MICROSTRUCTURAL AND MAGNETIC PROPERTIES OF
(La1-xDYx)1-yCayMnO3 (x=0.00 TO 1.00; y=1/8, 1/3, 1/2)
PEROVSKITES

SHARMIWATI BINTI MOHAMMED SHARIF

FSAS 2003 55
MICROSTRUCTURAL AND MAGNETIC PROPERTIES OF
(La$_{1-x}$Dy$_x$)$_{1.2}$Ca$_y$MnO$_3$ (x=0.00 TO 1.00; y=1/6, 1/3, 1/2) PEROVSKITES

By

SHARMIWATI BINTI MOHAMMED SHARIF

Thesis Submitted to the School of Graduate School, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

August 2003
DEDICATION

To my dear
Husband
for his love and support....

To my dear family
Abah, Mama, Ngah and Adik
for their love and encouragement....
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirements for the degree of Master of Science

MICROSTRUCTURAL AND MAGNETIC PROPERTIES OF (La$_{1-x}$Dy$_x$)$_{1-y}$Ca$_y$MnO$_3$ (x=0.00 TO 1.00; y=$1/8$, $1/3$, $1/2$) PEROVSKITES

By

SHARMIWATI BT. MOHAMMED SHARIF

August 2003

Chairman: Professor Abdul Halim Bin. Shaari, Ph.D.

Faculty: Science and Environmental Studies

A thorough study of Colossal Magnetoresistance materials of (La$_{1-x}$Dy$_x$)$_{1/8}$Ca$_{1/8}$MnO$_3$, (La$_{1-x}$Dy$_x$)$_{2/3}$Ca$_{1/3}$MnO$_3$ and (La$_{1-x}$Dy$_x$)$_{1/2}$Ca$_{1/2}$MnO$_3$ have been carried out for a full range of doping from x=0.00 to x=1.00. All samples show single-phase orthorhombic perovskite structure with some minor impurities. Paramagnetic-ferromagnetic phase transitions were observed in the χ'-temperature curves for the undoped (La-Dy)$_{1/8}$Ca$_{1/8}$MnO$_3$ and (La-Dy)$_{2/3}$Ca$_{1/3}$MnO$_3$ samples. The Curie temperature, T_C shifts to lower temperature as dysprosium increases indicating the lost of ferromagnetic order. However, dysprosium doping is observed to increase the T_C in (La-Dy)$_{1/8}$Ca$_{1/8}$MnO$_3$ system more than the effect of other systems. But for the higher doping of dysprosium, the magnetic behaviour of samples has been disturbed. For (La-Dy)$_{2/3}$Ca$_{1/3}$MnO$_3$ system, the substitution of dysprosium decreases the T_C. This is due to the buckling of MnO$_6$ octahedra, which increases with the increase of dysprosium concentration giving weaker double exchange interaction and describing the decreases of the electron hopping between Mn$^{3+}$ and Mn$^{4+}$. (La-Dy)$_{1/2}$Ca$_{1/2}$MnO$_3$ system shows both ferromagnetism and antiferromagnetism transition for undoped sample but as the dysprosium substitutes, the
antiferromagnetism totally disappears and ferromagnetic behaviours is observed. This anomaly indicates that the change in the bond angle on Dy substitution reduces the antiferromagnetism coupling. The existence of \(T_P \) and \(T_C \) was found to be correlated. This phenomenon of coexistence was due to the double exchange interaction of Mn\(^{3+}\) and Mn\(^{4+}\) that brings the systems below \(T_C \) into metallic state. Based on the semiconductor model, \(\ln(R) \propto (-E_\alpha/k_B T) \) it was observed that the energy gap for all samples was very small with below than 0.2 eV and thus exhibits narrow gap semiconductor properties. The measurement of temperature dependence of magnetoresistance has been studied for each sample and negative CMR values have been obtained. CMR value appears at low temperature approaching \(T_P \). The highest CMR value is 56.9% at 150 K was observed in \((La_{1-x}Dy_x)_{2/3}Ca_{1/3}MnO_3\) system with \(x=0.33 \) and applied magnetic field at 1 Tesla.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KAJIAN TERHADAP MIKROSTRUKTUR AND SIFAT MAGNET BAGI (La$_{1-x}$Dy$_x$)$_{1-y}$Ca$_y$MnO$_3$ (x=0.00 HINGGA 1.00; y=1/8, 1/3, 1/2) PEROVSKITE

Oleh

SHARMIWATI BT. MOHAMMED SHARIF

Ogos 2003

Pengerusi: Professor Abdul Halim Bin. Shaari, Ph.D.

Fakulti: Sains dan Pengajian Alam Sekitar

Kajian menyeluruh terhadap bahan magnetorintangan raksasa (La$_{1-x}$Dy$_x$)$_{7/8}$Ca$_{1/8}$MnO$_3$, (La$_{1-x}$Dy$_x$)$_{2/3}$Ca$_{1/3}$MnO$_3$ dan (La$_{1-x}$Dy$_x$)$_{1/2}$Ca$_{1/2}$MnO$_3$ telah dilakukan dalam julat pendopan dari x=0.00 hingga x=1.00. Kesemua sampel menunjukkan kewujudan satu fasa dalam struktur perovskite ortorombik dengan sedikit bendasing. Perubahan fasa paramagnet-ferromagnet telah dicerap pada lengkung χ'-suhu untuk sampel (La-Dy)$_{7/8}$Ca$_{1/8}$MnO$_3$ dan (La-Dy)$_{2/3}$Ca$_{1/3}$MnO$_3$. Suhu Curie, T_C beralih ke suhu yang lebih rendah apabila pendopan dengan dysprosium meningkat di mana menunjukkan kehilangan fasa ferromagnet. Walau bagaimanapun, kehadiran dysprosium dalam sistem (La-Dy)$_{2/3}$Ca$_{1/3}$MnO$_3$ menunjukkan sedikit peningkatan dalam T_C berbanding dalam sistem yang lain. Tetapi untuk pendopan yang tinggi, kehadiran dysprosium dihasilkan mengganggu sifat magnetik bahan. Bagi sistem (La-Dy)$_{2/3}$Ca$_{1/3}$MnO$_3$, kehadiran dysprosium menyebabkan penurunan T_C. Ini kerana pembentukan struktur oktagon MnO$_6$ yang semakin meningkat dengan kesan pertambahan dysprosium menyebabkan interaksi tukarganti ganda dua semakin lemah dan menggambarkan lompatan elektron di antara Mn$^{3+}$ dan Mn$^{4+}$ semakin berkurangan. Sistem (La-Dy)$_{1/2}$Ca$_{1/2}$MnO$_3$
menunjukkan kehadiran fasa ferromagnet dan antiferromagnet untuk sampel tanpa pendopan tetapi dengan kehadiran dysprosium, sifat antiferromagnetik hilang serta-merta dan hanya sifat ferromagnet dapat dikesan. Kesan luar biasa ini menunjukkan perubahan ke atas sudut ikatan dan dengan kehadiran dysprosium mengurangkan kesan antiferromagnetik. Kewujudan T_P dan T_C adalah saling berkait. Fenomena ini disebabkan kehadiran interaksi tukarganti ganda dua antara Mn$^{3+}$ dan Mn$^{4+}$ membawa sistem pada paras di bawah T_C keadaan pengalir. Berdasarkan model semikonduktor $\ln(R) \propto (-E_a/k_B T)$ didapati jurang tenaga untuk semua sampel sangat kecil iaitu 0.2 eV ke bawah dan mempamerkan sifat jurang sempit semikonduktor separa. Suhu kebergantungan magnetorintangan telah diuji bagi setiap sampel dan nilai CMR negatif telah diperolehi. Nilai CMR didapati pada suhu rendah mendekati T_P. Nilai tertinggi CMR adalah 56.9% pada suhu 150 K dicerap dalam sistem $(\text{La-Dy})_{78}\text{Ca}_{18}\text{MnO}_3$ untuk sampel $x=0.33$ dengan medan magnet 1 Tesla dikenakan.
ACKNOWLEDGEMENTS

Firstly, I would like to dedicate my special thanks to Professor Dr. Abdul Halim B. Shaari, the supervisor of my Master Project for his suggestions, interests and supports, his foresight, as well as for the facilities that he provided and the important role he played in making this project a success. I also would like to express my appreciation to my co-supervisors, Professor Dr. Wan Mahmood B. Mat Yunus and Associate Professor Dr. Hishamuddin B. Zainuddin for their valuable advice, comments and guidance.

I would like to acknowledge my indebtedness to MOSTE for the financial support through National Science Fellowship (NSF). I owe particular thanks to Mr. Razak B. Harun for technical favours, Mrs. Noriza for her kind help, staffs in the Physics Department and staffs from Electron Microscope Unit, Institute of Bioscience for their significant contributions.

I would also like to express my appreciation to the various individuals, too numerous to mention individually, who provided assistance during the course of the project especially for Dr. Lim Kean Pah, Dr. Abdullah Chik, Mr. Kabashi Kathir Kabashi, Ms. Zohra Gebrel, Mr. Ramadhan Shouib, Mr. Ali Agail, Dr. Imad Hamadneh, Mr. Azman Awang Teh, Mr. Teh Jia Yew, Ms. Nur Jannah, Ms. Masrianis, Mr. Walter Charles, Mr. Mustafa Dihom, Ms. Huda Abdullah and Ms. Ari. To my housemates, Ms. Nur Shukriyah, Ms. Nur Hidayati, Ms. Sam Azura, Ms. Roszuliza and Ms. Nurfariza, thanks to all of them. Their support and help will never be forgotten.
Special thanks are due to my family; my parents Mr. Mohd. Sharif B. Kusnan and Mrs. Samiah Bt. Ismail, my sisters Ms. Sabihah Shuhada and Ms. Syazwina for their continuous support, understanding and encouragement. To my fiancé, Mr. Mohd. Annas B. Mustafa, thank you for giving me the support that I needed toward the completion the project.

My efforts would not have come to fruition if I had not had the guidance, supports and encouragement of many people from within as well as from outside the Universiti Putra Malaysia.
APPROVAL

I certify that an Examination Committee met on 7th August 2003 to conduct the final examination of Sharmiati Binti Mohammed Sharif on her Master of Science thesis entitled "Microstructural and Magnetic Properties of (La_{1-x}Dy_x)_{1-y}Ca_yMnO_3 (x=0.00 to 1.00; y=1/8, 1/3, 1/2) Perovskites" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

ZAINAL
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Chairman)

ABDUL HALIM BIN SHAARI, Ph.D.
Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

WAN MAHMOOD BIN MAT YUNUS, Ph.D.
Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

HISHAMUDDIN BIN ZAINUDDIN, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 30 SEP 2003
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirements for the degree of Master of Science. The members of the Supervisory Committee are as follows:

ABDUL HALIM BIN SHAARI, Ph.D.
Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Chairman)

WAN MAHMOOD BIN MAT YUNUS, Ph.D.
Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

HISHAMUDDIN BIN ZAINUDDIN, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

AINI IDERIS, Ph.D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 14 NOV 2003
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

SHARMIWATI BT. MOHAMMED SHARIF

Date: 26.09.2013
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

CHAPTER

I. INTRODUCTION

- Research background
- Types of Magnetoresistance
- Structural Properties of Manganites
- Application of the Effect
- Objective of the Research

II. LITERATURE REVIEW

- The Effect of Ca Doping
- Doping Effect on La Site
 - \((La_{1-x}Dy_x)_{0.7}Ca_{0.3}MnO_3\) system
 - \((La_{1-x}Sm_x)_{0.67}Ca_{0.33}MnO_3\) system
 - \((La_{1-x}Y_x)_{0.2}Ca_{0.8}MnO_3\) system
 - \((La_{1-x}Gd_x)_{0.25}Ca_{1.75}MnO_3\) system
 - \((La_{1-x}Tb_x)_{0.2}Ca_{1.8}MnO_3\) system
 - \((La_{1-x}Y_x)_{0.5}Ca_{0.5}MnO_3\) system

III. THEORY

- Introduction to Magnetism
- Magnetoresistance
 - Magnetic Coupling
 - Half Metals and Spin Polarization
 - Spin Glass
 - Jahn-Teller Effect
 - Double-Exchange Mechanism
 - Superexchange
- Representation of Fundamental Quantities
 - Resistance
 - Applied Magnetic Field
 - Magnetic Susceptibility
- Structure Behaviour
 - Domain Structure
 - Grain Size Effect
 - Microstructure

xii
IV. METHODOLOGY

Experiment
Constituents Concentration
Mixing and Milling
Calcination
Grinding and sieving
Pressing
Sintering

Sample Characterization
Microstructure Analysis with Scanning Electron Microscope (SEM)
EDS (EDX) Composition Measurement
X-Ray Crystallography
A.C susceptibility measurement
Four-Point Probe Resistance Measurement
Magnetoresistance Measurement

V. RESULTS AND DISCUSSIONS

(La-Dy)_{1/2}Ca_{1/2}MnO_3 System
XRD Patterns and Lattice Parameters
Microstructure Properties
EDX (EDX) Composition Measurement
Resistance, \(\Omega \), Phase Transition Temperature, \(T_P \)
Activation Energy, \(E_a \)
A.C Susceptibility and Curie Temperature, \(T_C \)
Magnetic and Electrical Phase Diagram
Magnetoresistance

(La-Dy)_{1/2}Ca_{1/2}MnO_3 System
XRD Patterns and Lattice Parameters
Microstructure Properties
EDX (EDX) Composition Measurement
Resistance, \(\Omega \), Phase Transition Temperature, \(T_P \)
Activation Energy, \(E_a \)
A.C Susceptibility and Curie Temperature, \(T_C \)
Magnetic and Electrical Phase Diagram
Magnetoresistance

(La-Dy)_{1/2}Ca_{1/2}MnO_3 System
XRD Patterns and Lattice Parameters
Microstructure Properties
EDX (EDX) Composition Measurement
Resistance, \(\Omega \), Phase Transition Temperature, \(T_P \)
Activation Energy, \(E_a \)
A.C Susceptibility and Curie Temperature, \(T_C \)
Magnetic and Electrical Phase Diagram
Magnetoresistance

Comparison Among Three Systems
Curie Temperature, \(T_C \) and Phase Transition Temperature, \(T_P \)
Activation Energy, \(E_a \)
Magnetoresistance
LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Types of magnetoresistance</td>
<td>4</td>
</tr>
<tr>
<td>5.1 Lattice parameters, a, b, c and unit-cell volume of (La-Dy)${78}$Ca${12}$MnO$_3$</td>
<td>49</td>
</tr>
<tr>
<td>5.2 EDX spectrum peaks of compositional elements</td>
<td>56</td>
</tr>
<tr>
<td>5.3 Lattice parameters, a, b, c and unit-cell volume of (La-Dy)${78}$Ca${12}$MnO$_3$</td>
<td>72</td>
</tr>
<tr>
<td>5.4 EDX spectrum peaks of compositional elements</td>
<td>79</td>
</tr>
<tr>
<td>5.5 Lattice parameters, a, b, c and unit-cell volume of (La-Dy)${78}$Ca${12}$MnO$_3$</td>
<td>95</td>
</tr>
<tr>
<td>5.6 EDX spectrum peaks of compositional elements</td>
<td>102</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>The unit cell of the perovskite structure</td>
</tr>
<tr>
<td>1.3</td>
<td>The energy levels by spin states to indicate the Jahn-Teller effect</td>
</tr>
<tr>
<td>2.1</td>
<td>Phase diagram for La$_{1-x}$Ca$_x$MnO$_3$</td>
</tr>
<tr>
<td>3.1</td>
<td>The atomic spin moment of ferromagnetic, antiferromagnetic and paramagnetic materials</td>
</tr>
<tr>
<td>3.2</td>
<td>The charge carriers and the conduction band as the magnetic field applied</td>
</tr>
<tr>
<td>3.3</td>
<td>Illustration of the alignment of effective bandwidth of a manganese perovskite</td>
</tr>
<tr>
<td>3.4</td>
<td>Illustration of the alignment of effective bandwidth and ferromagnetism below Curie temperature</td>
</tr>
<tr>
<td>3.5</td>
<td>Illustration of the alignment of effective bandwidth and antiferromagnetism below Néel temperature</td>
</tr>
<tr>
<td>3.6</td>
<td>The antiferromagnetism in manganese oxide</td>
</tr>
<tr>
<td>3.7</td>
<td>Superexchange mechanism</td>
</tr>
<tr>
<td>3.8</td>
<td>Grain size dependence of permittivity for BaTiO$_3$</td>
</tr>
<tr>
<td>3.9</td>
<td>Simple representation of microstructure</td>
</tr>
<tr>
<td>4.1</td>
<td>Flow chart of preparation of samples</td>
</tr>
<tr>
<td>4.2</td>
<td>Temperature setting for calcinations stage</td>
</tr>
<tr>
<td>4.3</td>
<td>Temperature setting for sintering stage</td>
</tr>
<tr>
<td>4.4</td>
<td>Scanning Electron Microscope (SEM)</td>
</tr>
<tr>
<td>4.5</td>
<td>EDX spectrum for La${0.67}$Ca${0.33}$MnO$_3$ bulk</td>
</tr>
<tr>
<td>4.6</td>
<td>X-Ray Diffraction Machine</td>
</tr>
<tr>
<td>4.7</td>
<td>Schematic illustration of fundamental process in XRD measurement</td>
</tr>
<tr>
<td>4.8</td>
<td>Lakeshore AC Susceptometer</td>
</tr>
</tbody>
</table>
4.9 Curie-Weiss law show the presence of paramagnetic phase

4.10 Four-Point Probe Resistance Machine

5.1 XRD patterns for \((La_{1-x} Dy_x)_{7/8} Ca_{1/8} MnO_3\) system

5.2 The evolution of the cell-volume and lattice parameters for \((La_{1-x} Dy_x)_{7/8} Ca_{1/8} MnO_3\) system

5.3 SEM pictures of \((La_{1-x} Dy_x)_{7/8}\)

5.4 EDX patterns for \((La_{1-x} Dy_x)_{7/8} Ca_{1/8} MnO_3\) system

5.5 EDX patterns for \((La_{1-x} Dy_x)_{7/8} Ca_{1/8} MnO_3\) for \(x=0.04\)

5.6 Temperature dependence of resistance of \((La_{1-x} Dy_x)_{7/8} Ca_{1/8} MnO_3\) for \(x=0.00\) to \(x=0.5\)

5.7 Temperature dependence of resistance of \((La_{1-x} Dy_x)_{7/8} Ca_{1/8} MnO_3\) for \(x=0.75\) to \(x=1.00\)

5.8 \(\ln R\) as a function of \(1/T\) of \((La_{1-x} Dy_x)_{7/8} Ca_{1/8} MnO_3\) for \(x=0.00\) to \(x=0.5\)

5.9 Variation of activation energy against dysprosium concentration of \((La_{1-x} Dy_x)_{7/8} Ca_{1/8} MnO_3\) for \(x=0.00\) to \(x=0.5\)

5.10 Magnetic AC Susceptibility of \((La_{1-x} Dy_x)_{7/8} Ca_{1/8} MnO_3\) for \(x=0.00\) at different magnetic fields

5.11 Magnetic AC Susceptibility of \((La_{1-x} Dy_x)_{7/8}\)
10 Oe

5.12 Inverse AC Susceptibility against temperature of \((La_{1-x} Dy_x)_{7/8} Ca_{1/8} MnO_3\) series

5.13 \(T_C\) and \(\Theta\) as a function of Dy concentration \((La_{1-x} Dy_x)_{7/8} Ca_{1/8} MnO_3\) series

5.14 \(T_C\) and \(T_P\) as a function of Dy concentration \((La_{1-x} Dy_x)_{7/8} Ca_{1/8} MnO_3\) series

5.15 The percentage of CMR against applied magnetic field at 90 K for \((La_{1-x} Dy_x)_{7/8} Ca_{1/8} MnO_3\)

5.16 The percentage of CMR against applied magnetic field at 100 K for \((La_{1-x} Dy_x)_{7/8} Ca_{1/8} MnO_3\)

5.17 The percentage of CMR against applied magnetic field at 150 K for \((La_{1-x} Dy_x)_{7/8} Ca_1\)

xvii
5.18 The percentage of CMR against applied magnetic field at 170 K for
(La_{1-x}Dy_{x})_{7/8}Ca_{1/8}MnO_{3}

5.19 The percentage of CMR against applied magnetic field at 200 K for
(La_{1-x}Dy_{x})_{7/8}Ca_{1/8}MnO_{3}

5.20 The percentage of CMR against applied magnetic field at 250 K for
(La_{1-x}Dy_{x})_{7/8}Ca_{1/8}MnO_{3}

5.21 CMR curves of (La_{1-x}Dy_{x})_{7/8}Ca_{1/8}MnO_{3} system as a function of
temperature at 1 Tesla

5.22 XRD patterns for (La_{1-x}Dy_{x})_{2/3}Ca_{1/3}MnO_{3} system

5.23 The evolution of the cell-volume and lattice parameters for
(La_{1-x}Dy_{x})_{2/3}Ca_{1/3}MnO_{3} system

5.24 SEM pictures of (La_{1-x}Dy_{x})_{2/3}Ca_{1/3}MnO_{3} samples

5.25 EDX patterns (La_{1-x}Dy_{x})_{2/3}Ca_{1/3}MnO_{3}

5.26 EDX patterns for (La_{1-x}Dy_{x})_{2/3}Ca_{1/3}MnO_{3} for x=0.04

5.27 EDX patterns for Dy_{2/3}Ca_{1/3}MnO_{3}

5.28 Temperature dependence of resistance of La_{2/3}Ca_{1/3}MnO_{3}

5.29 Temperature dependence of resistance of (La_{1-x}Dy_{x})_{2/3}Ca_{1/3}MnO_{3}
for x=0.04 to x=0.33

5.30 Temperature dependence of resistance of (La_{1-x}Dy_{x})_{2/3}Ca_{1/3}MnO_{3}
for x=0.5 to x=1.00

5.31 Ln R as a function of 1/T of (La_{1-x}Dy_{x})_{2/3}Ca_{1/3}MnO_{3} for x=0.00 to
x=0.33

5.32 Variation of activation energy against dysprosium concentration of
(La_{1-x}Dy_{x})_{2/3}Ca_{1/3}MnO_{3} for x=0.00 to x=0.5

5.33 Magnetic AC Susceptibility of (La_{1-x}Dy_{x})_{2/3}Ca_{1/3}MnO_{3} for x=0.00 at
different magnetic fields

5.34 Magnetic AC Susceptibility of (La_{1-x}Dy_{x})_{2/3}Ca_{1/3}MnO_{3} for x=0.00 at
10 Oe

5.35 Inverse AC Susceptibility against temperature of
(La_{1-x}Dy_{x})_{2/3}Ca_{1/3}MnO_{3} series

5.36 T_{c} and θ as a function of Dy concentration (La_{1-x}Dy_{x})_{2/3}Ca_{1/3}MnO_{3}
series

xviii
5.37 T_C and T_P as a function of Dy concentration $(La_{1-x}Dy_x)_{2/3}Ca_{1/3}MnO_3$ series

5.38 The percentage of CMR against applied magnetic field at 90 K for $(La_{1-x}Dy_x)_{2/3}Ca_{1/3}MnO_3$

5.39 The percentage of CMR against applied magnetic field at 100 K for $(La_{1-x}Dy_x)_{2/3}Ca_{1/3}MnO_3$

5.40 The percentage of CMR against applied magnetic field at 150 K for $(La_{1-x}Dy_x)_{2/3}Ca_{1/3}MnO_3$

5.41 The percentage of CMR against applied magnetic field at 170 K for $(La_{1-x}Dy_x)_{2/3}Ca_{1/3}MnO_3$

5.42 The percentage of CMR against applied magnetic field at 200 K for $(La_{1-x}Dy_x)_{2/3}Ca_{1/3}MnO_3$

5.43 The percentage of CMR against applied magnetic field at 250 K for $(La_{1-x}Dy_x)_{2/3}Ca_{1/3}MnO_3$

5.44 CMR curves of $(La_{1-x}Dy_x)_{2/3}Ca_{1/3}MnO_3$ system as a function of temperature at 1 Tesla

5.45 XRD patterns for $(La_{1-x}Dy_x)_{1/2}Ca_{1/2}MnO_3$ system

5.46 The evolution of the cell-volume and lattice parameters for $(La_{1-x}Dy_x)_{1/2}Ca_{1/2}MnO_3$ system

5.47 SEM pictures of $(La_{1-x}Dy_x)_{1/2}Ca_{1/2}MnO_3$ samples

5.48 EDX patterns for $(La_{1-x}Dy_x)_{1/2}Ca_{1/2}MnO_3$ for $x=0.04$

5.49 EDX patterns for $Dy_{1/2}Ca_{1/2}MnO_3$

5.50 Temperature dependence of resistance of $La_{1/2}Ca_{1/2}MnO_3$

5.51 Temperature dependence of resistance of $(La_{1-x}Dy_x)_{1/2}Ca_{1/2}MnO_3$ for $x=0.04$ to $x=0.33$

5.52 Temperature dependence of resistance of $(La_{1-x}Dy_x)_{1/2}Ca_{1/2}MnO_3$ for $x=0.5$ to $x=1.00$

5.53 $Ln R$ as a function of $1/T$ of $(La_{1-x}Dy_x)_{1/2}Ca_{1/2}MnO_3$ for $x=0.00$ to $x=0.33$

5.54 Variation of activation energy against dysprosium concentration of $(La_{1-x}Dy_x)_{1/2}Ca_{1/2}MnO_3$ for $x=0.00$ to $x=0.5$
Graph thermal of the magnetic AC Susceptibility of La$_{1/2}$Ca$_{1/2}$MnO$_3$ at different magnetic fields

Graph thermal of the magnetic AC Susceptibility of (La$_{1-x}$Dy$_x$)$_{1/2}$Ca$_{1/2}$MnO$_3$ for $x=0.04$ to $x=0.33$

T_c and Θ as a function of Dy concentration (La$_{1-x}$Dy$_x$)$_{1/2}$Ca$_{1/2}$MnO$_3$ series

T_c and T_p as a function of Dy concentration (La$_{1-x}$Dy$_x$)$_{1/2}$Ca$_{1/2}$MnO$_3$ series

The percentage of CMR against applied magnetic field at 90 K for (La$_{1-x}$Dy$_x$)$_{1/2}$Ca$_{1/2}$MnO$_3$

The percentage of CMR against applied magnetic field at 100 K for (La$_{1-x}$Dy$_x$)$_{1/2}$Ca$_{1/2}$MnO$_3$

The percentage of CMR against applied magnetic field at 150 K for (La$_{1-x}$Dy$_x$)$_{1/2}$Ca$_{1/2}$MnO$_3$

The percentage of CMR against applied magnetic field at 170 K for (La$_{1-x}$Dy$_x$)$_{1/2}$Ca$_{1/2}$MnO$_3$

The percentage of CMR against applied magnetic field at 200 K for (La$_{1-x}$Dy$_x$)$_{1/2}$Ca$_{1/2}$MnO$_3$

The percentage of CMR against applied magnetic field at 250 K for (La$_{1-x}$Dy$_x$)$_{1/2}$Ca$_{1/2}$MnO$_3$

The percentage of CMR against applied magnetic field at 300 K for (La$_{1-x}$Dy$_x$)$_{1/2}$Ca$_{1/2}$MnO$_3$

CMR curves of (La$_{1-x}$Dy$_x$)$_{1/2}$Ca$_{1/2}$MnO$_3$ system as a function of temperature at 1 Tesla

T_c of (La$_{1-x}$Dy$_x$)$_{7/8}$Ca$_{1/8}$MnO$_3$, (La$_{1-x}$Dy$_x$)$_{2/3}$Ca$_{1/3}$MnO$_3$ and (La$_{1-x}$Dy$_x$)$_{1/2}$Ca$_{1/2}$MnO$_3$ system as a function of Dy concentration

T_p of (La$_{1-x}$Dy$_x$)$_{7/8}$Ca$_{1/8}$MnO$_3$, (La$_{1-x}$Dy$_x$)$_{2/3}$Ca$_{1/3}$MnO$_3$ and (La$_{1-x}$Dy$_x$)$_{1/2}$Ca$_{1/2}$MnO$_3$ system as a function of Dy concentration

E$_a$ of (La$_{1-x}$Dy$_x$)$_{7/8}$Ca$_{1/8}$MnO$_3$, (La$_{1-x}$Dy$_x$)$_{2/3}$Ca$_{1/3}$MnO$_3$ and (La$_{1-x}$Dy$_x$)$_{1/2}$Ca$_{1/2}$MnO$_3$ system as a function of Dy concentration

The percentage of magnetoresistance (La$_{1-x}$Dy$_x$)$_{7/8}$Ca$_{1/8}$MnO$_3$, (La$_{1-x}$Dy$_x$)$_{2/3}$Ca$_{1/3}$MnO$_3$ and (La$_{1-x}$Dy$_x$)$_{1/2}$Ca$_{1/2}$MnO$_3$ system as a function of Dy concentration
LIST OF ABBREVIATIONS/NOTATIONS/GLOSSARY OF TERMS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Temperature in Kelvin</td>
</tr>
<tr>
<td>T_C</td>
<td>Curie temperature</td>
</tr>
<tr>
<td>$T_{p/T_{IM}}$</td>
<td>Phase transition temperature</td>
</tr>
<tr>
<td>T_G</td>
<td>Spin glass temperature</td>
</tr>
<tr>
<td>T_f</td>
<td>Freezing temperature</td>
</tr>
<tr>
<td>T_N</td>
<td>Néel temperature</td>
</tr>
<tr>
<td>Θ_P</td>
<td>Paramagnetic Curie temperature</td>
</tr>
<tr>
<td>C</td>
<td>Curie constant</td>
</tr>
<tr>
<td>R</td>
<td>Resistance</td>
</tr>
<tr>
<td>R_H</td>
<td>Resistance with presence of field</td>
</tr>
<tr>
<td>R_0</td>
<td>Resistance in an absence of field</td>
</tr>
<tr>
<td>ρ</td>
<td>Resistivity</td>
</tr>
<tr>
<td>E_a</td>
<td>Activation energy</td>
</tr>
<tr>
<td>k_B</td>
<td>Boltzmann constant</td>
</tr>
<tr>
<td>MI</td>
<td>Metal to insulator</td>
</tr>
<tr>
<td>MIT</td>
<td>Metal-insulator transition</td>
</tr>
<tr>
<td>AFI</td>
<td>Antiferromagnetic insulator</td>
</tr>
<tr>
<td>FMM</td>
<td>Ferromagnetic metal</td>
</tr>
<tr>
<td>FMI</td>
<td>Ferromagnetic insulator</td>
</tr>
<tr>
<td>PMI</td>
<td>Paramagnetic insulator</td>
</tr>
<tr>
<td>MR</td>
<td>Magnetoresistance</td>
</tr>
<tr>
<td>CMR</td>
<td>Colossal magnetoresistance</td>
</tr>
<tr>
<td>AMR</td>
<td>Anisotropic magnetoresistance</td>
</tr>
</tbody>
</table>
GMR Giant magnetoresistance
TMR Tunneling magnetoresistance
EMR Extraordinary magnetoresistance
VLMR Very large magnetoresistance
BMR Ballistic magnetoresistance
MRRAM Magnetoresistive random access memory
x Concentration of dopants
Ln Lantanide group ions
A Divalent earth ions
χ Magnetic susceptibility
M Magnetization
B Applied magnetic field
H Magnetic field
<ra> Average radius of the rare-earth ions
DE Double exchange
JT Jahn Teller
XRD X-ray diffractometer
SEM Scanning electron microscope
l Length of the conductor
A Cross sectional area
θ Glancing angle (Bragg angle)
θ Mn-O-Mn bond angle
a, b, c Lattice parameter
hkl Miller indices
d Interplanar spacing

xxii
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_{hkl}</td>
<td>Distance between atom and selected 29</td>
</tr>
<tr>
<td>n</td>
<td>Order of reflection (an integer)</td>
</tr>
<tr>
<td>λ</td>
<td>Wave length</td>
</tr>
<tr>
<td>V</td>
<td>Measured root mean square (RMS voltage)</td>
</tr>
<tr>
<td>α</td>
<td>Calibration coefficient</td>
</tr>
<tr>
<td>v</td>
<td>Volume of sample</td>
</tr>
<tr>
<td>f</td>
<td>Frequency of AC field</td>
</tr>
</tbody>
</table>
CHAPTER I
INTRODUCTION

Research Background

The discovery of colossal magnetoresistance (CMR) has received extensive studies since 1950s. As the name implies, the effect observed in these materials showed a huge change in electrical resistivity when a magnetic field was applied. The effect is typically known as magnetoresistance (MR) but the resistivity change was so large that it could not be compared with any other forms of magnetoresistance. These manganese-based perovskite materials has been the subject of a huge international research to seek suitable new materials with specific properties susceptible to be involved in numerous technological applications in magnetic recording and sensors. In 1993, the researchers at Siemens in Germany and a little later by a group at Bell Labs in New Jersey, raised expectations of a new generation of magnetic devices and sensors, and launched a frenetic scientific race to understand the cause of the effect (Fontcuberta, 1999). Even though it has not been utilized in devices yet but its development shows such great potential.

The CMR materials have the formula Ln(1-x)A_xMnO_3 where Ln is usually the trivalent rare earth ions (La^{3+}, Pr^{3+}, Nd^{3+} etc.) and A is the divalent ions (Ca^{2+}, Ba^{2+}, Sr^{2+}). The reason they are called “colossal” is that their magnetoresistance ratios are many orders of magnitude larger than those of the giant magnetoresistance materials. Unfortunately, the temperatures at which the “colossal” magnetoresistance ratios