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Abstract of thesis presented to the Senate of Universiti Putra 1\Ialaysia in 
fulfilment of the requirement for the degree of Master of Science 

CHROMATICITY OF CERTAIN 2-CONNECTED GRAPHS 

By 

LAD GEE CHOON 

January 2003 

Chairman: Associate Professor Peng Yee Hock, Ph.D. 

Faculty: Science and Environmental Studies 

Since the introduction of the concepts of chromatically unique graphs and chro-

matically equivalent graphs, many families of such graphs have been obtained. 

In this thesis, we continue with the search of families of chromatically unique 

graphs and chromatically equivalent graphs. 

In Chapter 1 ,  we define the concept of graph colouring, the associated chromatic 

polynomial and some properties of a chromatic polynomial. We also give some 

necessary conditions for graphs that are chromatically unique or chromatically 

equivalent. 

Chapter 2 deals with the chromatic classes of certain existing 2-connected (n, n+ 

1, )-graphs for z = 0, 1 ,  2 and 3. Many families of chromatically unique graphs and 

chromatically equivalent graphs of these classes have been obtained. At the end 

of the chapter, we re-determine the chromaticity of two families of 2-connected 

(n, n + 3)-graphs with at least two tnangles. 
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Our main results in this thesis are presented in Chapters 3. 4 and 5 .  In Chapter 

3, we classify all the 2-connected (n, n + 4 )-graphs wit h at least four triangles . In 

Chapter 4 ,  we classify all the 2-connected (n, n + 4)-graphs with three triangles 

and one induced 4-cycle. In Chapter 5 ,  we classify all the 2-connected (n, n + 4)­

graphs with three triangles and at least two induced 4-cycles . In each chapter, we 

obtain new families of chromatically unique graphs and chromatically equivalent 

graphs . 

We end the thesis by classifying all the 2-connected (n, n+4)-graphs with exactly 

three triangles. We also determine the chromatic polynomial of all these graphs. 

The determination of the chromaticity of most classes of these graphs is left as 

an open problem for future research. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Master Sains 

KEKROMATIKAN GRAF TERKAIT-2 TERTENTU 

Oleh 

LAD GEE CROON 

January 2003 

Pengerusi: Profesor Madya Peng Yee Hock, Ph.D. 

Fakulti: Sains dan Pengajian Alam Sekitar 

Sejak konsep graf unik kromatik dan setara kromatik diperkenalkan,  terdapat 

banyak famili graf yang unik kromatik dan setara kromatik telah diperolehi. 

Dalam tesis ini, kami meneruskan pencarian famili graf yang unik kromatik dan 

setara kromatik. 

Dalam Bab 1 ,  kami takrifkan konsep pewarnaan graf, polinomial k romatik yang 

berkaitan dan beberapa ciri polinomial kromatik. Kami juga mengemukakan 

beberapa syarat yang diperlukan supaya sesuatu graf itu unik kromatik atau 

setara kromatik. 

Bab 2 adalah berkaitan kelas kromatik graf- (n, n + i) tertentu untuk i = 0, 1 ,  

2 atau 3. Banyak famili graf kelas ini yang unik k romatik atau setara k romatik 

telah ditemui. Pada akhir bab ini, kami menentukan semula kekromatikan dua 

famili graf- (n. n + 3) dengan dua atau lebih segitiga . 
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Keputusan utama tesis ini disampaikan dalam Bab 3, 4 dan 5 .  Dalam Bab 

3, kami klasifikasikan semua graf-(n. n + 4) dengan empat at au lebih segitiga. 

Dalam Bab 4, kami klasifikasikan semua graf- (n, n + 4) dengan tiga segitiga dan 

satu 4-kitar teraruh. Dalam Bab 5, kami klasifikasikan semua graf- (n, n + 4) 

dengan tiga segitiga dan dua atau lebih 4-kitar teral uh. Dalam setiap bab ini, 

kami temui pelbagai famili graf unik kromatik dan setara kromatik yang baru. 

Kami akhiri tesis ini dengan mengklasifikasikan semua graf-(n, n + 4) dengan 

tepat tiga segitiga. Kami juga menentukan polinomial kromatik setiap graf ke­

las ini. Penentuan kekromatikan kebanyakan kelas graf ini dibiarkan sebagai 

masalah terbuka untuk kajian masa depan. 
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CHAPTER 1 

INTRODUCTION 

1.1  Introduction 

A graph G is a collection of the edge set and the vertex set, denoted E( G) and 

V ( G), respectively. An edge e of G is a line joining two vertices in V ( G), say Vt 

and vJ' denoted vtVJ or (Vt' vJ) . A loop of a graph is an edge having the same end 

vertices. A graph is said to have multzple edge if there exists two vertices joined 

by at least two edges. A graph without any multiple edges is called a szmple 

graph. 

The theory of graph was invented by Euler [7] in trying to solve the famous 

Konigsberg bridge problem. However, it was the problem of map colouring, the 

famous Four-Colour Conjecture that acts as a prime stimulant for the develop­

ment of graph theory. In 19 12 , Birkhoff [1] introduced the idea of counting the 

number of ways to colour a map in an attack on the four-colour conjecture. For 

any positive integer>. and any map M, it is desired to colour the map M with at 

most>. colours such that no two adjacent regions are assigned the same colour. 

The function for number of ways of such colouring, P(>.) was then proved to be 

always a polynomial. 
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In 1932, Whitney [ 3 1] extended Birkhoff's idea of map colourings to vertex colour­

ing of a graph G. He mtroduced the function M()") as the number of ways of 

colouring the vertices of G (not necessarily arising from a map) with at most ).. 

colours such that no two adjacent vertices are assigned the same colour. The na­

tation P(G, )..) , now known as chromatic polynomial, was then used by Birkhoff 

and Lewis [ 2] in 194 6 trying to solve the four-colour conjecture by characterizing 

what polynomials were chromatic polynomials of maps. They also proved that 

P(G,)..) is always a polynomial for any graph G. The minimum integer).. such 

that P(G,)..) is nonzero is called the chromatic number of G, denoted X(G). An 

introduction to the theory of chromatic polynomials can be found in [ 25). 

The problem of characterizing the chromatic polynomials is not yet solved till 

this day. However, it leads to the concepts of chromatically unique graphs and 

chromatically equivalent graphs that were first introduced by Chao and White­

head [ 3], thus opening a new area of research to graph theorists. Since then, 

many families of chromatically unique and chromatically equivalent graphs have 

been obtained (see [ 14] and [ 15] ) . 

Throughout this thesis, we shall denote by P( G) the chromatic polynomial of 

a graph G. All graphs we consider are simple, loopless and undirected, unless 

otherwise specified. We shall refer to [ 10] for all notations and terminologies not 

explained in this thesis. 

1.2 The Fundamental Reduction Theorem 

We first give a more formal definition of chromatic polynomial. Given a graph 

G and ).. different colours. If G is a graph of order n and size m, we say G is an 

(n, m ) - graph. A )..-colouring of G is an assignment of at most).. of these colours 
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to the vertices of G. If no two adjacent vertIces of G are assigned the same 

colour, the colouring is said to be proper. Functionally , a proper A-colouring of 

G is a mapping 

such that f(v�) =f f(vJ) whenever vzvJ E E(G) . Two proper A- colouring f and 

g of G will be considered as different if f(vz) =f g(vz) for some vertex Vz in G. 

Then, P{ G) is just the number of different proper A-colourings of G. 

An empty graph is a graph that has no edges while a complete graph is a graph 

where every two vertices of the graph is joined by an edge. Obviously, if O{n) 

is the empty graph of order n, then P(O(n))  = An ; and if Kn is the complete 

graph of order n, then P(Kn) = A{A - 1 )  ... (A - n + 1 ) .  

The following are some useful known results and techniques for determining the 

chromatic polynomial of a graph. 

Theorem 1.1 (Fundamental Reduction Theorem) (Whitney [32]) Let G be an 

(n , m) -graph. Then 

P(G) = P{G - e) - P(G · e) 

where G - e 'lS the graph obtamed from G by deletzng e ,  and G· e 'lS the graph 

obtazned from G by zdent'lfyzng the end vertzces of e .  

The Fundamental Reduction Theorem can also be used in another way. Let 

Vz• vJ E V(G) such that VZv] ¢:. E(G) . Then 
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where G + Vt vJ is the graph obtained from G by adding the edge Vt vJ and G· Vt vJ 

is the graph obtained from G by identifymg the vertices Vt and vJ• In this way, 

P( G) can be expressed as a sum of the chromatic polynomials of complete graphs. 

It is sometimes more convement to use a drawing to denote the chromatic poly-

nomial of a graph (Figure 1 . 1 ). 

D 
Figure 1 . 1 : Chromatic Polynomial by Graphs 

Let G1 and G2 be graphs, each containing a complete subgraph Kp with p ver­

tices. If G is the graph obtained from G1 and G2 by identifying the two subgraphs 

Kp, then G is called a Kp - glumg of G1 and G2. Note that a Kl - glumg and a 

K2 - glumg are also called a vertex - glumg and an edge - glumg, respectively. 

Lemma 1 .1  (Zykov [35]) Let G be a Kr-glumg of G1 and G2. Then 

Lemma 1 .1 implies that all Kr-gluing of G1 and G2 will have the same chromatic 

polynomial. 

The following easy lemma provides another shortcut in determining P( G) since 

the number of ways of colouring k graphs simultaneously is equal to the product 

of the number of ways of colouring each of the k graphs. 

Lemma 1.2 If G 'lS a graph wzth k components G1• G2, . . .  , Gk• then 
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Let G(O) be a given graph which is Kp -gluing of some graphs, say G1 and G2. 

Forming another Kp-gluing of Gl and G2, we obtain a new graph G(l). Note 

that G(I) may not be isomorphic to G(O). Clearly, G(l) is a Kp-gluing of some 

graphs, say HI and H2· Note that HI and H2 may not be GI and G2. Forming 

another Kp -gluing of HI and H2, we obtain another graph G(2). The process of 

forming G(l) from G(O) (or G(2) from G(l)) is called an elementary operation. A 

graph H is called a relative of G if H can be obtained from G by applying a 

finite sequence of elementary operations. It follows from Lemma 1.1 that if H is 

a relative of G, then P (H) = P(G) . 

1.3 Some Properties of Chromatic Polynomials 

Let G be an (n, m)-graph together with a bijection Q : E(G) --+ {I, 2, . . . , m}. 

Let 0 be a cycle of G and e an edge of 0 such that Q(e) 2: Q(x) for all x E E(O). 

Then the path 0 - e in G is called a broken cycle of G induced by Q. We then 

have the following theorem. 

Theorem 1.2 (Whitney's broken cycle theorem) (Whitney (31 ) ) Let G be an 

(n, m) - graph together with a bijection Q : E(G) � { I , 2, . . .  , m}. Then 
n-I 

P(G) = L (_l)ihiAn-i. 
i=O 

where hi is the number of spanning subgraphs of G that have i edges and that 

contain no broken cycles induced by Q. 

Note that hi is independent of the mapping Q. The following results can then be 

derived directly from Theorem 1 .2. 

Lemma 1.3 Let G be an (n, m) -graph. Then in the polynomial P( G), the coef-

ficient of 
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(i) An is 1 

(ii) An- 1 is -m 

(iii) ).n-2 is (r;) - t1 (G) , where tl (G) is the number of triangles in G 

(iv) An-3 is - (�) + (m - 2)t1 (G) + t2 (G) - 2t3 (G), where t2 (G) is the number 

of cycles of order 4 without chords and t3 (G) is the number of the complete 

subgraphs K4 in G (see [8]) . 

We also have the following properties for P( G). 

Lemma 1.4 Let G be an (n, m) -graph. Then P(G) is a polynomial in A such 

that 

(i) deg(P( G)) = n 

(ii) the absolute value of the coefficient of An- 1 is the number of edges of G 

(iii) all the coefficients are integers 

(iv) the leading term is An 

(v) the constant term is zero 

(vi) the coefficients alternate in sign 

(vii) either P(G) = An or the sum of the coefficients in P(G) is zero. 

Lemma 1 .4 above can be proved by induction on m (see [25]) .  

Note that not all polynomials that satisfy all the above conditions are chromatic 

polynomials of some graphs. For example, consider 
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Note that the coefficient of X4 is 1 ,  the constant term is zero, the coefficients 

alternate in sign and sum up to Z€:fO. However, P(x) is not the chromatic poly­

nomial of any graph. If it were, the graph would have four vertices and four 

edges, by Lemma 1 .4(i) and (ii) . The only two graphs with four vertices and 

four edges do not have this polynomiaL 

1.4 Chromatically Unique and Chromatically 

Equivalent Graph 

We note by Lemma 1 .1 that for any tree T of order n, P(T) = A(A _l)n-l. This 

implies that there exists non-isomorphic graphs which have the same chromatic 

polynomiaL On the contrary, there are graphs like the empty graphs O(n) such 

that no other graphs will have the same chromatic polynomial as O(n) . These 

observations lead to the following definitions. 

Let P(G) denote the chromatic polynomial of a graph G. Two graphs G and H 

are chromatically equivalent (x-equivalent) .  written G f'.J H, if P(G) = P(H) .  A 

graph G is chromatically unique (x-unique) if P(H) = P(G) implies that H f'.J G. 

Let < G > denote the equivalence class determined by the graph G under r-..J. 

Clearly, G is x-unique if and only if < G >= {G}. 

Recall that t 1 (G) , t2 (G) , t3 (G) and X(G) are respectively the number of triangles. 

the number of cycles of order 4 without chords, the number of complete subgraphs 

K4 in G and the chromatic number of G. The results of the following lemma can 

be derived from Lemma 1 .3. 



Lemma 1.5 Let G and H be graphs such that G '"'-' H. Then 

(i) G and H have the same order 

(ii) G and H have the same size 

(iii) tl (G) = tl (H) 

(iv) t2 (G) - 2t3 (G) = t2 (H) - 2t3 (H) 

(v) X(G) = X(H) 

(vi) G is connected if and only if H is connected. 

8 

Since there is no general methods for constructing families of x-unique graphs 

and X-equivalent graphs, the above conditions are just some necessary conditions 

for two graphs G and H to be x-equivalent. (Also see [19] for a method that 

uses adjoint polynomials in proving the chromatic uniqueness of a graph) .  

For a graph G containing a cycle, the girth g (  G) of G is the length of a shortest 

cycle in G. Let O"g(G) be the number of cycles of length g(G) in G. It then 

follows from Whitney's broken cycle theorem (Theorem 1 .2) that if G and H are 

x-equivalent and containing cycles, then g(G) = g(H) and O"g(G) = O"g(H) (also 

see [27]) .  

The following results are not difficult to obtain. 

Lemma 1.6 Let G be a graph of size m.  Then m � 1 if and only if 

A(A - l)IP(G). 

Proof If m � 1, then X(G) � 2. This implies that P(O) = P(l) = o. Thus, A 

and (A - 1 )  are two factors of P(G) . On the contrary, if A(A - 1 ) IP(G) , then 

X( G) � 2. Thus, G must have at least one edge. Hence, m � 1 .  0 




