
<td>57</td>
</tr>
<tr>
<td>Komponen-komponen di dalam HACMP</td>
<td>60</td>
</tr>
<tr>
<td>Gugusan Sumber-Sumber dan Kumpulan Gugusan</td>
<td>61</td>
</tr>
<tr>
<td>Definisi Perhubungan Ambil Alih Antara Gugusan Nod-Nod</td>
<td>62</td>
</tr>
<tr>
<td>Lataan (Cascading)</td>
<td>62</td>
</tr>
<tr>
<td>Pusingan</td>
<td>64</td>
</tr>
<tr>
<td>Pencapaian Serentak</td>
<td>66</td>
</tr>
<tr>
<td>Sistem Tahan Rosak yang Setara</td>
<td>67</td>
</tr>
<tr>
<td>Sistem Tahan Rosak Novell</td>
<td>67</td>
</tr>
<tr>
<td>Sistem Tahan Rosak Peringkat Pertama</td>
<td>67</td>
</tr>
<tr>
<td>Sistem Tahan Rosak Peringkat Kedua</td>
<td>68</td>
</tr>
<tr>
<td>Sistem Tahan Rosak Peringkat Ketiga</td>
<td>69</td>
</tr>
<tr>
<td>III METODOLOGI DAN REKA BENTUK</td>
<td></td>
</tr>
<tr>
<td>Pengenalan</td>
<td>70</td>
</tr>
<tr>
<td>Rangka Kerja SPR</td>
<td>70</td>
</tr>
<tr>
<td>Reka Bentuk SPR</td>
<td>72</td>
</tr>
<tr>
<td>Antara Muka Untuk Pengawasan Kerosakan</td>
<td>76</td>
</tr>
<tr>
<td>Sambungan Pangkalan Data Terbuka</td>
<td>81</td>
</tr>
<tr>
<td>Fail Ralat</td>
<td>81</td>
</tr>
<tr>
<td>Paparan Ralat</td>
<td>82</td>
</tr>
<tr>
<td>Cadangan Penyelesaian</td>
<td>83</td>
</tr>
<tr>
<td>Laporan Kerosakan, Ralat dan Cadangan Penyelesaian</td>
<td>83</td>
</tr>
<tr>
<td>Rangkaian Komunikasi</td>
<td>84</td>
</tr>
</tbody>
</table>

iii
<table>
<thead>
<tr>
<th></th>
<th>IMPLEMENTASI SISTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pengenalan</td>
</tr>
<tr>
<td></td>
<td>Objek EON MenuUtama</td>
</tr>
<tr>
<td></td>
<td>Algoritma EONMenuUtama</td>
</tr>
<tr>
<td></td>
<td>Objek KesaranRalatDataBerganda</td>
</tr>
<tr>
<td></td>
<td>Prosedur EONDuplicateUpdateLog</td>
</tr>
<tr>
<td></td>
<td>Prosedur Salin Data</td>
</tr>
<tr>
<td></td>
<td>Prosedur Load_Form</td>
</tr>
<tr>
<td></td>
<td>Prosedur UpdateProgressBar</td>
</tr>
<tr>
<td></td>
<td>Prosedur Soket Sambungan</td>
</tr>
<tr>
<td></td>
<td>Prosedur StopDownload</td>
</tr>
<tr>
<td></td>
<td>Prosedur Kesaran Ralat</td>
</tr>
<tr>
<td></td>
<td>Prosedur Kesaran Cetak</td>
</tr>
<tr>
<td></td>
<td>Objek KesaranRalatCakeraKeras</td>
</tr>
<tr>
<td></td>
<td>Prosedur Kesaran Ralat</td>
</tr>
<tr>
<td></td>
<td>Prosedur Cadangan Penyelesaian</td>
</tr>
<tr>
<td></td>
<td>Objek KesaranRalatJournalPrinter</td>
</tr>
<tr>
<td></td>
<td>Prosedur Kesaran Ralat</td>
</tr>
<tr>
<td></td>
<td>Objek KesaranRalatKemaskiniData</td>
</tr>
<tr>
<td></td>
<td>Prosedur Kesaran Ralat</td>
</tr>
<tr>
<td></td>
<td>Objek RalatPengimbas</td>
</tr>
<tr>
<td></td>
<td>Prosedur Kesaran Ralat</td>
</tr>
<tr>
<td></td>
<td>Objek KesaranRalatPerkakasan</td>
</tr>
<tr>
<td></td>
<td>Prosedur Kesaran Ralat</td>
</tr>
<tr>
<td></td>
<td>Objek KesaranRalatProses</td>
</tr>
<tr>
<td></td>
<td>Prosedur Kesaran Ralat</td>
</tr>
<tr>
<td></td>
<td>Objek KesaranRalatPokayoke</td>
</tr>
<tr>
<td></td>
<td>Prosedur Kesaran Ralat</td>
</tr>
<tr>
<td></td>
<td>Objek KesaranRalatPapanPengeluaran</td>
</tr>
<tr>
<td></td>
<td>Prosedur Kesaran Ralat</td>
</tr>
<tr>
<td></td>
<td>Objek-Objek Untuk EOF, FON dan FOF</td>
</tr>
<tr>
<td></td>
<td>Ringkasan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>OUTPUT SISTEM DAN PERBINCANGAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pengenalan</td>
</tr>
<tr>
<td></td>
<td>Sampel Fail Log Ralat</td>
</tr>
<tr>
<td></td>
<td>Antara Muka SPR</td>
</tr>
<tr>
<td></td>
<td>EON Menu Utama</td>
</tr>
<tr>
<td></td>
<td>Antara Muka Data Berganda</td>
</tr>
<tr>
<td></td>
<td>Antara Muka Cakera Keras</td>
</tr>
<tr>
<td></td>
<td>Antara Muka Mesin Pencetak</td>
</tr>
<tr>
<td></td>
<td>Antara Muka Kemaskini Data</td>
</tr>
<tr>
<td></td>
<td>Antara Muka Pengimbas</td>
</tr>
<tr>
<td></td>
<td>Antara Muka Status Perkakasan</td>
</tr>
<tr>
<td>Antara Muka Aturcara Larian</td>
<td>126</td>
</tr>
<tr>
<td>Antara Muka Pokayoke dan Papan Pengeluaran</td>
<td>127</td>
</tr>
<tr>
<td>Antara Muka Cadangan Penyelesaian</td>
<td>129</td>
</tr>
<tr>
<td>Antara Muka Cetakkan ke Pencetak</td>
<td>131</td>
</tr>
<tr>
<td>Penilaian Prestasi SPR</td>
<td>131</td>
</tr>
<tr>
<td>Keseluruhan MPCS</td>
<td>132</td>
</tr>
<tr>
<td>Stesen Kerja EON</td>
<td>133</td>
</tr>
<tr>
<td>Stesen Kerja EOF</td>
<td>135</td>
</tr>
<tr>
<td>Stesen Kerja FON</td>
<td>136</td>
</tr>
<tr>
<td>Stesen Kerja FOF</td>
<td>137</td>
</tr>
<tr>
<td>IV KESIMPULAN</td>
<td></td>
</tr>
<tr>
<td>Ringkasan Tesis</td>
<td>139</td>
</tr>
<tr>
<td>Rumusan</td>
<td>140</td>
</tr>
<tr>
<td>Tahan Rosak di Kawalan Proses</td>
<td>140</td>
</tr>
<tr>
<td>Kesesuaian VB5</td>
<td>141</td>
</tr>
<tr>
<td>Prestasi SPR</td>
<td>142</td>
</tr>
<tr>
<td>Kegunaan SPR di dalam industri lain</td>
<td>143</td>
</tr>
<tr>
<td>Keterbatasan</td>
<td>146</td>
</tr>
<tr>
<td>Cadangan Kajian</td>
<td>147</td>
</tr>
<tr>
<td>BIBLIOGRAFI</td>
<td>150</td>
</tr>
<tr>
<td>RUJUKAN INTERNET</td>
<td>155</td>
</tr>
<tr>
<td>BIODATA</td>
<td>156</td>
</tr>
</tbody>
</table>
SENARAI JADUAL

<table>
<thead>
<tr>
<th>Jadual</th>
<th>Muka Surat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Tiga Konsep Kebolehpercayaan</td>
<td>17</td>
</tr>
<tr>
<td>2 Fungsi-fungsi dalam HACMP</td>
<td>59</td>
</tr>
<tr>
<td>3 Keterangan Ralat yang Berlaku di Sistem Kawalan Proses</td>
<td>80</td>
</tr>
<tr>
<td>4 Umpan kepada Pembolehubah bagi Stesen Kerja EOF, EON dan FON</td>
<td>109</td>
</tr>
<tr>
<td>5 Fail Log Ralat Pengimbas di Stesen Kerja EON</td>
<td>114</td>
</tr>
<tr>
<td>6 Terjemahan Ralat bagi Sistem ON</td>
<td>114</td>
</tr>
<tr>
<td>7 Perwakilan bagi Lajur-Lajur di dalam Antara Muka Cakera Keras</td>
<td>119</td>
</tr>
<tr>
<td>8 Lajur-lajur Output bagi Antara Muka Status Perkakasan</td>
<td>125</td>
</tr>
</tbody>
</table>
SENARAI RAJAH

<table>
<thead>
<tr>
<th>Rajah</th>
<th>Muka Surat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gambaran Am Satu Sistem Kawalan Proses</td>
</tr>
<tr>
<td>2</td>
<td>Antara Muka Peranti dalam Sistem Kawalan Proses dan Komunikasinya</td>
</tr>
<tr>
<td>3</td>
<td>Konsep Integrasi Input dan Output Sub Sistem Teragih di dalam Kawalan Proses</td>
</tr>
<tr>
<td>4</td>
<td>Konsep Rangkaian yang Digunakan di dalam Kawalan Proses</td>
</tr>
<tr>
<td>5</td>
<td>Hubung Kait dan Kesan Antara Kerosakan, Ralat dan Kegagalan</td>
</tr>
<tr>
<td>6</td>
<td>Reka Bentuk Kapal Angkasa Voyager di Pendekatan Tahan Rosak</td>
</tr>
<tr>
<td>7</td>
<td>Teknik Peniruan Statik dan Dinamik</td>
</tr>
<tr>
<td>8</td>
<td>Komponen Utama Blok Pemulihan</td>
</tr>
<tr>
<td>9</td>
<td>Sistem Kawalan Proses MODENAS</td>
</tr>
<tr>
<td>10</td>
<td>Struktur Aliran Data di dalam FON, EON, FOF dan EOF</td>
</tr>
<tr>
<td>11</td>
<td>Struktur Sistem HACMP</td>
</tr>
<tr>
<td>12</td>
<td>Senibina bagi HACMP</td>
</tr>
<tr>
<td>13</td>
<td>Simulasi Hubungan Ambil Alih antara Gugusan Bermula dari Tatarajah, Proses Ambil Alih dan Semasa Proses Penyatuan Semula Menggunakan Kaedah Lataan</td>
</tr>
<tr>
<td>14</td>
<td>Simulasi Hubungan Ambil Alih antara Nod Gugusan Bermula dari Keadaan Tatarajah, Semula Menggunakan Kaedah Pusingan</td>
</tr>
<tr>
<td>Rajah</td>
<td>Muka Surat</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>15</td>
<td>Tatarajah bagi Kaedah Pencapaian Serentak</td>
</tr>
<tr>
<td>16</td>
<td>Penjanaan Data Ralat dan MPCS oleh SPR</td>
</tr>
<tr>
<td>17</td>
<td>Reka Bentuk Objek Pengesanan Ralat</td>
</tr>
<tr>
<td>18</td>
<td>Kerangka Kerja Konsep Pengesanan Ralat dan Kerosakan</td>
</tr>
<tr>
<td>19</td>
<td>Cartalir Proses SPR</td>
</tr>
<tr>
<td>20</td>
<td>Reka Bentuk Perisian Sokongan Pelayan Protokol Pindah Fail ..</td>
</tr>
<tr>
<td>21</td>
<td>Kadar Ralat yang Terjadi dari April 1997 hingga Ogos 1998</td>
</tr>
<tr>
<td>22</td>
<td>Sampel Kandungan Fail Log untuk SPR</td>
</tr>
<tr>
<td>23</td>
<td>Senarai Butang Pilihan Proses Pengesanan Ralat</td>
</tr>
<tr>
<td>24</td>
<td>Antara Muka Data Berganda</td>
</tr>
<tr>
<td>25</td>
<td>Antara Muka Cakera Keras</td>
</tr>
<tr>
<td>26</td>
<td>Antara Muka Mesin Pencetak</td>
</tr>
<tr>
<td>27</td>
<td>Antara Muka Kemaskini Data</td>
</tr>
<tr>
<td>28</td>
<td>Antara Muka Pengimbas</td>
</tr>
<tr>
<td>29</td>
<td>Antara Muka Status Perkakasan</td>
</tr>
<tr>
<td>30</td>
<td>Antara Muka Jumlah Proses Stesen Kerja EON</td>
</tr>
<tr>
<td>31</td>
<td>Antara Muka Aturcara Larian</td>
</tr>
<tr>
<td>32</td>
<td>Antara Muka Aturcara Larian</td>
</tr>
<tr>
<td>33</td>
<td>Antara Muka Papan Pengeluaran</td>
</tr>
<tr>
<td>34</td>
<td>Antara Muka Cadangan Penyelesaian</td>
</tr>
<tr>
<td>35</td>
<td>Satu Contoh Cetakan yang Dihasilkan oleh SPR</td>
</tr>
</tbody>
</table>

viii
<table>
<thead>
<tr>
<th>No</th>
<th>Perincian Kejadian Masa Mati</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>AIX</td>
<td>Sistem Pengoperasian AIX</td>
<td></td>
</tr>
<tr>
<td>CRC</td>
<td>Cyclic Redundancy Codes</td>
<td></td>
</tr>
<tr>
<td>DIGITAL</td>
<td>Digital Equipment Corporation</td>
<td></td>
</tr>
<tr>
<td>EOF</td>
<td>Engine Line Off (Enjin Baris Akhir)</td>
<td></td>
</tr>
<tr>
<td>EON</td>
<td>Engine Line On (Enjin Baris Mula)</td>
<td></td>
</tr>
<tr>
<td>FDDI</td>
<td>Fiber Distributed Data Interface</td>
<td></td>
</tr>
<tr>
<td>FOF</td>
<td>Frame Line Off (Bingkai Baris Akhir)</td>
<td></td>
</tr>
<tr>
<td>FON</td>
<td>Frame Line On (Bingkai Baris Mula)</td>
<td></td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface (Antara Muka Grafik Pengguna)</td>
<td></td>
</tr>
<tr>
<td>HACMP</td>
<td>High Availability Cluster Multiprocessing (Gugusan Kebolehsediaan Tinggi Berbilang Pemproses)</td>
<td></td>
</tr>
<tr>
<td>IBM</td>
<td>International Business Machine</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Identiti</td>
<td></td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronic Engineers</td>
<td></td>
</tr>
<tr>
<td>KHI</td>
<td>Kawasaki Heavy Industries</td>
<td></td>
</tr>
<tr>
<td>MPCS</td>
<td>Manufacturing Process Control System (Sistem Pemasangan Kawalan Proses)</td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics Space Admin</td>
<td></td>
</tr>
<tr>
<td>NFS</td>
<td>Network File System (Rangkaian Sistem Fail)</td>
<td></td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>ODBC</td>
<td>Open Database Connectivity (Sambungan Pangkalan Data Terbuka)</td>
<td></td>
</tr>
<tr>
<td>ORACLE</td>
<td>Oracle Database (Pangkalan Data Oracle)</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>Line Off (Baris Akhir)</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>Line On (Baris Mula)</td>
<td></td>
</tr>
<tr>
<td>RAID</td>
<td>Redundant Array of Inexpensive Disk</td>
<td></td>
</tr>
<tr>
<td>RAID5</td>
<td>Redundant Array of Inexpensive Disk Five</td>
<td></td>
</tr>
<tr>
<td>SPR</td>
<td>Sistem Pengesanan Ralat</td>
<td></td>
</tr>
<tr>
<td>SQL</td>
<td>Structure Query Language (Bahasa Struktur Pertanyaan)</td>
<td></td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transport Control Protokol/Internet Protokol (Protokol Kawalan Pengangkutan / Protokol Internet)</td>
<td></td>
</tr>
<tr>
<td>TMR</td>
<td>Triple Modular Redundancy (Gandaan Tiga Sokongan Modular)</td>
<td></td>
</tr>
<tr>
<td>UPM</td>
<td>Universiti Putra Malaysia</td>
<td></td>
</tr>
<tr>
<td>UUM</td>
<td>Universiti Utara Malaysia</td>
<td></td>
</tr>
<tr>
<td>VB5</td>
<td>Visual Basic Versi 5</td>
<td></td>
</tr>
</tbody>
</table>
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk mendapatkan ijazah Master Sains.

SATU RANGKA KERJA SISTEM PENGESANAN RALAT DALAM SISTEM TAHAN ROSAK

Oleh

AZIZI BIN ABAS

Jun 1999

Pengerusi : Dr. Md Yazid Bin Mohd. Saman

Fakulti : Sains Komputer dan Teknologi Maklumat

SPR merupakan sistem modul sokongan yang digunakan dalam persekitaran Sistem Kawalan Proses Pembuatan (MPCS). MPCS merupakan satu sistem masa nyata yang digunakan dalam industri pembuatan motosikal MODENAS. SPR berfungsi sebagai satu sistem yang mampu mengurangkan masa mati MPCS dengan cara mengesan sebarang ralat dan kerosakan yang dihasilkan.

xii
Metodologi kajian ini adalah untuk mereka bentuk satu rangka kerja sistem pengesanan ralat dan kerosakan yang terdapat dalam satu rangkaian kawasan setempat. Rangka kerja ini meliputi pindah muat fail log daripada komputer pelayan dan stesen kerja ke SPR dan fail log tersebut diproses untuk mengenal pasti masalah serta cara penyelesaiannya.

SPR adalah satu perisian yang dilaksanakan dalam komputer meja dan dibangun menggunakan bahasa pengaturcaraan Visual Basic Versi 5 (VB5) dalam sistem pengoperasian Windows 95/98. Protokol komunikasi, Protokol Kawalan Pengangkutan / Protokol Internet (TCP/IP)

Satu kajian penilaian prestasi SPR dilakukan untuk mengenal pasti masa mati yang berlaku sebelum dan selepas SPR dibangunkan. bahawa masa mati MPCS berkurang dan SPR sesuai digunakan sebagai alat pengesanan ralat MPCS.
This thesis discussed the development of a system that has fault tolerance functions known as Error Detection System (EDS). The development of EDS is intent to reduce error and fault problems that have occurred in process control system at Motosikal dan Enjin Nasional Sdn. Bhd. (MODENAS). The EDS design objective is to detect errors and defects based on the type of errors identified. This study takes into account the present fault tolerance system in MODENAS known as High Availability Cluster Multi Processing (HACMP).

EDS is a supporting module system used in Manufacturing Process Control System (MPCS). MPCS is an important real-time system in MODENAS’s motorcycle manufacturing facility. The EDS function is to reduce down time of the MPCS system by detecting of all errors and faults produced.
The methodology adopted designs a framework of error and fault detection in the local area network. Workstations to EDS and processing the log files to identify problems and solutions.

EDS is a software executing in a desktop computer and it was developed using Visual Basic Version 5 (VB5) programming language in Windows 95/98 operating system. The communication protocol, Transport Control Protocol / Internet Protocol (TCP/IP), is used by EDS.

The EDS performance appraisal study was performed to identify downtime before and after EDS was developed. This study has shown that the MPCS's downtime reduces and that EDS is suitable as an error detection tool for MPCS.
BAB I

PENGENALAN

Penggunaan Komputer

Rangkaian Komputer

Satu rangkaian merupakan himpunan kompleks perisian dan perkakasan. Bilangan perkakasan dan perisian yang digunakan pada rangkaian bergantung kepada rangkaian yang dikehendaki iaitu bilangan pengguna dan aplikasinya (Cohan, 1991). Antara kelebihan rangkaian komputer kepada individu dan kumpulan ialah:

(a) Untuk pertukaran data antara komputer dan menjadikan aturcara serta data sentiasa ada untuk semua pengguna di dalam sesuatu kumpulan atau individu.

(b) Rangkaian komputer membenarkan perkongsian sumber-sumber antara satu dengan lain. Contohnya apabila satu komputer tidak dapat menerima lagi data, ia boleh mengalihkan datanya ke komputer yang lain di dalam rangkaian.

(c) Rangkaian dapat menyokong fungsi kritikal aplikasi komputer. Komputer tidak dapat berfungsi atau gagal maka komputer sandaran di dalam rangkaian yang sama dengan cepatnya dapat mengambil alih tugas komputer tersebut tanpa disedari oleh pengguna aplikasi tersebut.

(d) Rangkaian komputer membenarkan pengguna bekerja lebih mudah dan anjal. Sambungan rangkaian dan talian telefon ke komputer di pejabat (Uyless, 1993).

Strategi penyambungan rangkaian dikenali sebagai topologi rangkaian. Topologi ini terdiri daripada topologi bus, topologi bintang, topologi gelang sambungan penuh dan topologi gabungan (Suki, 1998).

Sistem Tahan Rosak

Latar Belakang Masalah

Industri pembuatan motosikal di MODENAS ini adalah menggunakan teknologi kawalan proses yang menggunakan teknologi komputer dan robotik. Direka bentuk dan diperkenalkan oleh mereka untuk memudahkan operasi pembuatan motosikal. Perisian tersebut ialah Sistem Kawalan Proses Pengeluaran (MPCS) yang menggunakan sistem pengoperasian AIX versi 4.1.4, bahasa pengaturcaraan C/C++ dan pangkalan data ORACLE versi 7.2.2. Pada masa ini, mengawal proses pembuatan dan satu nod pelayan pangkalan data. Apabila perisian ini diperkenalkan di MODENAS, data, kerosakan

(a) Tiada sistem kawalan utama yang bersifat otomatik dan mesra ditempatkan di pejabat utama MODENAS yang mampu mengesan dan
mengeluarkan isyarat apabila berlaku kerosakan komputer di setiap stesen kerja atau komputer pelayan MPCS. Ini menyukarkan pihak penyelenggara mengawasi keadaan setiap stesen kerja dan komputer pelayan tersebut kerana kedudukan masing-masing berjauhan antara satu sama lain.

(b) Apabila berlaku satu masalah, penyelesaian dijalankan secara manual dan maklumatnya ditulis dalam buku laporan ralat yang tidak disusun secara teratur. Apabila kegagalan yang sama berulang, kesukaran timbul untuk memperolehi catatan penyelesaian yang terdahulu.

(c) Perisian MPCS yang dibekalkan oleh KHI menggunakan sistem pengoperasian AIX versi 4.1.4 sepenuhnya. Sistem AIX ini memerlukan kemahiran untuk dikendalikan dan tidak berasaskan tetingkap. Ia menyukarkan proses penyelenggaraan dan penyelesaian masalah kerana bilangan komputer yang menggunakan pengoperasian ini adalah terhad.

Satu sistem yang otomatik dan bercirikan tetingkap perlu ada untuk mempertingkatkan proses pengesanan ralat. Tindakan pemulihan perlu diambil dengan cepat, cekap dan betul kerana ini melibatkan kos pengeluaran. Jika proses pengeluaran diberhentikan maka bilangan pengeluaran motosikal akan berkurangan daripada yang dirancangkan. Prosedur pemulihan yang mudah difahami dan bermakna adalah perlu kerana sebarang kesukaran akan menyebabkan masa yang diambil untuk pemulihan lama dan proses pengeluaran motosikal akan tertangguh.
Objektif Kajian

Kajian ini dilaksana untuk menyelesaikan masalah yang telah dinyatakan dalam Latar Belakang Masalah. Objektif kajian ini adalah seperti berikut:

(a) Mengkaji kaedah untuk pelaksanaan sistem tahan rosak dalam satu persekitaran rangkaian komputer.
(b) Mereka bentuk satu rangka kerja untuk sistem tahan rosak.
(c) Membangunkan satu sistem tahan rosak yang bersifat otomatik dan bercirikan tetingkap yang berkemampuan mengesan ralat dan menjalankan proses pemulihan dengan cekap.

Skop Kajian

Skop kajian ini ialah:

(a) Penumpuan kepada pendekatan pengesanan ralat dalam sistem tahan rosak dan pengaturcaraannya berorientasikan objek serta mengikut rangka kerja yang disediakan.
(b) Perisian pembangunan yang digunakan mampu memproses data daripada stesen kerja dan pelayan pangkalan data yang beroperasi dalam sistem pengoperasian Windows 95/98 dan boleh digunakan dalam komputer peribadi.
(c) Perisian yang dibangunkan ini boleh mengesan ralat yang berlaku di kawalan proses melalui rangkaian setempat di MODENAS.