

UNIVERSITI PUTRA MALAYSIA

A STUDY ON THE POTENTIAL OF USING SEAWEED AS BIOMONITORING INDICATOR IN KISH ISLAND, IRAN

ALI DADOLAHI-SOHRAB

FSAS 2003 45

A STUDY ON THE POTENTIAL OF USING SEAWEED AS BIOMONITORING INDICATOR IN KISH ISLAND, IRAN

By

ALI DADOLAHI-SOHRAB

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

August 2003

DEDICATION

То

Memory of my parents and my sister Maryam whom their spirits will always be a part of mine

My wife Mojgan for years of love and dedication, and my daughter Pardise whom her presence enriched my life

and

My sisters whom taught me how to work hard and be happy

Thanks to Allah

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

A STUDY ON THE POTENTIAL OF USING SEAWEED AS BIOMONITORING INDICATOR IN KISH ISLAND, IRAN

By

ALI DADOLAHI-SOHRAB

August 2003

Chairman: Misri Kusnan, Ph.D.

Faculty: Science and Environmental Studies

The study was carried out to evaluate the use of seaweed as biomonitoring in Kish Island, Iran. Seaweed, sediment and seawater samples were collected bimonthly from June 1999 to April 2000 at 5 different sites. Seaweed samples were collected, identified and biomass recorded for 4 seasons from April 1999 to March 2000. Diversity and biomass differed within sites and seasons. The highest seaweed biomass were recorded from northwest and west sides of study area.

The status of selected heavy metals (Cd, Cu, Ni, Pb, V and Zn) were determined in seawater, sediment and 10 dominant seaweed species. Metals level in seawater ranged from 0.02-0.10, 0.09-1.22, 0.11-0.18, 0.27-2.04 and 0.17-0.27 μ g l⁻¹ for Cd, Cu, Ni, Pb and Zn, respectively, the metals concentrations were higher during cold seasons compared to the warm seasons. Metal concentrations in sediments ranged from 0.18-0.39, 2.39-4.55, 2.30-11.92, 2.92-5.92, 1.69-4.76, 4.04-9.51 μ g g⁻¹ dry weight for Cd, Cu, Ni, Pb, V and Zn, respectively. Higher variations in metal concentrations were observed at sites Symorgh and Darakht-e-Sabz compared to other sites.

Metal levels in seaweeds showed considerable variations ranging from 0.44-1.74, 0.76-3.42, 0.37-2.23, 0.96-4.47, 0.53-2.16 and 3.44-10.23 μ g g⁻¹ dry weight for Cd, Cu, Ni, Pb, V and Zn, respectively. Cadmium was lower in Chlorophyta than the other groups. Chlorophyta accumulated more Zn, V, Pb, Ni and Cu than other groups. In addition, variations in metals contents between species were obvious from the same habitat and in several cases within the same taxonomic groups. Generally, heavy metals level in this study were relatively lower than the other parts of the world and in some cases lower than the other parts of the Persian Gulf.

Toxicity test experiments were carried out using *Cystoseira myrica* from Kish Island, Iran and *Sargassum ilicifolium* species from Port Dickson, Malaysia. All selected concentrations of Cd and V and Cu concentrations at above 0.01 mg l⁻¹ showed toxic effects to both species. The toxic effects of Ni and Zn on the *C. myrica* and *S. ilicifolium* were at higher concentrations than the other metals and in addition Cu and V appeared to be more toxic than the other elements.

Using both species bioconcentration factors of Pb, Zn and Cu were higher than the other metals. This could be related to their electronegativity values. Elements uptake by different parts of *S. ilicifolium* during light period decreased in the following order: fronds > receptacles > stipes, whereas during dark period, accumulation of Cd, Cu, V and Ni exhibited similar trend to the above order, but Zn and Pb were higher in receptacles followed by fronds and stipes.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malayan sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KAJIAN MENGGUNAKAN RUMPAIRLAUT SEBAGAI PENUNJUK BIOPEMONITORAN DI PULAU KISH, IRAN

Oleh

ALI DADOLAHI-SOHRAB

Ogos 2003

Pengerusi: Misri Kusnan, Ph.D.

Fakulti: Sains dan Pengajian Alam Sekitar

Kajian telah dijalankan untuk menilai kegunaan rumpai laut sebagai penunjuk pencemaran di Pulau Kish, Iran. Sampel rumpai laut, sedimen dan air laut telah diambil setiap 2 minggu dari Jun 1999 hingga April 2000 dari 5 kawasan berlainan. Sampel rumpai laut diambil, dikenal pasti dan biomassnya direkodkan untuk 4 musim dari April 1999 hingga March 2000. Diversiti dan biomass berbeza di antara kawasan dan musim. Biomass rumpai laut tertinggi telah direkodkan dari kawasan Barat laut dan Barat kawasan kajian.

Status logam berat pilihan (Cd, Cu, Ni, Pb, V dan Zn) telah ditentukan pada air laut, sedimen dan 10 spesis rumpai laut utama. Paras logam di dalam air laut berada di antara 0.02-0.10, 0.09-1.22, 0.11-0.18, 0.27-2.04 dan 0.17-0.27 µg l⁻¹ untuk Cd, Cu, Ni, Pb dan Zn, logam-logam berada pada paras tertinggi semasa musim sejuk berbanding semasa musim panas. Kepekatan logam dalam sedimen berada di antara 0.18-0.39, 2.39-4.55, 2.30-11.92, 2.92-5.92, 1.69-4.76, 4.04-9.51 µg g⁻¹ berat kering untuk Cd, Cu, Ni, Pb, V dan Zn. Variasi kepekatan logam yang tinggi diperolehi dari kawasan Symorgh dan Darakht-e-Sabz berbanding dengan kawasan-kawasan lain. Paras logam dalam rumpai laut menunjukkan varisi antara 0.44-1.74, 0.76-

3.42, 0.37-2.23, 0.96-4.47, 0.53-2.16, dan 3.44-10.23 μ g g⁻¹ berat kering untuk Cd, Cu, Ni, Pb, V dan Zn. Kadmium adalah rendah dalam Chlorophyta berbanding kumpulan-kumpulan lain. Chlorophyta mengumpul Zn, V, Pb, Ni dan Cu yang lebih tinggi berbanding dengan kumpulan-kumpulan lain. Selain itu, variasi dalam kandungan logam-logam antara spesis-spesis adalah ketara sekiranya berasal dari habitat yang sama dan dalam sesetengah kes, dari kumpulan taksanomi yang sama. Secara umumnya, paras logam berat dalam kajian ini adalah rendah berbanding kawasan-kawasan lain di dunia dan dalam sesetengah kes ianya adalah rendah berbanding kawasan lain di Telak Parsi.

Ujian ketoksikan telah dilakukan dengan menggunakan spesis *Cystoseira myrica* dari Pulau Kish, Iran dan *Sargassum ilicifolium* dari Port Dickson, Malaysia. Kesemua kepekatan pilihan untuk Cd, V dan Cu kepekatan melebihi 0.01 mg l⁻¹ adalah toksik kepada kedua-dua spesis. Kesan toksik untuk Ni dan Zn terhadap *C. myrica* dan *S. ilicifolium* adalah pada kepekatan yang tinggi berbanding dengan logam-logam lain, dan umumnya Cu dan V terbukti lebih toksik berbanding elemen lain.

Faktor biokepekatan bagi Pb, Zn dan Cu adalah tinggi berbanding logam lain. Ini mungkin ada perkaitan dengan nilai elektronegativiti mereka. Pengambilan elemen oleh bahagian yang berlainan bagi *S. ilicifolium* semasa waktu siang berkurangan mengikut turutan berikut: daun (fronds) > organ seks (receptacles) > batang (stipes), manakala sewaktu malam, pengambilan Cd, Cu, V dan Ni menunjukkan bentuk yang sama seperti di atas, tetapi Zn dan Pb adalah tinggi di organ seks, diikuti dengan daun dan batang.

ACKNOWLEDGEMENTS

I would like to extend my gratitude to the members of my supervisory committee; Dr. Misri Kusnan, Assoc. Prof. Dr. Ahmad Ismail, Dr. Hishamuddin Omar and Assoc. Prof. Dr. Ahmad Savari for their advice, kind and constant support, encouragement and help in all my difficulties.

This research was made possible through the financial support of the AKF (Agha Khan Foundation) which is highly appreciated. I would like to acknowledge support from the Kish University and KFZO (Kish Free Zone Organization) make this study possible.

Furthermore, my special thanks to Mrs. Catherine Hieronymi (AKF Scholarship Officer) and I would like to thank Dr. Askari, Dr. Sam, Dr. Rostami and my colleages at Kish University, also Mr. Hamid Rezaei, Ibrahim Jalili and Majeed Ismail Kashi, Abu Hena, Nik, Syaizwan, Hidir and all my friends.

Finally, my sincere thanks are to my wife and daughter. I would like also to express my greatest gratitude and thanks to my sisters and their husbands and my parents in law for their encouragement during my study.

TABLE OF CONTENTS

DEDICATION ii ABSTRACT iii ABSTRAK v ACKNOWLEDGEMENTS vii APPROVAL viii DECLARATION Х LIST OF TABLES xiii LIST OF FIGURES xviii LIST OF PLATES xxi LIST OF ABBREVIATIONS xxiii

CHAPTER

Π

Ι	INTRODUCTION	1

Seaweed 13 Classification of Seaweeds 14 Seaweeds Diversity in the Persian Gulf 18 Distribution and Diversity of Seaweeds 19 Factors Affecting on Distribution and Diversity of Seaweed 20 29 Heavy Metals Heavy Metals Accumulation by Seaweeds 31 Characteristics of Seaweed as a Biological Indicator 50 **Toxicity Test Studies Using Seaweeds** 53 Basics of Toxicity Test Technique Using Seaweeds 55 Seaweed Morphology and Anatomy 58

III METHODOLOGY

LITERATURE REVIEW

Study Area	60
Sampling Sites	60
Sampling Methods	66
Biomass Study	66
Heavy Metals Study in Kish Island	67
Preparation of Samples for Analysis	69
Chemicals	69
Apparatus	70
Cleaning and Drying of Samples	70
Physicochemical Data	72
Seawater Nutrients	72
Bioassay Studies	73
Bioassay Study Using Cystoseira myrica	74

13

60

	Bioassay Study Using Sargassum ilicifolium	75
	End Point Measurement in Seaweeds	76
	Sampling of Seaweed and Seawater	77
	Photosynthesis and Respiration	77
	Chlorophyll Contents	78
	Metals Uptake by Different Parts of Seaweed	79
	Qualitative Assurance Procedures	81
	Statistical Analysis	82
	Biomass Study	83
	Heavy Metal in Marine Environment	84
	Bioassay Study	85
IV	RESULTS AND DISCUSSION	87
	Seaweed in Kish Island	87
	Phylum Chlorophyta	87
	Phylum Phaeophyta	92
	Phylum Rhodophyta	96
	The Ecology of Seaweed in Kish Island	101
	Biomass Study	104
	Overall Observation about Seaweed Ecology	120
	Heavy Metals in Kish Island	127
	Heavy Metals in Seawater of Kish Island	127
	Heavy Metals in Sediments of Kish Island	134
	Heavy Metals in Seaweeds of Kish Island	139
	The Use of Seaweed as Biomonitors of Metals	163
	Comparison of the Metal Contents in Different Parts of	167
	Seaweed	
	Seasonal Changes of Heavy Metals in Seaweeds	170
	Metal Pollution Index (MPI)	180
	Toxicity Test	183
	Toxicity Test on Cystoseira myrica (Kish Island)	183
	Toxicity Test on Sargassum ilicifolium (Port Dickson)	195
	Overall Observation about Metals Effects on Seaweeds	208
	Metals Accumulation in Toxicity Test	215
V	GENERAL DISCUSSION AND CONCLUSION	230
	BIBLOGRAPHY	261
	APPENDICES	291
	BIODATA OF THE AUTHOR	310

LIST OF TABLES

Table 1	Photosynthesis pigments common to divisions and classes of algae.	Page 17
2	Research on the seaweed in the Persian Gulf.	18
3	Essential elements to the growth of seaweed.	27
4	Classification of elements according to toxicity and availability.	30
5	Compilation of published studies of heavy metals content ($\mu g g^{-1}$ dry weight) of selected tropical and subtroical seaweed species.	34
6	Description of sampling sites.	62
7	Floristic affinity as determined by Cheney's (R+C)/P ratio (Cheney 1977) for published floras along the Persian Gulf Coasts.	103
8	Biomass (g wet wt m^{-2}) of seaweeds at all sites during spring in Kish Island.	105
9	Biomass (g wet wt m^{-2}) of seaweeds_at all sites during summer in Kish Island.	106
10	Biomass (g wet wt m ⁻²) of seaweeds at all sites during autumn in Kish Island.	107
11	Biomass (g wet wt m ⁻²) of seaweeds at all sites during winter in Kish Island.	107
12	Average biomass (g wet wt m ⁻²) and per cent values of each class in each station and in each season. Seasonal abundance and annual means are also reported.	109
13	Average annual biomass (g wet wt m ⁻²) of seaweeds at different sites in Kish Island.	111
14	Average biomass (g wet wt m ⁻²) of seaweeds in different season in Kish Island.	112
15	Biomass (g wet wt m ⁻²) of each species in different zones in Kish Island.	113
16	Results of two-way ANOVA based on the biomass of different Classes of seaweeds during different seasons.	121
17	Results of correlation coefficient between total seaweeds biomass with environment parameters.	121

- 18 The metal concentrations (means \pm S.D.) in μ g l⁻¹ from the seawater 127 around the Kish Island.
- 19 Results of Kruskal-Wallis test based on estimates of heavy metal 129 concentrations in different locations of Kish Island.
- 20 Results of Kruskal-Wallis test based on estimates of heavy metal 130 concentrations in different seasons of Kish Island.
- 21 Heavy metals concentrations ($\mu g l^{-1}$) in coastal waters of Kish 133 Island with those from other regions of the world.
- Heavy metals concentrations (means \pm S.D.) in μ g g⁻¹ dry wt in 134 sediments of Kish Island.
- 23 Results of Kruskal-Wallis test based on estimates of heavy metal 135 concentrations in sediments of Kish Island.
- 24 Background levels of heavy metals in sediments of Persian Gulf. 136
- 25 Heavy metals concentrations ($\mu g g^{-1}$ dry wt) in surface sediments 139 from the different parts of the world.
- 26 Correlation between concentrations of different metals in sediment 139 and seawater.
- 27 Range of metal concentrations ($\mu g g^{-1}$ dry weight) in all species 140 from Kish Island.
- 28 Concentrations (means \pm S.D.) in μ g g⁻¹ dry wt of heavy meals in 141 three classes of seaweeds around the Kish Island.
- 29 Concentrations (means \pm S.D.) of heavy metals (µg g⁻¹ dry weight) 142 of the seaweeds in Kish Island.
- 30 Metal concentrations (means \pm S.D.) in μ g g⁻¹ dry weight of algae 143 along the coasts of Kish Island.
- 31 Statistical analysis of the metal contents data (two-way of 143 ANOVA).
- 32 List of green algae sampled from different sites. 144
- 33 Results obtained from the multiple regression analysis of the metal 144 contents in Chlorophyta species in relationship with the metal contamination in sediment and seawater.

- 34 Correlation coefficient between metal concentrations in ten 146 dominant species with sediment and seawater around the Kish Island.
- 35 Correlation coefficient between heavy metal concentrations in 147 seaweed and seawater physicochemical parameters.
- 36 Statistical analysis of the metal bioaccumulation data (Kruskal- 148 Wallis one way analysis of variance).
- 37 Concentration (means \pm S.D) in μ g g⁻¹ dry weight of heavy metals 150 in *E. intestinalis*
- 38 Correlations between concentrations of paired metals in 150 *Cladophoropsis zollingeri.*
- 39 Correlations between concentrations of paired metals in 150 *Chaetomorpha aerea.*
- 40 Correlations between concentrations of paired metals in 151 *Enteromorpha intestinalia.*
- 41 List of brown algae sampled from different sites. 151
- 42 Results obtained from the multiple regression analysis of the metal 152 contents in Phaeodophyta species in relationship with the metal contamination in sediment and seawater.
- 43 Correlations between concentrations of paired metals in *Padina* sp. 155
- 44 Correlations between concentrations of paired metals in *C. myrica*. 155
- 45 Correlations between concentrations of paired metals in *C. sinousa*. 155
- 46 Correlations between concentrations of paired metals in *Sargassum* 157 sp.
- 47 Description of red algae sampled in different sites. 158
- 48 Results obtained from the multiple regression analysis of the metal 159 contents in Rhodophyta species in relationship with the metal contamination in sediment and seawater.
- 49 Correlations between concentrations of paired metals in *L. obtusa.* 160
- 50 Correlations between concentrations of paired metals in *J. rubens.* 162
- 51 Correlations between concentrations of paired metals in *C. parvula*. 162

- 52 Results of statistical analysis based on estimates of heavy metal 164 concentrations in the three classes of seaweed and seawater around the Kish Island. 53 Results of statistcal analysis based on estimates of concentrations 166 factors in three classes of seaweeds around the Kish Island. 54 Concentrations factors of different classes of seaweeds during 166 sampling periods around the Kish Island. 55 167 Heavy metals concentrations (means \pm S.D.) in different parts of Cystoseira myrica and Sargassum ilicifolium. Heavy metals concentrations (mean \pm S.D.) in μ g g⁻¹ dry weight in 56 171 three classes of seaweeds during different periods around the Kish Island. 57 Mean of MPI amounts in sediment, seawater and seaweeds in Kish 181 Island 58 184 Effects of Cd on the C. myrica after 14 days (means \pm S.D.). 59 Effects of Cu on the C. myrica after 14 days (means \pm S.D.). 187 60 188 Effects of Ni on the C. myrica after 14 days (means \pm S.D.). 61 Effects of Pb on the C. myrica after 14 days (means \pm S.D.). 190 62 Effects of V on the C. myrica after 14 days (means \pm S.D.. 192 63 Effects of Zn on the C. myrica after 14 days (means \pm S.D.). 194 64 Effects of Cd on photosynthesis, respiration and chlorophyll 196 contents in S. *ilicifolium* after 96 hrs (means \pm S.D.). 65 Effects of Cu on photosynthesis, respiration and chlorophyll 199 contents in S. *ilicifolium* after 96 hrs (means \pm S.D.). 66 Effects of Ni on photosynthesis, respiration and chlorophyll 201 contents in S. *ilicifolium* after 96 hrs (means \pm S.D.). 67 Effects of Pb on photosynthesis, respiration and chlorophyll 203 contents in S. *ilicifolium* after 96 hrs (means \pm S.D.).
 - 68 Effects of V on photosynthesis, respiration and chlorophyll contents 205 in S. *ilicifolium* after 96 hrs (means \pm S.D.).

- 69 Effects of Zn on photosynthesis, respiration and chlorophyll 207 contents in S. *ilicifolium* after 96 hrs (means \pm S.D.).
- 70 The estimated of the EC_{50} values for single metals using the 207 chlorophyll reduction.
- 71 Exponential decay non-linear regression to *Cystoseira myrica* and 209 *Sargassum ilicifolium* in relationship with metal exposure at different concentrations.
- 72 Total extent and efficiency of metals bioaccumulation 216 (concentration factor) (means \pm S.D.) during two weeks by C. *myrica*.
- 73 Metals accumulation (means ± S.D.) during two weeks toxicity test 217 by *C. myrica*.
- 74 Total extent and efficiency of metals bioaccumulation 219 (concentration factor) (means \pm S.D.) during 96 hrs by S.ilicifolium.
- 75 Metals accumulation (means ± S.D.) during 96 hrs toxicity test by S. 220 *ilicifolium*.
- 76 Heavy metal concentrations (mg l^{-1}) in different parts of S. 223 *ilicifolium* (means ± S.D.).
- 77 Efficiency of metals bioaccumulation (concentration factor) during 223 12 hrs incubation in 0.1 mg l^{-1} solution to light and dark periods (means \pm S.D.).
- 78 Correlation between initial metal concentration in seawater and 227 metal accumulated by *C. myrica*.
- 79 Correlation coefficient between initial metal concentration in 228 seawater and metal accumulated by *S. ilicifolium*.
- 80 Characteristics of the sampling sites. 231

LIST OF FIGURES

Figures 1	Major river systems, depth contours (in meters), relation to Africa (Insert A), and tectonic plates (Insert B) of the Persian Gulf.	Page 2
2	Relationship between contamination and pollution.	54
3	Study area map showing the study area locations.	61
4	Axis morphology of primary branches of Sargassum.	80
5	Zonation of shoreline.	102
6	Dedogram using average linkage to different groups of seaweeds between sites	102
7	Seasonal biomass (g wet wt m ⁻²) of seaweeds at different locations in the Kish Island.	114
8	The mean seasonal biomass of 3 groups of seaweeds in the Kish Island.	115
9	Relative biomass of 3 groups of seaweeds in the Kish Island.	115
10	Variations of air temperature and total algal biomass (means \pm S.D.) during different seasons.	122
11	Variations of nutrients with total algal biomass (means \pm S.D.) in different seasons.	122
12	The relation between total algal biomass and total bright sunshine (means \pm S.D.) during each season.	122
13	The relation between total algal biomass and wind speed (means \pm S.D.) during each season.	123
14	Circulation of surface water in the Persian Gulf.	131
15	Seasonal concentrations (means \pm S.D.) of heavy metals in μ g l ⁻¹ during different seasons in coastal waters of Kish Island.	132
16	Dendogram showing classification of stations based on capacity of metals uptake by seaweeds.	156
17	Dendogram showing classification of stations based on capacity of metals uptake by seaweeds.	160

18	Metals concentration (means ± S.D.) in Cystoseira myrica.A: Different ageB: Different parts	169
19	Metals concentration (means \pm S.D.) in Sargassum sp.	169
20	Seasonal variation of metal concentration ($\mu g g^{-1}$ dry weight) in three class of seaweeds from Kish Island.	174
21	MPI values in seaweeds at each sampling site.	181
22	MPI values in sediment and seawater during different periods.	182
23	MPI values in three classes of seaweeds during different sampling periods.	182
24	Effect of different Cd concentrations (mg l^{-1}) on the growth rate (± S.D.) of <i>C. myrica</i> .	185
25	Variation in chlorophyll a (± S.D.) during Cd toxicity test on C. myrica.	185
26	Effect of different Cu concentrations (mg l^{-1}) on the growth rate (± S.D.) of <i>C. myrica</i> .	187
27	Variation in chlorophyll a (± S.D.) during Cu toxicity test on C. myrica.	187
28	Effect of different Ni concentrations (mg l^{-1}) on the growth rate (± S.D.) of <i>C. myrica</i> .	189
29	Variation in chlorophyll a (± S.D.) during Ni toxicity test on C . myrica.	189
30	Effect of different Pb concentrations (mg l^{-1}) on the growth rate (± S.D.) of <i>C. myrica</i> .	191
31	Variation in chlorophyll a (± S.D.) during Pb toxicity test on C. myrica.	191
32	Effect of different V concentrations (mg l^{-1}) on the growth rate (± S.D.) of <i>C. myrica</i> .	192
33	Variation in chlorophyll a (± S.D.) during V toxicity test on C. myrica.	193
34	Effect of different Zn concentrations (mg l^{-1}) on the growth rate (± S.D.) of <i>C. myrica</i> .	194

- 35 Variation in chlorophyll $a (\pm S.D.)$ during Zn toxicity test on C. 194 *myrica*.
- 36 Variation of chlorophyll a (± S.D.) during Cd toxicity test on S. 197 *ilicifolium*.
- 37 Variation of chlorophyll $a (\pm S.D.)$ during Cu toxicity test on S. 199 *ilicifolium*.
- 38 Variation of chlorophyll $a (\pm S.D.)$ during Ni toxicity test on S. 201 *ilicifolium*.
- 39 Variation of chlorophyll $a (\pm S.D.)$ during Pb toxicity test on S. 203 *ilicifolium*.
- 40 Variation of chlorophyll a (± S.D.) during V toxicity test on S. 205 *ilicifolium*.
- 41 Variation of chlorophyll $a (\pm S.D.)$ during Zn toxicity test on S. 207 *ilicifolium*.
- 42 Exponential decay non-linear regression of the different metal 210 concentrations on the *Cystoseira myrica*.
- 43 Exponential decay non-linear regression of the different metal 212 concentrations on the *Sargassum ilicifolium*.
- 44 Comparison of heavy metals accumulated (means \pm S.D.) in 218 different metals concentrations by *C. myrica*.
- 45 Comparison of heavy metals accumulated (means ± S.D.) in 222 different metals concentrations by *S. ilicifolium*.
- Heavy metal accumulation (means ± S.D.) in three different parts of 224
 S. *ilicifolium* during light period.
- 47 Heavy metal accumulation (means ± S.D.) in three different parts of 224 S. ilicifolium sp. during dark period.
- 48 Relation between metal concentration with the rate of metal uptake 229 by *C. myrica.*
- 49 Relation between metal concentration with the rate of metal uptake 229 in *S. ilicifolium*.

LIST OF PLATES

Plates 1	Study area (site 1) during low tide	Page 63
2	Study area (site 2) during low tide	63
3	Study area (site 3) during low tide	64
4	Study area (site 4) during low tide	64
5	Study area (site 5) during low tide	65
6	Desalination Plant Site	65
7	A 50 \times 50 cm square metal frame use for sampling	67
8	Enteromorpha intestinalis	88
9	Chaetomorpha aerea	89
10	Cladophora sericioides	91
11	Cladophoropsis zollingeri	91
12	Dictyosphaeria cavernosa	91
13	Caulerpa racemosa	91
14	Colpomenia sinousa	94
15	Padina sp.	94
16	Cystoseira myrica	94
17	Sargassum latifolium	94
18	Sargassum polyceratium	94
19	Sargassum vulgar	95
20	Sargassum polycystum	95
21	Turbinaria conoides	96
22	Liagora ceranoides	97
23	Jania rubens	97

24	Gelidium sp.	98
25	Gracilaria foliifera	98
26	Sarconema filiforma	99
27	Champia parvula	100
28	Acanthophora spicifera	100
29	Laurencia obtusa	101
30	Laurencia sp.	101
31	Section of Cystoseira myrica (a) before and (b) after exposure to $1 \text{ mg } 1^{-1}$ of Cu ⁺²	186

LIST OF ABBREVIATIONS

A.A.S.	1	Atomic Absorption Spectrophotometer
ANOVA	=	Analysis of Variance
APDC	=	Ammonium Pyrrolidine Dithiocarbamate
COMAS	=	Center for Oceanography and Mariculture Studies
CV	=	Coefficient of Variations
D.O.	=	Dissolved Oxygen
D W	=	Dry weight
EC ₅₀	=	Effective Concentration resulting 50% mortality of test Organism
EN	=	Electronegativity
g wet wt m ⁻²	=	Grams Wet Weight per square meter
I.C.P-A.E.S	=	Inductively Coupled Plasma-Atomic Emission Spectrophotometer
mg l ⁻¹	=	milligram per liter
MIBK	=	Methyl Iso-Butyl Ketone
MPI	=	Metal Pollution Index
NED	11	Naphthylethylenediamine dihydrochloride
ROPME	=	Regional Organization for the Protection of the Marine Environment
St.	=	Site
μg l ⁻¹	н	microgram per liter
mg g ⁻¹	н	milligram per gram
µg g-¹	=	microgram per gram
ppm	=	Part per million
ppb	=	Part per billion

xxiii

Р	=	Probability
P.S.	=	Photosynthesis System
TES	=	Titrisol Eisen Standard
Vs	=	Versus
UAE	=	United Arab Emirates
Wet wt.	=	Wet weight

