

UNIVERSITI PUTRA MALAYSIA

STATIC ANALYSER FOR JAVA-BASED
OBJECT-ORIENTED SOFTWARE METRICS

HASAN MUGBIL KHALAF ABU AL-ESE

FSKTM 1999 4

STATIC ANALYSER FOR JAVA-BASED

OBJECT-ORIENTED SOFTWARE METRICS

By

HASAN MUGBIL KHALAF ABU AL-ESE

Thesis Submitted in Fulillment of the Requirements for the
Degree of Master of Science in the

Faculty of Computer Science and Information Technology
Universiti Putra Malaysia

February 1999

To My Late Fathers Pure Spirit.

ACKNOWLEDGEMENTS

In the name of Allah, Most Gracious, Most Merciful

I would like to take this opportunity to convey my sincere

thanks and deepest gratitude to my chairman supervisor Dr. Abdul

Azim Abd. Ghani for his advice, comments, suggestions, help, and

invaluable guidance throughout my research. I am also indebted to

my co-supervisors Dr. Ramlan Mahmod and Dr. Md. Yazid Saman

for their constant support all the time throughout my research. I

am very grateful to all of them for all the help and invaluable

guidance, fruitful discussions, patience and continued

encouragement provided to me at every stage of this thesis. A lot of

thanks and grateful to all of them for their kindness and having

taken so much of their valuable time for studying, correcting and

restructuring the preliminary drafts.

I would like to convey my appreciation to the Faculty of

Computer Science and Information Technology, the Library of the

University, the Graduate School Office, and the Laboratories

Technicians. I am also indebted to UM University and UKM

University for allowing to use their Libraries.

iii

My special thanks go to the Embassy of Jordan in

Kuala Lumpur and to all of its employees. I would like in particular

to thank the ambassador Mr. Abdul Bah AI-Kurdi,

Mr. Sudqi AI-Omoush and his family for their helping and moral

support.

I would like to express my deepest gratitude to Prof.

Mohammad Adnan Al-bakheet, the president of Al al-Bayt

University for his encouragement. I am also pleased to thank my

friends in Computer Center and Faculty of Science for their

encouragement and helping.

I am also very grateful and wish to thank my Arab friends at

UPM; Ahmad Sulaiman AI-Khawaldeh, Atef Ali AI-Khawaldeh,

Belal Barham, Rafa AI-Qutasih, Abdulla AI-Shbil, Malik AI-Qdah,

Hamed Fawareh, Jehad AI-Khaldi, Faraj Abu Alaiwi, Abdul Nasir

Abu Alaiwi, Khalil AI-Hasan and Ahmad Zahran for their

encouragement and support.

I am also pleased to convey my deepest thanks to those who

have been giving me their invaluable time and who have been

sharing me my interesting time, my special thanks go to Isam

Qudsieh and his sister Hanan (UPM), Moneef AI-Jazzar (UPM),

iv

Ahmad AI-Esa (USM) , Sharaf AI-Horani (UNIMAS) , Hayel AI-Fuqara

(UM) , Mohammad Abu Ghazleh (UM) , Imad Hamadneh (UKM) . Not

forgetting my Malaysian friends Syed Hussien Mahmud, Zulkifli

Zainul and Mahdi Boon. Sincere thanks to all of them for their

kindness and moral encouragement.

I would like to convey my sincere thanks and deepest

gratitude to my closed friend who stood beside me all the time,

indeed I am indebted to my brother Saleh Ayed Ahmad

AI-Khawaldeh who gave me his invaluable time, sincere thanks to

him and for his great-hearted. Not forgetting my closed friends

Omar Abu AI-Ese, Mohammad AI-Smadi and Abdul Salam

AI-Hussari who stood beside me all the time. Sincere thanks to all

of them and for their noble deeds.

Finally, I would like to express my most sincere and warmest

gratitude to my mother, sisters, brothers; Yaser, Mohammad,

Ahmad, Ihsan, and Raja, sister in law, brothers in law; Saleh,

Fawaz, and Farhan, uncles, aunts, cousins, nephews, and nieces

for their prayers, love, generous moral and financial support during

my study.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS.. iii

LIS T OF TABLES .. ix

LIS T OF FIGURES x

ABSTRACT... xiv

ABSTRAK xvi

C HAPTER

I INTRODUC TION 1

Measurement in Software Engineering 1

Measurement and Software Metrics...................... 2

Software Metrics in an Object-Oriented
Environment.. 5

Scope of the Research .. 9

Objectives of the Research.................................... 10

Organisation of the Thesis.................................... 1 1

II OBJECT· ORIENTED SOFTWARE
DEVELOPMENT: APPROACH AND METRICS 13

Object-Oriented Approach.................................... 1 3

Principles of the Objet-Oriented Approach 16

Benefits of the Object-Oriented Approach 18

Object-Oriented Product Metric 19

Method Metrics 20

Class Metrics.. 2 1

Inheritance Hierarchy Metrics....................... 31

Coupling Metrics 33

Other Product Metrics 35

Static Analysers , 36

vi

III OBJECT-ORIENTED METRICS DEFINITIONS
USING ATTRIBUTE GRAMMARS 42

Introduction 42

Concepts of Attribute Grammars 42

Elements of Attribute Grammars 45

Advantages of Attribute Grammars 47

Using Attribute Grammars in Object-Oriented
Source Code Metrics Definitions........................... 49

IV DESIGN AND IMPLEMENTATION OF THE
f)1r�1rI� Jllf��f)�Ft.. :;�

Introduction... 58

Lexical Analyser... 60

Syntax Analyser 69

Design and Implementation of Symbol Tables 79

Design and Implementation of Object-Oriented
Source Code Metrics 106

Depth of Inheritance Tree and Number of
Children Metrics... 106

Response for a Class Metric 110

Coupling Between Object Classes Metric 115

V RESULTS AND DISCUSSION 123

Introduction 123

Case Study 1 124
Case Study 2 130

VI CONCLUSION AND FURTHER RESEARCH 136

Conclusion 136

Further Research 139

REFERENCES.. 140

Vll

APPENDIX

A Context- Free Grammar of the Subset of Java
Language 150

B Contents of y. tab. c 159

C Definition and Contents of Reserved Words
Table 161

o Scanner Specification File.......... 163

E Parser Specification File,........ 165

lTl1rJl •• 1��

viii

LIS T OF TABLE

Table Page

1 Attribute Value for Attribute Complexity Metric 22

IX

LIST OF FIGURES

Figure Page

1 Communication between Objects............................... 14

2 Sample Source Code and Its Attribute Complexity
Metric . 23

3 Undirected Graphs and their Edges........................... 30

4 Components of the Static Analyser 59

5 Parts of a Lexical Analyser Specification File.............. 61

6 ck_reserved_ wd{) Function... 68

7 Parts of a Syntax Analyser Specification File.............. 71

8 High-Level Productions.. 74

9 Parts of ClassDeclaration Production 75

10 Usage of Actions inside Productions........................... 76

11 yyerrorO Function.. 77

12 Usage of error Token in Productions 79

13 Structure of Class Table .. 80

14 Dynamic Representation of Class Table 81

15 Structure of Local Symbol Table 82

16 Functions of the Local Symbol Table 82

17 Functions of the Class Table...................................... 83

x

18 inserCclass() Function... 84

19 Production that invokes inserCclass() Function 84

20 parenCclassO Function 85

21 Production that invokes parenCclassO Function 85

22 inserCmethodO Function... 86

23 Production that invokes inserCmethodO Function 87

24 inserCfield() Function.. 88

25 Production that invokes inserCfieldO Function.......... 89

26 Productions that Assign Values to fieldvar Variable.... 89

27 push_stackO Function ... 90

28 free_stackO Function ... 91

29 Productions that invoke push_stackO and
free_stackO Functions.. 92

30 Productions that Assign Values to nameofvar and
typeofvar Variables 93

31 Productions that Invoke check_methodO and
instance_classO Functions... 94

32 Part 1 of check_methodO Function............................. 97

33 Part 2 of check_methodO Function............................. 98

34 check_classO Function... 99

35 check_stackO Function 100

xi

36 check_objectO Function 101

37 instance_classO Function 102

38 Prod uctions that Invoke check_ varO Function............ 104

39 Error Messages.. 105

40 Dynamic Representation of Inheritance Structure 107

41 Production that Invokes do_inheritanceO Function 108

42 do_inheritanceO Function 109

43 prinCinheritanceO Function 109

44 Structure of Response Table...................................... 110

45 Dynamic Representation of Response Structures 111

46 inserCresponseO Function... 112

47 Productions that Invoke inserCresponse{) Function... 113

48 do_response{) Function.. 114

49 Production that Invokes do_response() Function 114

50 prin Cresponse() Function.. 115

51 Structure of Cou pling Table....................................... 116

52 Dynamic Representation of Coupling Structure 116

53 inserCcoupling{) Function 118

54 Productions that Invoke insert_coupling() Function 119

xii

55 do_couplingO Function . 121

56 Production that Invokes do_coupling() Function 122

57 prinCcoupling() Function ... 122

58 Case Study 1, A Java-Based Program 125

59 Case Study 1, Inheritance File Contents 127

60 Case Study 1, Response File Contents 128

61 Case Study 1, Coupling File Contents 129

62 Case study 2, A Java-Based Program 131

63 Case Study 2, Inheritance File Contents 133

64 Case Study 2, Response File Contents 134

65 Case Study 2, Coupling File Contents 135

xiii

Abstract of thesis presented to the Senate of Universiti Putra
Malaysia in fulfilment of the requirements for

the degree of Master of Science.

STATIC ANALYSER FOR JAVA-BASED
OBJECT-ORIENTED SOFTWARE METRICS

By

HASAN MUGBIL KHALAF ABU AL-ESE

February 1999

Chairman : Abdul Azim Abd. Ghani, Ph.D.

Faculty : Computer Science and Information Technology.

Software metrics play a major role In the software

development. Not only software metrics help in understanding the

size and complexity of software systems, but they are also helpful

in improving the quality of software systems. For object-oriented

systems, a large number of metrics have been established. These

metrics should be supported by automated collection tools.

Automated tools are useful for measuring and improving the quality

of software systems. One such tool is a static analyser.

A static analyser has been developed for a subset of Java

language. A number of object-oriented software metrics has been

XIV

evaluated using attribute grammar approach. Attribute grammar

approach is considered as a well-defined approach to the software

metrics evaluation since it is based on the measurement of the

source code itself. New definitions for a number of object-oriented

metrics have been specified using attribute grammars.

This tool has been built using C language. Lexical analyser

and syntax analyser have been generated using lex and yacc tools

under linux operating system. Four object-oriented metrics have

been evaluated. These metrics are Depth of Inheritance Tree metric,

Number of Children metric, Response For a Class metric, and

Coupling Between Object Classes metric. The software metrics will

be produced in the common metrics format that is used in SCOPE

project.

xv

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra
Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

PENGANALISIS STATIK BAGI METRIK PERISIAN
BERORIENTASI OBJEK BERDASARKAN BAHASA JAVA

Oleh

HASAN MUGBIL KHALAF ABU AL-ESE

Februari 1999

Pengerusi : Abdul Azim Abd. Ghani, Ph.D.

Fakulti: Sains Komputer dan Teknologi Maklumat

Metrik perisian memainkan peranan yang penting di dalam

pembangunan perisian. Metrik perisian bukan hanya membantu di

dalam memahami sesuatu saiz dan kesukaran sesuatu sistem

perisian, tetapi ia juga membantu untuk memperbaiki kualiti

sesuatu sistem penslan. Untuk sistem berorientasikan objek,

sebilangan besar metrik telah dibina. Kesemua metrik perlu

disokong oleh peralatan pengumpulan au to masi. Peralatan

automasi sangat berguna untuk mengukur dan memperbaiki

kualiti sisitem perisian. Salah satu alat terse but adalah

penganalisis statik.

XVl

Satu penganalisis statik telah dibangunkan untuk subset

kepada bahasa Java. Sebilangan metrik perisian berorientasi objek

telah dinilai dengan menggunakan pendekatan nahu atribut.

Pendekatan nahu atribut ini dianggap sebagai satu pendekatan

yang sesuai untuk proses penilaian metrik perisian kerana ia

adalah berdasarkan pengukuran kod sumbernya tersendiri.

Definisi baru untuk sebilangan metrik berorientasi objek telah

dikenal pasti dengan menggunakan nahu atribut inL

Peri sian lnl dibina dengan menggunakan bahasa C.

Penganalisis leksikal dan sin tak telah dihasilkan menggunakan

peralatan lex dan yacc di bawah sistem pengoperasian linux.

Empat metrik berorientasi objek telah dinilai. Metrik ini terdiri dari

metrik Kedalaman Pepohon Pewarisan, metrik Bilangan Anak,

metrik Tindakbalas Untuk Kelas dan metrik Pasangan Untuk Kelas

Objek. Metrik peri sian akan dihasilkan dalam format metrik yang

biasa seperti yang digunakan dalam projek SCOPE.

xvii

CHAPTER I

INTRODUCTION

Measurement in Software Engineering

Software engineering describes the collection of techniques

that apply an engineering approach to the construction and

support of software product. Software engineering activities include

managing, costing, planning, modelling, analysing, specifying,

designing, implementing, testing, and maintaining (Fenton and

Pfleeger, 1997). Engineering approach means that each activity is

understood and controlled. Software engineering focuses on

implementing software in a controlled and scientific ways. Software

engineering needs measurement in order to quantify the aspects of

software development and maintenance.

It is clear that measurement can be effective, if not essential,

in making characteristics and relationships more visible, in

assessing the magnitude of problems, and in fashioning a solution

to problems.

1

2

Measurement and Software Metrics

Today, computers play a primary role in almost every area of

our life . The increased importance of software also places more

requirements on it. Thus, it is necessary to have precise,

predictable, and repeatable control over the software development

process and product, Software measures are tools to measure the

quality of software. The area of software measurement is also

known as software metrics. The terms, metric and measure are

used as synonyms.

The background for software measures and software

measurement was established in the sixties (Rubey and Hartwick,

1968), and mainly in the seventies (McCabe, 1 976; Halstead, 1 977;

Albrecht, 1979). And from these earlier works, further results have

emerged in the eighties and nineties.

Measurement is important for three basic activities (Fenton

and Pfleeger, 1997). First, there are measures that help us to

understand what is happening during development and

maintenance. Projects without clear goals will not achieve their

goals clearly (Gilb, 1988). Second, the measurement allows us to

control what is happening in our projects. You can neither predict

nor control what you cannot measure (DeMarco, 1982). Third,

3

measurement encourages us to improve our processes and

products.

According to Finkelstein (1984) measurement is defined as:

"Measurement is the process by which numbers or
symbols are assigned to attributes of entities in the
real world in such a way as to describe them
according to clearly defined rules."

Ince et al. (1993) defined the software metrics as numerical

values of quality which can be used to characterize how good or

bad that the product is in terms of properties such as its proneness

to error.

Moreover, Fenton and Pfleeger (1997) defined it formally as:

"Measurement is as a mapping from the empirical
world to the formal, relational world. Consequently,
a measure is the number or symbol assigned to an
entity by this mapping in order to characterize an
attribute. "

Fenton and Pfleeger (1997) classified three classes of entities:

1 . Processes: are collections of software-related activities.

2 . Products: are any artifacts, deliverables, or documents that

result from a process activity.

3. Resources: are entities required by a process activity.

4

Within each class of entities, there is a distinguish between

two types of attributes (Fenton and Pfleeger, 1 997):

1 . Internal attributes of a product, process, or resource are those

that can be measured purely in terms of the product, process, or

resource itself. In other words, an internal attribute can be

measured by examining the product, process, or resource on its

own, separate from its behaviour.

2. External attributes of a product, process, or resource are those

that can be measured only with respect to how the product,

process, or resource relates to its environment. Here, the

behaviour of the process, product, or resource is important

rather than the entity itself.

Grady and Caswell (1989) summarized the advantages of

software metrics. They determined that software metrics help the

developer to:

1 . Understand software development process better.

2. Measure progress.

3 . Provide common terminology for key controlling elements of

the process.

4. Identify complex software elements.

5. Make software management more objective and less subjective.

6. Enable the engineers and manager to estimate and schedule

better.

7. Better evaluate the competitive position.

8 . Understand where automation i s needed.

5

9 . Identify engineering practices, which lead to highest quality

and productivity.

10 . Make critical decisions earlier in the development process.

1 1 . Eliminate fundamental causes of defects.

12 . Encourage the use of software engineering techniques by the

engineers and managers.

13. Encourage the definition of long-term software development

strategy based upon a measured understanding of current

practices and needs.

14 . Be more competitive.

Software Metrics in an Object-Oriented Environment

It is quite clear that measurement is necessary for the

software development process to be successful. The recent

movement toward object-oriented technology must also include the

processes that control object-oriented development, namely

software measures.

Object-oriented systems contain many significant

architectural features that are not adequately captured by existing

metrics. Firstly, code and design metrics developed for structured

6

software assume a separation between data and procedure which

does not occur in object-oriented software. Sec<?ndly, the process of

object-oriented design tends to differ, for example the boundaries

between analysis and design tend to be less rigid, thus metrics

developed for traditional systems are unlikely to be applicable, at

least not without modification (Henderson-Sellers, 1 99 1 ; Shepperd

and Cartwright, 1997).

Fetcke (1995) investigated the properties of object-oriented

software metrics (Zuse and Fetcke, 1995) and summarized the

following:

((The result of this investigation is that a large set of
object-oriented metrics have properties that are
completely different from properties of metrics for
procedural languages. "

Moreover, Berard (1996) mentioned that object-oriented

software engineering metrics are different because of localization,

encapSUlation, information hiding, inheritance, and object

abstraction techniques.

At the end of the eighties, software measures for the object-

oriented environment were proposed. A very early investigation of

object-oriented measures can be found in Rocacher (1 988) , Morris

(1988) and Pfleeger (1989). The first book about object-oriented

software metrics was in 1994 (Lorenz and Kidd, 1994) .

7

Jones (1997) , in his paper about strengths and weaknesses of

software metrics, mentioned the following strengths for object­

oriented metrics:

1 . They are psychologically attractive within the object-oriented

community.

2. They appear to be able to distinguish simple from complex

object-oriented projects .

However, he mentioned the following weaknesses:

1 . They do not support studies outside of the object-oriented

paradigm.

2 . They do not deal with full life-cycle issues.

3. They have not yet been applied to testing.

4 . They have not yet been applied to maintenance.

5. They have no conversion rules to lines of code metrics.

6. They have no conversion rules to function point metrics .

7 . They lack automation.

8. They are difficult to enumerate.

9 . They are not supported by software estimating tools.

However, in the area of object-oriented systems it is not clear

what an object-oriented program makes difficult to understand, to

test, or to maintain.

