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A thorough study of Colossal Magnetoresistance materials of 

been carried out for a full range of doping from x=O.OO to x=1.00. All samples show 

single-phase orthorhombic perovskite structure with some minor impurities. 

Paramagnetic-ferromagnetic phase transitions were observed in the X' -temperature 

curves for the undoped (La-DYh!sCalisMn03 and (La-DY)2I3CaI/3Mn03 samples. The 

Curie temperature, T c shifts to lower temperature as dysprosium increases indicating 

the lost of ferromagnetic order. However, dysprosium doping is observed to increase 

the Tc in (La-Dyh/8Ca1l8Mn03 system more than the effect of other systems. But for 

the higher doping of dysprosium, the magnetic behaviour of samples has been 

disturbed. For (La-DY)2I3CaIl3Mn03 system, the substitution of dysprosium decreases 

the T c. This is due to the buckling of Mn06 octahedra, which increases with the 

increase of dysprosium concentration giving weaker double exchange interaction and 

describing the decreases of the electron hopping between Mn
3
+ and Mn4+. 

(La-DY)1/2Ca1/2Mn03 system shows both ferromagnetism and antiferromagnetism 

transition for undoped sample but as the dysprosium substitutes, the 
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antiferromagnetism totally disappears and ferromagnetic behaviours is observed. 

This anomaly indicates that the change in the bond angle on Dy substitution reduces 

the antiferromagnetism coupling. The existence of T p and T c was found to be 

correlated. This phenomenon of coexistence was due to the double exchange 

interaction of Mn3+ and Mn4+ that brings the systems below Tc into metallic state. 

Based on the semiconductor model, In(R) a (-Balks T) it was observed that the energy 

gap for all samples was very small with below than 0.2 e V and thus exhibits narrow 

gap semiconductor properties. The measurement of temperature dependence of 

magnetoresistance has been studied for each sample and negative CMR values have 

been obtained. CMR value appears at low temperature approaching Tp. The highest 

CMR value is 56.9% at 150 K was observed in (LaI-xDyxhlsCallsMn03 system with 

x=O.33 and applied magnetic field at 1 Tesla. 
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Kajian menyeluruh terhadap bahan magnetorintangan raksasa 

dilakukan dalam julat pendopan dari x=O.OO hingga x=l.OO. Kesemua sampel 

menunjukkan kewujudan satu fasa dalam struktur perovskite ortorombik dengan 

sedikit bendasing. Perubahan fasa paramagnet-ferromagnet telah dicerap pada 

lengkung X'-suhu untuk sampel (La-Dy)?tsCallsMn03 dan (La-DY)2/3CaI/3Mn03. 

Suhu Curie, T c beralih ke suhu yang lebih rendah apabila pendopan dengan 

dysprosium meningkat di mana menunjukkan kehilangan fasa ferromagnet. Walau 

bagaimanapun, kehadiran dysprosium dalam sistem (La-DY)7/SCaJ/sMn03 

menunjukkan sedikit peningkatan dalam T c berbanding dalam sistem yang lain. 

Tetapi untuk pendopan yang tinggi, kehadiran dysprosium dikesan mengganggu sifat 

magnetik bahan. Bagi sistem (La-Dyh/3Call3Mn03, kehadiran dysprosium 

menyebabkan penurunan T c. lni kerana pembentukkan struktur oktagon Mn06 yang 

semakin meningkat dengan kesan pertambahan dysprosium menyebabkan interaksi 

tukarganti ganda dua semakin lemah dan menggambarkan lompatan elektron di 

antara Mn
3+ dan Mn4+ semakin berkurangan. Sistem (La-DY)1I2CaJ/2Mn03 
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menunjukkan kebadiran fasa ferromagnet dan antiferromagnet untuk sampel tanpa 

pendopan tetapi dengan kehadiran dysprosium, sifat antiferromagnetik hilang serta­

merta dan hanya sifat ferromagnet dapat dikesan. Kesan luar biasa ini menunjukkan 

perubahan ke atas sudut ikatan dan dengan kehadiran dysprosium mengurangkan 

kesan antiferromagnetik. Kewujudan T p dan T e adalah saling berkait. Fenomena ini 

disebabkan kehadiran interaksi tukarganti ganda dua antara Mn3+ dan Mn4+ 

membawa sistem pada paras di bawah Te keadaan pengalir. Berdasarkan model 

semikonduktor In(R) a (-EJkBT) didapati jurang tenaga untuk semua sampel sangat 

kecil iaitu 0.2 e V ke bawah dan mempamerkan sifat jUl'81lg sempit semikonduktor 

separa. Suhu kebergantungan magnetorintangan telah diuji bagii setiap sampel dan 

nilai CMR negatif telah diperolehi. Nilai CMR didapati pada suhu rendah mendekati 

Tp. Nilai tertinggi CMR adalah 56.9010 pada suhu 150 K dicerap dalam sistem 

(La-DY)71sCallsMn03 untuk sampel x=O.33 dengan medan magnet I TesIa dikenakan. 
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CHAPTER I 

INTRODUCTION 

Research Background 

The discovery of colossal magnetoresistance (CMR) has received extensive 

studis since 1950s. As the name implies, the effect observed in these materials 

showed a huge change in electrical resistivity when a magnetic field was applied. 

The effect is typically known as magnetoresistance (MR) but the resistivity change 

was so large that it could not be compared with any other forms of 

magnetoresistance. These manganese-based perovskite materials has been the subject 

of a huge international research to seek suitable new materials with specific 

properties susceptible to be involved in numerous technological applications in 

magnetic recording and sensors. In 1993, the researchers at Siemens in Germany and 

a little later by a group at Bell Labs in New Jersey, raised expectations of a new 

generation of magnetic devices and sensors, and launched a frenetic scientific race to 

understand the cause of the effect (Fontcuberta, 1999). Even though it has not been 

utilized in devices yet but it development shows such great potentiaL 

The CMR materials have the formula Ln(l_x)AxMn03 where Ln is usually the 

trivalent rare earth ions (La
3+, Pr

3+, Nd
3+ etc.) and A is the divalent ions (Ca

2+, Ba
2+, 

S�+). The reason they are called "colossal" is that their magnetoresistance ratios are 

many orders of magnitude larger than those of the giant magnetoresistance materials. 

Unfortunately, the temperatures at which the "colossal" magnetoresistance ratios 




