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The determination of eigenvalues and their related eigenfunctions is one of the 

central problems of quantum mechanics. In this work, the problem of finding 

energy eigenvalues and eigenfunctions are aptly demonstrated with one dimensional 

systems of infinite double square well potential, finite double square wel l  potential, 

rectangular potential hole between two walls and asymmetric square well potential. 

We develop Mathematica packages for which the Schrodinger equations are solved 

for each model. The solutions are obtained by graphical and numerical methods in 

these packages. The packages are easy to use; the user does not need to know the 

details of the packages in order to use them but the user has a direct control over 

parameters of the models. Eigenvalues and eigenfunctions have been obtained for 

various well depths and widths as well as various barrier widths. They are shown to 

have appropriate limiting solutions. The packages are stable, fast, efficient and can 

serve as useful tools for teaching systems of one dimensional rectangular potential, 

in quantum mechanics. 
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Penentuan nilai eigen dan fungsi eigen berpadanan merupakan salah satu 

masalah utama mekanik kuantum. Dalam penyelidikan ini, masalah mencari nilai 

eigen dan fungsi eigen tenaga sedemikian ditunjukkan melalui sistem-sistem satu 

dimensi dengan keupayaan dwiperigi segi empat tak terhingga, keupayaan 

dwiperigi segi empat terhingga, keupayaan lubang segi empat di antara dua dinding 

dan keupayaan perigi segi empat asimetri. Kami telah bangunkan pakej -pakej 

Mathematica yang menyelesaikan persamaan Schroedinger bagi setiap model. 

Penyelesaian telah diperolehi melalui kaedah grafik dan numerik dalam pakej 

tersebut. Pakej -pakej ini mudah digunakan; pengguna tidak perlu pengetahuan 

terperinci untuk menggunakan pakej ini tetapi mempunyai kawalan terus ke atas 

parameter model. Nilai dan fungsi eigen telah diperolehi untuk pelbagai lebar dan 

dalam perigi, dan juga untuk pelbagai lebar sawar. Ditunjukkan fungsi-fungsi ini 

mempunyai bentuk penyelesaian yang sesuai dalam had tertentu. Pakej-pakej yang 

telah dibangunkan adalah stabil, cepat, efisien dan mampu berperanan sebagai alat 
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bantu pengajaran system keupayaan segi empat satu dimensi dalam mekanik 

kuantum. 
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CHAPTER I 

INTRODUCTION 

Understanding Quantum Mechanics 

Quantum mechanics is the theoretical framework of motion and interaction 

of particles at the small scales where the discrete nature of the physical world 

becomes important. Every quantum particle is characterized by a wave function. 

Erwin Schrodinger developed the differential equation which describes the 

evolution of those wave functions. By using Schrodinger equation, scientists can 

find the wave function which solves a particular problem in quantum mechanics. 

Unfortunately, it is usually impossible to find an exact closed solution to the 

equation; exact solutions are known only for special cases of potential energy Vex), 

and one discussed in standard quantum mechanics books (Baym, 1 969, Bohm, 

1 979, Eisberg, 1 96 1 ,  Griffiths, 1 995 and Merzbacher, 1 998). So certain techniques 

are used in order to obtain an answer for the particular problem. Approximations 

techniques are very useful for treating systems of certain potentials for which the 

Schrodinger equation cannot be solved in a closed form. Variational methods and 

perturbations theory are two examples of the most powerful techniques. Hartree

Fock theory provides another good technique for the molecular system. The 

numerical approaches are widely used with the aid of large computing machines. In 

recent years, computers offer interactive capabilities and rapid graphical results. 

Nowadays modem computers give the possibility to visualize the solutions of 

Schrodinger equation. 
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Computation 

Computation is a form of communication that transcends applications and 

technological boundaries, and is a tool that could promote discovery, scientific 

understanding and learning. Historically, computational quantum mechanics other 

than numerical ones have not been emphasized. However with the development of 

personal computers, several programs for quantum mechanics now exist. In recent 

years there have appeared softwares can serve as engine of high-level language for 

technical computing such as Matlab and Mathematica. With the development of 

Mathematica software (Wolfram, 1 999), students will more find more opportunities 

to learn quantum mechanics interactively. In this work, the choice of Mathematica 

is made because of its flexibility and elegance in handl ing the three computational 

modes namely numerical, symbolic and graphical. 

Wave mechanics 

There are several possible formalisms of quantum mechanics, commonly 

referred as Heisenberg matrix mechanics and Schrodinger wave mechanics. 

Schrodinger developed his theory of wave mechanics by writing down an equation 

known as the Schrodinger equation. It was subsequently shown that Heisenberg and 

Schrodinger approaches were equivalent, although Schrodinger turned out to be 

easier to visualize with for most applications. In his formalism, the central idea is de 

Broglie 's  wave-particle duality hypothesis. 
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One-Dimensional potentials 

In quantum mechanics, the measurement of a physical quantity E can result 

only in one of the eigenvalues of the corresponding operator o. The eigenvalues of 

a forming the spectrum of the operator may be discrete, continuous or both. The 

eigenfunctions of a form a complete basis which may be used to expand an 

arbitrary wave function. The expansion coefficients can be used to determine the 

probability of finding the system in an eigenstate of the operator a with eigenvalue 

E .  One of the fundamental quantities of a quantum dynamical system is its energy. 

The Schrodinger equation is an example of an eigenvalue equation where the 

operator corresponding to energy is the Hamiltonian operator of the system. 

Solving this second order differential Schrodinger equation is the main task 

essentially giving the wave functions ofthe particles (Rae, 1 992). 

The Infinite Double Potential Square Well 

The potential function we are investigating is true to its name; it possesses 

two wells on either end of a barrier. As a consequence of this shape, the particle will 

feel free of any force in the well, except for when it reaches any sharp drop or rise 

in the potential function, where it feels an instantaneous infinite force. Classically 

speaking, this force simply leads to elastic collisions similar to those of gas particles 

reflecting of the walls of a solid container. But quantum mechanics predicts a 

different phenomena. A particle bound initially deep within one well will slowly 
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leak out and find itself sometimes in one well, and sometimes the other. We are 

considering the cases that do not slosh or evolve in time. 

The Finite Double Square Well 

The study of the double square wel l  potential has become more popular in 

seventies. A similar problem has been considered using double harmonic oscillator 

potential and the solutions to the time independent Schrodinger equation are the 

parabolic cylindrical functions. The problem was considered using the WKB 

method and approximate solution is obtained. Further, in an article by Lapidus 

(Lapidus 1 97 1 ), an analytic treatment of the double potential wel l  problem is 

discussed where twin 0 functions are used for the potential. This model is of two 

identical finite square wells and separated by a distance a. The double square well 

potential crudely represents the electronic part of the potential energy of a diatomic 

molecule. The square wells replace the near-coulomb potentials experienced by an 

electron in the vicinity of either of two identical charged nuclei. Of course, real 

molecules generally have several electrons, which are not restricted to one

dimensional motion. However, most of the wave functions for diatomic molecules 

can be il lustrated by this model, which has the advantage that it can be solved 

exactly. 

The Rectangular Hole between two Walls 

The rectangular potential hole is a square potential well between deep walls. 

In this model there are two possibilities for energy eigenvalues, the bound states 

E<O and the positive energy eigenvalues E>O (Flugge, 1 97 1 ). There are discrete 
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eigenvalues for a finite distance between the hole and the walls I, which with 

increasing I form an increasingly dense level system. 

Asymmetrical Square Well 

In the asymmetrical finite square wel l  the potential function appear as lop 

sided and here the eigenvalue problem appears in a different manner depending on 

the value of E compared to the potentials VI and V2. We shall consider the spectrum 

of the energy values E<V 2, for which it discrete. A particle's wavefunction in this 

potential well can be characterised by the depth of the well, potential value of 

region one and region three, energy of the particle and the mass of the particle. 

Significance of the Work 

The development of Mathematica packages of one dimensional potential 

models can assist students' understanding of selected topics in quantum mechanics 

incorporating computation several ways. First, it can trigger the students' interest 

through interactively solving Schrodinger equation. Secondly, by representing the 

eigenvalues and eigenfunctions graphically and numerically the students will 

hopefully develop a feeling for the behavior of these quantum mechanical systems 

that cannot be gained by conventional means. Even though Mathematica has played 

an essential role in this work, the student or user is not required to have any 

knowledge of Mathematica apart from initializing the package which is simple. 
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Objective 

The principal purpose of this research is to develop Mathematica packages 

which calculate the energy eigenvalues and eigenfunctions numerically and 

graphically for systems with the following potential wells 

• Infinite double potential square well. 

• Finite double square well .  

• The rectangular hole between two walls 

• Asymmetrical square well .  




