

UNIVERSITI PUTRA MALAYSIA

WATER QUALITY STUDIES IN MALACCA RIVER BASIN USING GEOGRAPHIC INFORMATION SYSTEMS (GIS)

MARRYANNA LION

FSAS 2003 37

DEDICATION

To my beloved families, father and mother; Lion Bayuhan and Tineh Tokius, Mr. Dominic Borumbun and Mdm.Lily Gabil, Peter Dominic, Sisters; Esther, Paulina Marny, Marcella Maslainie, Brother; Hillary Mark.

I dedicate this work with great love and appreciation for their kindness, encouragement, and effort.

WATER QUALITY STUDIES IN MALACCA RIVER BASIN USING GEOGRAPHIC INFORMATION SYSTEMS (GIS)

By

MARRYANNA LION

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

July 2003

Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the Degree of Master of Science

A STUDY ON WATER QUALITY VARIATION IN MALACCA RIVER BASIN USING GEOGRAPHICAL INFORMATION SYSTEMS (GIS)

By

MARRYANNA LION

July 2003

Chairman:Professor Mohd. Ibrahim Hj. Mohamed, Ph.D.Faculty:Science and Environmental Studies

Malacca Straits is recognized worldwide due to its importance as the busiest waterway in the world. The environmental profile of the Malacca Straits points to certain stresses in the ecosystem due to pollution load. Pollutants from land-based sources are probably the most pressing environmental problem. Wastes from agricultural, industrial, and domestic source discharge directly into the Straits or indirectly via rivers, which flow into the Straits. As far as land based pollution is concerned, study on river basin is important. The Malacca River basin is of the rivers flowing into the Straits of Malacca.

Geographic Information System (GIS) was used to map the water pollution scenario due to its ability to analyze spatial and temporal data. Beside that, correlation coefficient method was used to determine the relationship and variation between rainfall and water quality parameters. Six parameters selected for this study, namely, Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Ammoniacal Nitrogen, pH, Suspended Solid (SS), and Dissolved Oxygen (DO). The output of this study consists of water quality database, maps, and graphs on the water quality variations. The important of this study is the application of GIS technology in monitoring water quality. Technology plays an important role for effective environmental management.

Previously, the environmental data that stored manually requires a lot of space. This method is not efficient in handling large amount of data because it is also consume a lot of time to retrieve. The GIS was created as a spatial tool, which make the environmental monitoring easier thus changes in environment are monitored and managed properly. With the advent of GIS system, monitoring of water quality can be done more efficiently. This is because, a database could be used to interpolate and produce different result according to its purposes. The GIS function such as a data storage, query and analysis, and presentation are useful to shows the changes pattern of water quality in Malacca River basin from year to year. Based on the previous

research done in Malaysia and other countries, it was proved that GIS has the ability as a tool in water quality monitoring.

The study in Malacca River basin found that the quality of water is better at the upstream compared with the downstream. This was due to the accumulation of land use activities at the middle stream, which increased the pollution burden of the river. Even though it was expected that there is a relationship between water quality parameters and the amount of water received by this basin but the result shows that there is no strong linear correlation between these variables. The observation also shows that a good correlation value was only found in DO. The other parameters did not show the acceptable level of correlation. If we look at the distribution of each parameter, it was found that SS has the higher distribution compared to the others. Ammoniacal Nitrogen was observed higher at the beginning of the observation however its distribution became more consistent for the rest of the observation period. As an overall, the relationships between these variables are inconsistent.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KAJIAN MENGENAI VARIASI KUALITI AIR DI LEMBANGAN SUNGAI MELAKA DENGAN MENGGUNAKAN SISTEM MAKLUMAT GEOGRAFI

Oleh

MARRYANNA LION

Julai 2003

Pengerusi: Profesor Mohd. Ibrahim Hj. Mohamed, Ph.D.

Fakulti: Sains dan Pengajian Alam Sekitar

Selat Melaka terkenal dengan kepentingannya sebagai laluan air yang paling sibuk di dunia. Profail alam sekitar di Selat Melaka menunjukkan bahawa terdapat desakan ekosistem tertentu yang disebabkan oleh luahan pencemaran. Bahan-bahan pencemar daripada daratan adalah berkemungkinan sebagai pendesak utama kepada masalah alam sekitar. Sisa buangan daripada aktiviti pertanian, industri dan domestik dibuang secara langsung ke dalam perairan atau secara tidak langsung melalui sungai-sungai yang mengalir ke perairan Selat Melaka. Memandangkan ini melibatkan punca pencemaran daratan maka kajian ke atas keadaan pencemaran di lembangan sungai adalah penting. Lembangan Sungai Melaka merupakan salah satu sungai yang mengalir ke Selat Melaka.

mengenalpasti perhubungan di antara variabel –variabel yang terlibat. Untuk tujuan tersebut, enam parameter telah dipilih termasuklah permintaan oksigen biokimia (BOD), permintaan oksigen kimia (COD), nitrogen ammonia (AN), pH, bahan terampai (SS), dan oksigen terlarut (DO). Hasil yang dijangkakan daripada kajian ini dipersembahkan dalam pelbagai bentuk termasuklah pengkalan data untuk kualiti air, peta-peta, dan juga graf-graf yang menunjukkan variasi kualiti air sungai. Kepentingan kajian ini adalah dari segi aplikasi teknologi GIS ke atas pemantauan kualiti air sungai kerana teknologi memainkan peranan yang sangat penting terhadap pengurusan alam sekitar yang lebih efektif.

Sebelum ini, kebanyakan data-data alam sekitar disimpan secara manual yang mana memerlukan ruangan yang banyak. Kaedah ini tidak begitu efisien kerana selain daripada memerlukan ruang menyimpan yang banyak, ianya juga memerlukan masa yang panjang untuk mengeluarkan kembali data yang diperlukan untuk tujuan perancangan dan pengurusan. Dengan adanya teknologi GIS ini yang direka khas untuk menguruskan data-data ruangan, maka kerja-kerja perancangan dan pengurusan menjadi lebih mudah dan cepat. Perubahan-perubahan geografi yang terdapat dalam ruangan dapat dikendalikan dengan lebih tepat dan mudah. Dengan adanya sistem GIS ini juga, kerja-kerja pemantauan kualiti air sungai menjadi lebih mudah. Ini kerana satu pengkalan data boleh digunakan untuk menghasilkan keputusan-keputusan yang dikehendaki. Fungsi-fungsi yang terdapat pada perisian GIS seperti penyimpanan data, penganalisisan data, serta persembahan data sangat berguna untuk menunjukkan corak perubahan kualiti air sungai dari setahun ke

lain, telah terbukti bahawa GIS sangat berfaedah sebagai alat dalam membantu pemantauan kualiti air sungai.

Kajian di lembangan Sungai Melaka mendapati bahawa kualiti air lebih baik di kawasan hulu berbanding dengan kawasan hilir. Ini adalah disebabkan oleh penumpuan aktiviti guna tanah yang lebih banyak di bahagian tengah lembangan Sungai Melaka. Ini secara tidak langsung telah menambahkan beban pencemaran sungai. Walaupun diramalkan bahawa terdapat perhubungan di antara parameter-parameter yang terlibat dengan jumlah hujan yang diterima tetapi melalui analisis korelasi, didapati bahawa tidak terdapat perhubungan langsung yang kuat di antara kedua-dua variabel ini. Berdasarkan pemerhatian juga, didapati bahawa korelasi yang baik hanya ditunjukkan oleh DO sahaja. Manakala parameter yang lain tidak menunjukkan tahap korelasi yang boleh diterima pakai. Jika dilihat pada taburan setiap parameter, didapati bahawa SS mempunyai nilai taburan yang lebih tinggi berbanding dengan parameter yang lain. Nitrogen Ammonia (AN) didapati tinggi pada awal pemerhatian tetapi pada tahun-tahun seterusnya taburan adalah lebih konsisten. Secara keseluruhannya, perhubungan di antara variable-variabel tersebut adalah tidak konsisten.

ACKNOWLEDGEMENTS

First and foremost, I would like to single out the contribution of Professor Dr. Mohd. Ibrahim Hj. Mohamed, Director of Malacca Straits Research and Development Centre (MASDEC) and chairman of my supervisory committee, for his persistent inspiration, constant guidance, wise counsel, encouragement, kindness and various logistic support throughout the stages of my study. I highly appreciated him for giving the first hand knowledge about GIS approach in environmental feature which stimulated my desire to explore more about this interesting area of environmental engineering. His command on the subject matter together with his research experiences has been greatly valuable to my study. In spite of his busy schedule, he made enough time available for me to discuss and provide necessary direction in order to progress my study. His enthusiasm and patience has left a feeling of indebtedness, which cannot be fully expressed. I also thank him for the project financial support during my study.

My deep appreciation and sincere gratitude is also extended to Associate Professor Dr. Mohd. Kamil Mohd. Yusoff, Director of Professional Environmental Services and member of the supervisory committee, for his kindly co-operation and thoughtful suggestion to improve my study. I would like to acknowledge his sincere and articulate lectures on theories of water quality and water science that enriches my horizon of knowledge in environmental sciences.

I owe a great deal gratitude and appreciation to Associate Professor Dr. Abdul Rashid Mohd. Shariff, a member or supervisory committee and Head of Department in Department of Agriculture Engineering, Faculty of Engineering, UPM for his supervision and helpful comments to improve my study. I would like to acknowledge his sincere and articulates lecture on GIS.

This research was made possible through the financial support of the Ministry of Science, Technology and Environment, Malaysia (IRPA grant), which is highly appreciated. I would like to acknowledge support from Department of Environment (DOE), Department of Irrigation, and Drainage (DID), Malaysian Meteorological Service Department (MMS), Malaysian Center of Remote Sensing (MACRES), Malacca Local Authority, for various aspects of the project to make it successful.

My special thanks to the Dean, Deputy Deans, and all members of the Faculty of Science and Environmental Studies for their kind assistance during my study. My sincere gratitude is also extended to Associate Professor Dr. Khamis Awang, Former Deputy Dean of the Graduate School for his continuous encouragement. My special thanks are extended to friends and member of Earth Observation Laboratory especially to Dr. Takaya Namba, Dr. Mohd. Shahab Uddin, Mr. Musse Gabobe Hassan, Mr. Jefri Mat Saad, Mr. Najib Ramli, Capt. Hj. Sutarji Hj. Kasmin, Mr. Tan Chun Knee, Mr. Yip Kit Meng, Mr. Kok Fook Seng, Miss Lee Yoke Lee, Miss Rohayu Zainuddin, and not forgetting Miss Norzaharah for their constructive comments and suggestion, kind assistance and co-operation during my study. I am also thankful to my colleagues at MACRES for their sincere assistance on GIS work. They are Miss Nornisha Ishak, Norafidah Hamzah, Madam Sheriza Mohd. Razali,

and Mr. Abdul Basit Ismail. Also to Mr. Jessel Gabil and Mr. Iing Lukman for their sincere comments and advise on statistical work.

I am enormously indebted to Mr. Peter Dominic for not only being my fiancée but his true friendship, persistent assistance and support that made my study a reality. His strong support and fast response whenever I needed his help. He has been sacrifice most of his time to help me come out with my study.

Last but not least, my heartfelt thankfulness to my families, my father Mr. Lion Bayuhan, my mother Madam Tineh Tokius, my father and mother in-law, Mr. Dominic Borumbun and Madam Lily Gabil, Aunties, Uncles, my sibling, Esther, Marny, Maslainie, and Hilary Mark for their sacrifices, devotion and understanding which have always been a source of inspiration and strength throughout my life up to moment.

Most of all, praise be to almighty God. Had not been merciful, I would not have been able to retain my patience and continue until the completion of this study. Thanks be to GOD.

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	111
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVAL.	xii
DECLARATION	xiv
LIST OF TABLES	xviii
LIST OF FIGURES	xix
LIST OF ABBREVIATIONS	xxi

CHAPTER

I	INTE	RODUCTION	1
	1.1	Background	1
	12	Problem Statement	3
	1.3	Significance of Study	6
	1.4	Objectives	7
II	LITE	CRATURE REVIEW	8
	2.1	Water Quality	8
	2.2	Surface Water Quality	9
	2.3	The GIS Model for Water Quality Studies	11
	2.4	Geographic Resources Analysis Support	11
		System (GRASS) Model	
	2.5	Earth Resources Data Analysis System	12
		(ERDAS) Model	
	2.6	ArcInfo and IDRISI Model	12
	2.7	Water Quality Criteria and Standards	13
	2.8	Water Quality Index and River Classification	14
	2.9	Water Quality Criteria and Standard in	16
		Other Countries	
	2.10	Water Quality Parameters	17
		2.10.1 Dissolved Oxygen (DO)	18
		2.10.2 Chemical Oxygen Demand (COD)	18
		2.10.3 pH	19
		2.10.4 Biochemical Oxygen Demand (BOD)	19
		2.10.5 Ammonia Nitrogen (AN)	20
		2.10.6 Suspended Solid (SS)	20
	2.11	Water Quality as a Global Concern	21
	2.12	Water Quality Scenario in Malaysia	22
	2.13	Current Water Quality Situation in Malacca	26
	2.14	Rainfall and Water Quality Linkage	27

2.15	Climatic Effect on the Variation of Water Quality	29
2.16	Geographic Information Systems (GIS)	30
2.17	The Components of GIS	33
2.18	Data Model in GIS	34
2.19	The Development of GIS	35
2.20	Water Quality Monitoring through GIS	36
2.21	Application of GIS in River Basin	38
	Information Management and Water Quality	
	Studies	
2.22	GIS Buffer Zone Approach to Studying	42
	Land Use Impact on River Water Quality	

111	MET	HODOLOGY	44
	3.1	Research Approach	44
	3.2	Description of the Study Area	47
	3.3	Datasets	50
	3.4	Conversion of Spatial Data and Attribute Input	53
	3.5	Database Design	56
	3.6	Rainfall Contour Interpolation	58
	3.7	Spatial Analysis	59
	3.8	Buffering of Water Quality Stations and River	59
	3.9	Rainfall and Pollution Risk Analysis	60
	3.10	Statistical Analysis	64
	3.11	Material and Equipment	65

IV	RESI	ULT AND DISCUSSIONS	66
	4.1	Water Quality Database for Malacca River Basin	66
	4.2	Pollution Mapping for Malacca River Basin	72
	4.3	Water Quality Classification Map	75
		Based on Water Quality Stations	
	4.4	Buffering of Water Quality Sampling Stations	83
	4.5	River Buffering	86
	4.6	Pollution Risk-River Classification Map	87
	4.7	Rainfall Risk-River Classification Map	96
	4.8	Rainfall Contour	103
	4.9	Spatial Distribution of the Water Quality	107
		Parameter	
	4.10	Distribution of Water Pollution in Malacca	113
		River basin	
		4.10.1 Variations in Water Quality Parameters	113
		4.10.2 Variations in Water Quality Index	136
		4.10.3 Seasonal Pattern of Water Quality Parameters	140

V	CON	CLUSION AND RECOMMENDATION	143
	5.1	Conclusion	143
	5.2	Recommendations	145
REFERENCES		147	
BIO	DATA (OF AUTHOR	152

LIST OF TABLES

Table		Page
2.1	River water quality classes and beneficial uses	14
2.2	Interim national river water quality standards for Malaysia	16
2.3	River water quality classified as clean, slightly polluted or very polluted based on activity for 1996	23
2.4	River monitoring 1995-1999	25
3.1	Population distribution in Malacca, 1980-2000	49
3.2	Water quality sampling locations	52
3.3	Data used in this study	52
3.4	Layer types description	54
3.5	Rainfall risk classification	61
3.6	Pollution risk distance classification	62
3.7	Rainfall stations and the total annual rainfall	63
4.1	Land use distribution in the Malacca River basin	68
4.2	The difference between water categories, 1993-1997	76
4.3	Water quality changes based on stations, 1993-1997	82
4.4	Correlation analysis between water quality parameter and rainfall (1993-1997)	117
4.5	Water quality index for Malacca River basin, 1993-1997	139
4.6	Seasonal variation of water quality parameter in 1993	142
4.7	Seasonal variation of water quality parameter in 1994	142
4.8	Seasonal variation of water quality parameter in 1995	142
4.9	Seasonal variation of water quality parameter in 1996	142
4.10	Seasonal variation of water quality parameter in 1997	142

LIST OF FIGURES

Figure		Page
2.1	Logical flow chart of the analytical operations within a GIS framework	34
3.1	The outline of the methodology	46
3.2	The study area	48
3.3	Location of water quality stations in Malacca River basin	51
3.4	Land use map of Malacca River basin	55
3.5	The organization of relational database in this study	58
3.6	The process of buffering in ArcView 3.1	60
3.7	The flow chart of Thiesen analysis in ArcGIS	62
4.1	Database for river in the Malacca River basin	67
4.2	Database of water quality sampling stations in	68
	The Malacca River basin	
4.3	Database of land use types in the Malacca River basin	69
4.4	Database of pollution point in the Malacca River basin	70
4.5	Database of rainfall for the Malacca River basin	71
4.6	GIS based pollution mapping of the Malacca River basin	73
4.7	Land use activities within the Malacca River basin	73
4.8	Proximity of pollutant sources from the river	74
4.9	Water quality based on station classification map for 1993	77
4.10	Water quality based on station classification map for 1994	78
4.11	Water quality based on station classification map for 1995	79
4.12	Water quality based on station classification map for 1996	80
4.13	Water quality based on station classification map for 1997	81
4.14	Buffering of water quality stations at a 2km radius	84
4.15	Buffering of water quality stations at a 3km radius	84
4.16	Buffering of water quality stations at a 5km radius	85
4.17	Buffering of the river side	87
4.18a	Pollution-River usage risk map	90
4.18b	Proximity of the river from pollution point	91
4.19	Pollution-class 1993 risk map	92
4.20	Pollution-class 1994 risk map	93
4.21	Pollution-class 1995 risk map	94

4.00	Dellution close 1006 rich man	95
4.22	Pollution-class 1996 risk map	
4.23	Pollution-class 1997 risk map	96
4.24	Rainfall-class 1993 risk map	98
4.25	Rainfall-class 1994 risk map	99
4.26	Rainfall-class 1995 risk map	100
4.27	Rainfall-class 1996 risk map	101
4.28	Rainfall-class 1997 risk map	102
4.29	Rainfall contour for 1993 (mm/year)	104
4.30	Rainfall contour for 1994 (mm/year)	104
4.31	Rainfall contour for 1995 (mm/year)	105
4.32	Rainfall contour for 1996 (mm/year)	105
4.33	Rainfall contour for 1997 (mm/year)	106
4.34	Distribution of water quality parameters in 1993	. 108
4.35	Distribution of water quality parameters in 1994	109
4.36	Distribution of water quality parameters in 1995	110
4.37	Distribution of water quality parameters in 1996	111
4.38	Distribution of water quality parameters in 1997	112
4.39	Rainfall distribution for 20 month (1993-1997)	116
4.40	The correlation of determination between BOD and rainfall	118
4.41	BOD versus rainfall in 1993	119
4.42	BOD versus rainfall in 1995	120
4.43	BOD versus rainfall in 1997	120
4.44	The correlation of determination between COD and rainfall	122
4.45	COD versus rainfall in 1993	123
4.46	COD versus rainfall in 1995	123
4.47	COD versus rainfall in 1997	124
4.48	The correlation of determination between DO and rainfall	125
4.49	DO versus rainfall in 1993	126
4.50	DO versus rainfall in 1995	126
4.51	DO versus rainfall in 1997	127
4.52	The correlation of determination between AN and rainfall	128
4.53	AN versus rainfall in 1993	129
4.54	AN versus rainfall in 1995	129
4.55	AN versus rainfall in 1997	130
4.56	The correlation of determination between SS and rainfall	131

4.57	SS versus rainfall in 1993	132
4.58	SS versus rainfall in 1995	132
4.59	SS versus rainfall in 1997	133
4.60	The correlation of determination between pH and rainfall	134
4.61	pH versus rainfall in 1993	134
4.62	pH versus rainfall in 1995	135
4.63	pH versus rainfall in 1997	135
4.64	Water quality index for the Malacca river basin, 1993-1997	138

LIST OF ABBREVIATIONS

AGNPS	Agricultural Non-Point Source Pollution
AN	Ammoniacal Nitrogen
ASMA	Alam Sekitar Malaysia Sdn. Bhd.
BOD	Biochemical Oxygen Demand
CHRIS	Chemical Hydrologic Resource Information System
COD	Chemical Oxygen Demand
DANCED	Danish Cooperation for Environmental and Development
DEM	Digital Elevation Model
DID	Department of Irrigation and Drainage
DO	Dissolved Oxygen
DOE	Department of Environmental
EMC	Estimated Mean Concentration
EMC	Environmental Protection Agency
EPIC	
ERDAS	Erosion Productivity Impact Calculator
	Earth Resources Data Analysis System
ESRI	Environmental System Research Institute
GIS	Geographical Information Systems
GPS	Global Positioning System
GRASS	Geographic Resources Analysis Support System
INWQS	Interim National Water Quality Standards
IRIS	Integrated River Information System
LDC's	Less Developed Country
MACRES	Malaysian Centre of Remote Sensing
MMS	Malaysian Meteorological Services
NE	North East
NPS	Non Point Source
NSF	National Sanitary Foundation
NTU	Nephelometric Turbidity Unit
PDI	Prevalence Number of Miles of Stream in the River Being Considered
PH	Percentage of Hydrogen Demand
PM	Peninsular Malaysia
PPM	Particulate Per Meter
RSO	Rectified Skew Orthomorphic
SOM	Straits of Malacca
SS	Suspended Solid
SW	South West
TSS	Total Suspended Solid
WQ	Water Quality
WQI	Water Quality Index

CHAPTER 1

INTRODUCTION

1.1 Background

Water is a vital and precious resource and arguably Malaysia's most important renewable resources. Plants, animals, and fish depend on water of adequate quantity and quality for their survival. Good water is vital for urban supply, agriculture, industry, and recreation. Development has had an impact on our national water resources, changing both quantity and quality. These changes affect the long-term viability of the resource and the aquatic ecosystems. Future generations of Malaysians will rely on these same water resources for their existence. As a developing country, Malaysia is striving towards industrial development especially in the oil and chemical-based industries. This may cause large amounts of oil and chemical compounds discharge into rivers, estuaries and finally into our coastal water.

This research will be carried out as a response to the environmental problems in Malaysia. The Malacca River had been labeled as one of the less productive rivers in Malaysia due to its pollution concentration, which originated from the nearest land use activities (Maheswaran, *et. al.* 1980). This has shown us that our environment has experienced deterioration. Mitigations action must be taken up due to the importance of the environment for not only humans but also other living things.

Aidah (1991) mentioned that in Malacca, water demand is high. It is known that the population in the Malacca state is the second highest in Malaysia after Penang with the highest concentration in Malacca city which has a high level of water consumption. Basically, water supplies in Malacca is managed by the Malacca Water Board (Lembaga Air Melaka), which was establish in 1971. The Malacca River is the most important river as it supplies 80 % of the raw water resources to the state of Malacca (DID Malacca, 2002). According to the report from the Department of Irrigation and Drainage, Malacca, rapid development has resulted in the degradation of water quality. It was found that the water contained bacteria, chemical constituents, heavy metals, and etc. The study conducted by the Department of Environment in co-operation with the Danish Cooperation for Environmental and Development (DANCED) found that the Malacca River had to be categorized as a polluted river. The Federal government had gazetted about RM6.5 billion for the Malacca River Rehabilitation project through the Department of Irrigation and Drainage Malaysia. The government of Denmark had also supported by providing a technology transfer as well as the equipment, which cost about RM 4.0 billion.

According to Pauziah (1983), changes in water quality always associated with land use patterns. Various land uses such as residential, and industrialization contribute several pollutants to surface and ground water via different pathway. In urban areas, industrials and domestic waste has known to contribute to the major rise in Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) concentrations. The local authorities of Malacca have been identifying the major pollutant sources which includes of industrial effluents,

