COLOSSAL MAGNETORESISTANCE OF (La$_{1-x}$A$_x$)$_{0.67}$Ca$_{0.33}$Mn$_3$ [A=Sn, Sm and Er] PEROVSKITE

ZOHRA ALI MOHAMED GEBREL

FSAS 2003 38
COLOSSAL MAGNETORESISTANCE OF $(La_{1-x}A_x)_{0.67}Ca_{0.33}MnO_3$
[A=Sn, Sm and Er] PEROVSKITE

ZOHRA ALI MOHAMED GEBREL

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA
2003
COLOSSAL MAGNETORESISTANCE OF \((La_{1-x}A_x)_{0.67}Ca_{0.33}MnO_3\) \([A=Sn, Sm\) and Er\)] PEROVSKITE

By

ZOHRA ALI MOHAMED GEBREL

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

July 2003
DEDICATIONS

To Prof. Dr. Halim,
for his patience and guidance

To my late father, my mother for her love and support
To all my sisters and brothers for their love and concern
To my brother Moftah for his support and understanding

To all my family and my friends
In this work, the colossal magnetoresistance (CMR) of \((\text{La}_{1-x} \text{A}_x)_{0.6} \text{Ca}_{0.33} \text{MnO}_3\) [LA=Sn, Sm and Er] perovskite ceramics samples, with \(x=0.0\) to \(0.4\) were prepared by solid-state reaction technique. The structure, magnetic and electrical properties of the samples were investigated. The x-ray diffraction (XRD) spectrum for all the samples exhibit orthorhombic distorted and single-phase perovskite structures with the presence of some minor impurities. The magnetic properties were studied by measuring the susceptibility of the samples as a function of temperature at various magnetic fields. Ferromagnetic-paramagnetic phase transition temperature, \(T_c\) was determined for low doping concentration. The Curie temperature, \(T_c\) shifts to lower temperature as tin, samarium and erbium content was increased, indicating the loss of ferromagnetic order. For high tin content, the classical ferromagnetic order disappears and a cusp peak anomaly appears at 87 K, 68 K, 61 K and 55 K for \(x=0.1, 0.2, 0.3\) and 0.4 respectively. The cusp shifts to higher temperature as the frequency increases from
125 Hz to 200 Hz and becomes sharper as magnetic field increases from 0.1 Oe to 10 Oe in agreement with spin glass behavior. However, LSmCMO system displays a classical ferromagnetic-paramagnetic transition for $x = 0.0, 0.01, 0.02$ and 0.04 and T_c shifts to lower temperature as samarium content increases. Also a cusp peak was observed at around 50 K for samples with $x \geq 0.03$. However, the study of frequency dependence of susceptibility did not show any shift in T_{cusp}. Thus the samples did not exhibit the spin glass behavior and T_{cusp} is called Neél temperature, T_N. In addition, LErCMO system also demonstrated that the samples with $x=0.01, 0.02$ and 0.03 exhibit the spin glass behavior and the respective spin-glass transition temperatures, T_{SG} are 99.7 K, 98.7 K and 70.5 K, respectively. But, samples with $x \geq 0.1$ did not show any ferromagnetic-paramagnetic transition at the range of 30 K to 300 K, possibly the Curie temperature for these samples is below 30 K. The pure sample, which exhibits T_c around 240 K and T_p around 200 K showed high level of porosity, and an average grain size of 3μm. By replacing La with Sn, Sm and Er, respectively, in the LCMO system, the colossal magnetoresistance effect appear at low temperature and the highest value of CMR effect was observed at temperature approaching T_p. The highest CMR value was observed in LErCMO system with $x=0.03$ at 170 K. The value is 51 %. In LSnCMO, the maximum CMR value is 49 % at 200 K for the sample with $x=0.01$. While in the LSmCMO system the highest CMR value is displayed at 200 K for the sample with $x=0.02$.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

MAGNETORINTANGAN RAKSAKSA BAGI
(La$_{1-x}$A$_x$)$_{0.67}$Ca$_{0.33}$MnO$_3$ [A=Sn, Sm and Er] PEROVSKITE

Oleh

ZOHRA ALI MOHAMED GEBREL

Julai 2003

Pengerusi : Profesor Abdul Halim Shaari, Ph.D.
Fakulti : Sains dan Pengajian Alam Sekitar

Dalam kajian ini, magnetorintangan raksasa bagi sampel seramik (La$_{1-x}$Sn)$_{2/3}$Ca$_{1/3}$MnO$_3$ [LSnCMO], (La$_{1-x}$Sm)$_{2/3}$Ca$_{1/3}$MnO$_3$ [LSmCMO], (La$_{1-x}$Er)$_{2/3}$Ca$_{1/3}$MnO$_3$ [LErCMO], dengan x=0.0 hingga 0.4 telah disediakan menggunakan teknik tindakbalas keadaan pepejal. Struktur, sifat magnet dan sifat elektrik bagi sampel tersebut telah dikaji. Spektrum belauan sinar-x bagi semua sampel menunjukkan orthorombik tercangga dan struktur perovskite fasa tunggal dengan kehadiran bendasing. Sifat magnet telah dikaji menggunakan ketelapan sebagai fungsi suhu pada medan magnet yang berbeza. Suhu peralihan fasa ferromagnet-paramagnet, Tc telah ditentukan bagi kepekatan dopan yang rendah. Suhu Curie, Tc teranjak ke suhu yang rendah apabila kandungan timah, samarium dan erbium bertambah, yang menunjukkan kehilangan tertib ferromagnet. Bagi kandungan timah yang tinggi, klasik tertib ferromagnet hilang dan kejanggalan juring puncak masing-masing muncul pada 87 K, 68 K, 61 K dan 55K bagi x=0. 1, 0.2, 0.3
Anjakan juring kepada suhu tinggi berlaku apabila frekuensi meningkat dari 125 Hz ke 200 Hz dan menjadi tajam semasa medan magnet meningkat dari 0.1 Oe ke 10 Oe dalam persetujuan dengan sifat spin kaca. Walau bagaimanapun, LSmCMO sistem, menunjukkan klasik ferromagnet-paramagnet bagi x=0.0, 0.01, 0.02 dan 0.04 dan Tc beranjak ke suhu yang rendah apabila kandungan samarium meningkat. Juga puncak juring pada sekitar 50 K diperhatikan bagi sampel dengan x ≥ 0.03 dan kajian kebergantungan terhadap frekuensi bagi susceptibiliti tidak menunjukkan sebarang perubahan dalam T_{cusp}. Oleh itu, sampel tersebut tidak menunjukkan sifat spin kaca dan T_{cusp} adalah sebagai suhu Neel, T_N. Sebagai tambahan LErCMO sistem telah menunjukkan sampel dengan x=0.01, 0.02 dan 0.03. memamerkan sifat spin kaca dan masing-masing T_{SG} adalah 99.7 K, 98.7 K dan 70.5 K. Tetapi sampel dengan x > 0.1 tidak memperlihatkan sebarang ferromagnet-paramagnet pada julat 30 K ke 300 K. Kemungkinan suhu Curie bagi sampel ini di bawah 30 K. Sampel tuilen, yang menunjukkan Tc sekitar 240 K dan Tp sekitar 200 K memamerkan paras porositi yang tinggi, dan purata saiz butiran 3 μm. Dengan menggantikan La dengan Sn, Sm dan Er dalam magnetorintangan perovskite bagi LCMO sistem, purata magnetorintangan raksasa timbul pada suhu rendah dan kesan magnetorintangan yang besar telah diperolehi pada suhu mencapai Tp. Nilai CMR tertinggi diperhatikan dalam LErCMO sistem dengan x=0.03 ada 170 K dan nilai tersebut adalah 51%. Dalam LSnCMO, nilai maksimum CMR adalah 49% pada 200 K bagi sampel x=0.01. Walau bagaimanapun, sistem LSmCMO menunjukkan nilai CMR tertinggi pada 200 K bagi sampel dengan x=0.02.
ACKNOWLEDGEMENTS

I have enjoyed my time at the Universiti Putra Malaysia tremendously. Without its library and lab facilities, the research would be impossible to complete. I also benefited greatly from access to the facilities at this university.

First and foremost, I would like to express my utmost appreciation to my supervisor, Professor Dr. Abdul Halim Shaari not only for his great guidance, advice, discussions but also for his foresight to investigate new projects, which has always been the power that pushes our lab moving forward. For the past years it has been proved that, in most cases, I was getting confused and I am really grateful for his kindness and forgiveness. His patience and persistence in pursuing perfection has a great influence in my work. Second I would like to express my gratitude to Associate Professor Dr. Zainal Abidin Talib and Associate Professor Dr. Hishamuddin Zainuddin for their comments and suggestions throughout the research work and for taking the time to read my thesis during the long days, and proving me with comments that have significantly improved this thesis.

I would like to thank all the lecturers in the physics department for their comments and discussions. I also specifically thank Mr. Razak Harun for his technical favors and his assistance, and other staff in the physics department for their kind help.

Working with other graduate students in our lab was also a wonderful experience for me. First I would like to acknowledge all my colleagues who I worked
with them in this lab; especially Imad Hamadneh, Iftetan Ahmed, Abdullah Chik, Lim Kean Pah, Sharmiwati and Walter Charlos.

Last but not least, I would like to send all my love to my whole family, specifically my great mother who encourage me till I reached this position.
I certify that an Examination Committee met on 23/7/2003 to conduct the final examination of Zohra Ali Mohamed Gebrel on her Master of Science thesis entitled "Colossal Magnetoresistance of (La_{1-x} A_x)_{0.67} Ca_{0.33}MnO_3 [A=Sn, Sm and Er] perovskite" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Sidek Haji Abdul Aziz, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Chairman)

Abdul Halim Shaari, Ph.D.
Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Zainal Abidin Talib Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Hishamuddin Zainuddin, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 23 SEP 2003
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisor Committee are as follows:

Abdul Halim Shaari, Ph. D.
Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Chairman)

Zainal Abidin Talib Ph. D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Hishamuddin Zainuddin, Ph. D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

AINI IDRIS, Ph. D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 14 NOV 2003
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citation which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ZOHRA ALI MOHAMED GEBREL
Date: 20/10/2003
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>.ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACTK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>Xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS AND KEY WORD</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

1. Types of Magnetoresistance
2. Other types of Magnetoresistance are MR, TMR, EMR and VLMR
3. Application of CMR
4. Objective of the Study

II LITERATURE REVIEW

1. La$_{1-x}$Ca$_x$MnO$_3$ System (LCMO)
2. Phase Diagram of La$_{2/3}$Ca$_{1/3}$MnO$_3$
3. Doping effect on La Site
4. (La$_{1-x}$Tb$_x$)$_{2/3}$Ca$_{1/3}$MnO$_3$ System (LTCMO)
5. (La$_{1-x}$Bi$_x$)$_{2/3}$Ca$_{1/3}$MnO$_3$ System (LBCMO)
6. (La$_{1-x}$Dy$_x$)$_{2/3}$Ca$_{1/3}$MnO$_3$ System (LDCMO)
7. (La$_{1-x}$Gd$_x$)$_{2/3}$Ca$_{1/3}$MnO$_3$ System (LGCMO)
8. Jahn-Teller Effect

III THEORY

1. Introduction to Magnetism
2. Ferromagnetic
3. Antiferromagnetism
4. Neel Temperature (antiferromagnetic-ferromagnetic phase transition), T_N
5. Paramagnetism
6. Magnetic Susceptibility
7. Ferromagnetic Susceptibility
8. Curie-Weiss Law
9. Spin Glass
10. Double Exchange
IV SAMPLE PREPARATION AND CHARACTERIZATION 37
Preparation 37
 Chemical Powder Weighing 37
 Mixing 39
 Evaporation 39
 Calcinations 39
 Grinding and Sieving 40
 Pelleting 40
 Final Sintering 41
Sample Characterization 43
 Resistance Measurement 44
 AC Magnetic Susceptibility Measurement 46
 Curie Temperature (ferromagnetic-
 Paramagnetic Phase transition), Tc 46
 Néel Temperature (antiferromagnetic
 -ferromagnetic phase transition), T_N 46
 Magnetoresistance Measurements 47
 X-Ray Diffraction Analysis 49
 Microstructure Analysis 51

V RESULTS AND DISCUSSIONS 55
1.SnCMO system 55
 XRD Patterns and Lattice Parameters 56
 Susceptibility and Curie Temperature 56
 Effect of Frequency 58
 Effect of Field Intensity 64
 Resistance and Phase Transition Temperature, T_p 67
 Magnetic and Electrical Phase Diagram 69
 Microstructure Properties 70
 Magnetoresistance 76
1.SmCMO system 85
 XRD Patterns and Lattice Parameters 85
 Susceptibility and Curie Temperature 98
 Effect of Field Intensity 91
 Phase Transition Temperature, T_p and Resistance 95
 Magnetic and Electrical Phase Diagram 97
 Microstructure Properties 98
 Magnetoresistance 104
1.ErCMO System 113
 XRD Patterns and Lattice Parameters 113
 Susceptibility and Curie Temperature 116
 Effect of Field Intensity 118
 Phase Transition Temperature, T_p and Resistance. 122
 Magnetic and Electrical Phase Diagram 124
 Microstructure Properties 126
 Magnetoresistance 132
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Tyep of MR</td>
</tr>
<tr>
<td>4.1</td>
<td>Demagnetization factors, D (SI) for cylinders as a function of ratio of length to diameter, l/d</td>
</tr>
<tr>
<td>5.1</td>
<td>Lattice parameter, a, b, c and unit cell volume of Sn doped in LCMO system</td>
</tr>
<tr>
<td>5.2</td>
<td>Lattice parameter, a, b, c and unit cell volume of Sm doped in LCMO system</td>
</tr>
<tr>
<td>5.3</td>
<td>Lattice parameter, a, b, c and unit cell volume of Er doped in LCMO system</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Temperature dependence of resistivity</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Schematic structure of an ideal perovskite</td>
<td>11</td>
</tr>
<tr>
<td>2.2 Temperature dependence of resistivity of La${2/3}$Ba${1/3}$MnO$_3$ tin film at 0 and 5 T</td>
<td>12</td>
</tr>
<tr>
<td>2.3 Resistivity of Nd${0.3}$Pb${0.7}$MnO$_3$ as a function of temperature and magnetic fields</td>
<td>12</td>
</tr>
<tr>
<td>2.4 The phase diagram of La${2/3}$Ca${1/3}$MnO$_3$ system</td>
<td>16</td>
</tr>
<tr>
<td>3.1 Antiferromagnetic behavior of the sample</td>
<td>24</td>
</tr>
<tr>
<td>3.2 The atomic spin moment of (a) Ferromagnetic, (b) Antiferromagnetic and (c) Paramagnetic</td>
<td>25</td>
</tr>
<tr>
<td>3.3 Curie-Weiss law show the presence of paramagnetic phase</td>
<td>27</td>
</tr>
<tr>
<td>3.4 Schematic illustration of double exchange model</td>
<td>31</td>
</tr>
<tr>
<td>3.5 Sketch of the double exchange mechanism</td>
<td>32</td>
</tr>
<tr>
<td>3.6 A sketch of field splitting five-fold degenerate atomic 3d level into lower t_2g and higher e_g level…</td>
<td>34</td>
</tr>
<tr>
<td>3.7 Phase diagram at constant doping $x=0.3$ as a function of tolerance factor</td>
<td>36</td>
</tr>
<tr>
<td>4.1 Sample preparation via solid-state reaction</td>
<td>38</td>
</tr>
<tr>
<td>4.2 Temperature setting for calcinations stage</td>
<td>42</td>
</tr>
<tr>
<td>4.3 Temperature setting for final sintering stage</td>
<td>42</td>
</tr>
<tr>
<td>4.4 Experiment rig for resistance measurement</td>
<td>43</td>
</tr>
<tr>
<td>4.5 Ac susceptometer Model 7000</td>
<td>46</td>
</tr>
<tr>
<td>4.6 Magnetoresistance measurement system</td>
<td>48</td>
</tr>
<tr>
<td>4.7 Schematic diagram of magnetoresistance measurement</td>
<td>49</td>
</tr>
<tr>
<td>4.8 Schematic illustration of fundamental processes in XRD measurement</td>
<td>50</td>
</tr>
</tbody>
</table>
4.9 Philips X-ray diffraction unit
5.1 XRD Spectru for all the samples of LSnCMO system
5.2 Lattice parameter and unit cell volume of LSnCMO system
5.3 Temperature as a function of susceptibility of \((\text{La}_{1-x} \text{Sn}_x)_{2/3}\text{Ca}_{1/3}\text{MnO}_3\) with \(x=0.0, 0.01, 0.02, 0.03, 0.04\) and 0.05 at frequency 125 Hz
5.4 Temperature as a function of susceptibility of \((\text{La}_{1-x} \text{Sn}_x)_{2/3}\text{Ca}_{1/3}\text{MnO}_3\) with \(x=0.1, 0.2, 0.3\) and 0.4 at frequency 125 Hz
5.5 Temperature as a function of susceptibility of \((\text{La}_{1-x} \text{Sn}_x)_{2/3}\text{Ca}_{1/3}\text{MnO}_3\) with \(x=0.1\) at frequency 200 Hz
5.6 Temperature as a function of susceptibility of \((\text{La}_{1-x} \text{Sn}_x)_{2/3}\text{Ca}_{1/3}\text{MnO}_3\) with \(x=0.2\) at frequency 200 Hz
5.7 Temperature as a function of susceptibility of \((\text{La}_{1-x} \text{Sn}_x)_{2/3}\text{Ca}_{1/3}\text{MnO}_3\) with \(x=0.3\) at frequency 200 Hz
5.8 Temperature as a function of susceptibility of \((\text{La}_{1-x} \text{Sn}_x)_{2/3}\text{Ca}_{1/3}\text{MnO}_3\) with \(x=0.4\) at frequency 200 Hz
5.9 Spin glass temperature dependence of magnetic field for \(\text{LSnCMO}\) with \(x=0.2, 0.3\) and 0.4
5.10 Inverse susceptibility against temperature of \(\text{LSnCMO}\) system
5.11 \(T_c\) and \(\Theta\) as a function of tin content of \(\text{LSnCMO}\) system
5.12 Susceptibility as a function of tin content at 80 K
5.13 Susceptibility as a function of tin content at 100 K
5.14 Susceptibility as a function of tin content at 150 K
5.15 Temperature dependence of resistance of \(\text{LSnCMO}\) system for samples with (a) \(x=0.0, 0.03, 0.2\) and 0.3 (b) \(x=0.01, 0.02, 0.04, 0.05, 0.1\) and 0.4
5.16 \(T_c\) and \(T_p\) as a function of tin content of \(\text{LSnCMO}\) system
5.17 SEM image of fracture surface of \(\text{LSnCMO}\) system
5.18 CMR curve of \(\text{LSnCMO}\) system as a function of applied magnetic field at 90 K
5.19 CMR curve of LSnCMO system as a function of applied magnetic field at 100 K

5.20 CMR curve of LSnCMO system as a function of applied magnetic field at 150 K

5.21 CMR curve of LSnCMO system as a function of applied magnetic field at 170 K

5.22 CMR curve of LSnCMO system as a function of applied magnetic field at 200 K

5.23 CMR curve of LSnCMO system as a function of applied magnetic field at 250 K

5.24 MR curve as a function of applied magnetic field of (La_{1-x} Sn_x)_{2/3}Ca_{1/3}MnO_3 with (a)x=0.0, (b)x=0.01, (c)x=0.02 and (d)x=0.05

5.25 CMR curve of LSnCMO system as a function temperature at 1.006 T

5.26 XRD patterns for the samples of (La_{1-x} Sm_x)_{2/3}Ca_{1/3}MnO_3 with x=0.0 to 0.4

5.27 Lattice parameter and unit cell volume of LSmCMO system

5.28 Temperature as a function of susceptibility of (La_{1-x} Sm_x)_{2/3}Ca_{1/3}MnO_3 with x=0.0, 0.01, 0.02 and 0.04

5.29 Temperature as dependence of susceptibility of (La_{1-x} Sm_x)_{2/3}Ca_{1/3}MnO_3 with x=0.03, 0.05, 0.1, 0.2, 0.3 and 0.4

5.30 Inverse susceptibility against temperature of LSmCMO system

5.31 T_c and Θ as a function of Samarium content of LSmCMO system

5.32 Temperature variation of Ac susceptibility for (La_{1-x} Sm_x)_{2/3}Ca_{1/3}MnO_3 with (a)x=0.03, (b)x=0.05, (c)x=0.1, (d)x=0.2, (e)x=0.3 and (f)x=0.4

5.33 Temperature dependence of resistance of LSmCMO system for samples with (a)x=0.0, 0.01 and 0.03 (b)x=0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3 and 0.4

5.34 T_c and T_p as a function of Samarium content of LSmCMO system

5.35 SEM image of fracture surface of LSmCMO system.

5.36 CMR curves of LSmCMO system as a function of applied magnetic field at 90 K
5.37 CMR curve of LSmCMO system as a function of applied magnetic field at 100 K

5.38 CMR curve of LSmCMO system as a function of applied magnetic field at 150 K

5.39 CMR curve of LSmCMO system as a function of applied magnetic field at 170 K

5.40 CMR curve of LSmCMO system as a function of applied magnetic field at 200 K

5.41 CMR curve of LSmCMO system as a function of applied magnetic field at 250 K

5.42 CMR curve as a function of applied magnetic field of (La$_{1-x}$Sm$_x$)$_2$Ca$_{1/2}$MnO$_3$ with (a)x=0.0, (b)x=0.01, (c)x=0.02, (d) x=0.03 and x=0.05

5.43 CMR curve of LSmCMO system as a function temperature at 1.006 T

5.44 XRD patterns for the samples of (La$_{1-x}$Er$_x$)$_2$Ca$_{1/2}$MnO$_3$ with x=0.0 to 0.4

5.45 Lattice parameter and unit cell volume of LErCMO systm

5.46 Temperature as dependence of susceptibility of LErCMO system

5.47 Inverse susceptibility against temperature of LErCMO system

5.48 T$_c$ and Θ as a function of erbium content of LSmCMO system

5.49 T$_{SG}$ as a function of magnetic field

5.50 Temperature dependence of Ac susceptibility LErCMO system at different field intensity when (a)x=0.01, (b)x=0.02, (c)x=0.03, (d)x=0.04 and (f)x=0.05

5.51 Temperature dependence of resistance of LErCMO system for samples with (a)x=0.0, 0.01, 0.02, 0.03, 0.04 and 0.05 (b) x= 0.1, 0.2, 0.3 and 0.4

5.52 T$_c$ and T$_p$ as a function of Erbium content of LErCMO system

5.53 SEM image of fracture surface of LErCMO system

5.54 CMR curves of LErCMO system as a function of applied magnetic field at 90 K
5.55 CMR curve of LErCMO system as a function of applied magnetic field at 100 K

5.56 CMR curve of LErCMO system as a function of applied magnetic field at 150 K

5.57 CMR curve of LErCMO system as a function of applied magnetic field at 170 K

5.58 CMR curve of LErCMO system as a function of applied magnetic field at 200 K

5.59 CMR curve of LErCMO system as a function of applied magnetic field at 250 K

5.60 CMR curve as a function of applied magnetic field of (La$_{1-x}$Er$_x$)$_{2/3}$Ca$_{1/3}$MnO$_3$ with (a)x=0.01, (b)x=0.02 and (c)x=0.03

5.61 CMR curve of LErCMO system as a function temperature at 1 T
LIST OF ABBREVIATIONS AND KEY WORDS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Temperature in Kelvin</td>
</tr>
<tr>
<td>T_c</td>
<td>Curie temperature</td>
</tr>
<tr>
<td>T_N</td>
<td>Néel temperature</td>
</tr>
<tr>
<td>T_f</td>
<td>Freezing temperature</td>
</tr>
<tr>
<td>T_p</td>
<td>Phase transition temperature</td>
</tr>
<tr>
<td>T_{SG}</td>
<td>Spin freezing temperature</td>
</tr>
<tr>
<td>MR</td>
<td>Magnetoresistance</td>
</tr>
<tr>
<td>CMR</td>
<td>Colossal Magnetoresistance</td>
</tr>
<tr>
<td>GMR</td>
<td>Giant Magnetoresistance</td>
</tr>
<tr>
<td>AMR</td>
<td>Anisotropic Magnetoresistance</td>
</tr>
<tr>
<td>TMR</td>
<td>Tunnelling Magnetoresistance</td>
</tr>
<tr>
<td>EMR</td>
<td>Extraordinary Magnetoresistance</td>
</tr>
<tr>
<td>VLMR</td>
<td>Very Large Magnetoresistance</td>
</tr>
<tr>
<td>$R(H)$</td>
<td>The resistance in the magnetic field</td>
</tr>
<tr>
<td>$R(0)$</td>
<td>The resistance in zero magnetic field</td>
</tr>
<tr>
<td>DE</td>
<td>Double exchange</td>
</tr>
<tr>
<td>JT</td>
<td>Jahn-Teller</td>
</tr>
<tr>
<td>LCMO</td>
<td>La-Ca-Mn-O system</td>
</tr>
<tr>
<td>LSnCMO</td>
<td>La-Sn-Ca-Mn-O system</td>
</tr>
<tr>
<td>LSmCMO</td>
<td>La-Sm-Ca-Mn-O system</td>
</tr>
<tr>
<td>LErCMO</td>
<td>La-Er-Ca-Mn-O system</td>
</tr>
<tr>
<td>LTCMO</td>
<td>La-Tb-Ca-Mn-O system</td>
</tr>
<tr>
<td>LBCMO</td>
<td>La-Bi-Ca-Mn-O system</td>
</tr>
<tr>
<td>LDCMO</td>
<td>La-D-Ca-Mn-O system</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>LGCMO</td>
<td>La-Gd-Ca-Mn-O system</td>
</tr>
<tr>
<td>MI</td>
<td>Metal to insulator</td>
</tr>
<tr>
<td>MIT</td>
<td>Metal-insulator transition</td>
</tr>
<tr>
<td>AFM</td>
<td>Antiferromagnetic</td>
</tr>
<tr>
<td>AFI</td>
<td>Antiferromagnetic insulator</td>
</tr>
<tr>
<td>FMI</td>
<td>Ferromagnetic insulator</td>
</tr>
<tr>
<td>PMI</td>
<td>Paramagnetic insulator</td>
</tr>
<tr>
<td><A></td>
<td>Average ionic radius</td>
</tr>
<tr>
<td>t</td>
<td>Tolerance factor</td>
</tr>
<tr>
<td>d_{La-O}</td>
<td>La-O bond distance</td>
</tr>
<tr>
<td>d_{Mn-O}</td>
<td>Mn-O bond distance</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
</tr>
<tr>
<td>H</td>
<td>Applied magnetic field</td>
</tr>
<tr>
<td>M</td>
<td>Magnetization</td>
</tr>
<tr>
<td>K_B</td>
<td>Boltzman constant</td>
</tr>
<tr>
<td>E_a</td>
<td>Activation energy</td>
</tr>
<tr>
<td>a, b, C</td>
<td>Lattice Parameter</td>
</tr>
<tr>
<td>hkl</td>
<td>Miller indices</td>
</tr>
<tr>
<td>d_{hkl}</td>
<td>Distance between atom and selected 2θ</td>
</tr>
<tr>
<td>χ</td>
<td>Susceptibility</td>
</tr>
<tr>
<td>Θ</td>
<td>Paramagnetic Curie point</td>
</tr>
<tr>
<td>f</td>
<td>Frequency</td>
</tr>
<tr>
<td>S</td>
<td>Spin electron</td>
</tr>
<tr>
<td>int</td>
<td>Intrinsic</td>
</tr>
</tbody>
</table>
CHAPTER I

GENERAL INTRODUCTION

Types of Magnetoresistance

Recently it has been discovered that certain types of materials exhibit extreme changes in electrical resistivity when a large magnetic field is applied. This effect, named as magnetoresistance is utilized in many types of sensors, measuring the amount and direction of magnetic fields. During the discovery of magnetoresistance, new effects found grew in strength and were progressively named anisotropic magnetoresistance (AMR), giant magnetoresistance (GMR), and colossal magnetoresistance (CMR), the latter being the main focus of this study (Valentine et al., 2002). The materials that exhibit CMR are manganate perovskites. In these materials the magnetoresistance arises from a difference in carrier scattering rates, depending on the relative orientation of the magnetization in the adjacent layers. The relative change in resistance, is usually defined as:

\[
\frac{\Delta R}{R(0)} = \frac{[R(H) - R(0)]}{R(0)} \tag{1.1}
\]

where \(R(H) \) is the resistance at an applied field, and \(R(0) \) is the resistance at zero field.