

UNIVERSITI PUTRA MALAYSIA

STRUCTURAL AND DIELECTRIC PROPERTIES OF SUBSTITUTED STANNATE COMPOUNDS

IFTETAN AHMAD TAHA

FSAS 2003 30

STRUCTURAL AND DIELECTRIC PROPERTIES OF SUBSTITUTED STANNATE COMPOUNDS

IFTETAN AHMAD TAHA

DOCTOR OF PHILOSOPHY

UNIVERSITI PUTRA MALAYSIA

2003

STRUCTURAL AND DIELECTRIC PROPERTIES OF SUBSTITUTED STANNATE COMPOUNDS

By

IFTETAN AHMAD TAHA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

October, 2003

DEDICATION

To My Father with respect and Love I dedicate this work

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

STRUCTURAL AND DIELECTRIC PROPERTIES OF SUBSTITUTED STANNATE COMPOUNDS

By

IFTETAN AHMAD TAHA

October, 2003

Chairman: Professor Abdul Halim Shaari, Ph.D.

Faculty: Science and Environmental Studies

The alkaline-earth stannates having the general chemical formula $MSnO_3$ (M = Ca, Sr and Ba) have been projected as potential electronic ceramics such as thermally stable capacitors, humidity sensor, carbon dioxide sensor. There is no reliable technical information on the effect of substitutional doping on $MSnO_3$ system that appears to exist in the published literature. In view of the information gaps in the reported research, vigorous and systematic investigation has been carried out on two systems; SrSnO₃ and Mg₂SnO₄.

The two systems $Mg_{2-x}M_xSnO_{4\pm\delta}$ where M = Ca and Nb and $Sr_{1-x}N_xSnO_{3\pm\delta}$ where N = Ba, La and Zn, have been thoroughly studied with respect to synthesis, processing and characterisation – physical, microstructural and electrical. Conventional solid state technique has been used in the preparation of the samples. Two sintering temperatures are employed for $Mg_{2-x}M_xSnO_{4\pm\delta}$ system; 1300 °C for 24 h and 1500 °C for 6 h. While for $Sr_{1-x}N_xSnO_{3\pm\delta}$ system the

sintering temperatures are 1300 °C for 24 h and 1400 °C for 12 h. The effect of substitutional doping and sintering temperature on the structural, microstructural and dielectric properties of the two systems have been studied

The results of the X-ray diffraction analysis on the $Sr_{1-x}N_xSnO_{3\pm\delta}$ system revealed that a single-phase solid solution has formed with Ba as substitutional element. The system has low solid solubility when substituted with La and Zn. The results of the XRD analysis on the Mg_{2-x}M_xSnO_{4± δ} system showed that a single phase solid solution has formed with Nb – substituted sample up to x = 0.05. The system has low solid solubility when substituted with Ca.

Scanning electron micrographs of the samples for all the compositions in the $Mg_{2-x}M_xSnO_{4\pm\delta}$ and $Sr_{1-x}N_xSnO_{3\pm\delta}$ systems, in general showed that the grains were spherical in shape and associated with some degree of porosity. In some samples even after sintering at temperature as high as 1500 °C / 6 h, there is still some degree of porosity. For Ca-substituted sample with x = 0.4 sintered at 1500 $^{\circ}C / 6$ h, the shape of the grains has totally changed from spherical to cubic.

A thorough analysis of the measured electrical data in the frequency range of 10^{-2} to 10^6 Hz for Sr_{1-x}N_xSnO_{3+ δ} samples substituted with Ba and La showed that the effect of changing sintering temperature and duration from 1300 °C / 24 h to 1400 °C / 12 h has resulted in a decrease in the relative permittivity and loss tangent. In Nb-substituted Mg_{2-x}M_xSnO_{4± δ} samples with $0 \le x \le 0.1$ increasing sintering temperature to 1500 °C / 24 h has resulted in the increase of the relative permittivity. In general, low capacitance, high resistance (in the order of 10⁹-

iv

 $10^{10}\Omega$) and low dielectric loss were the most observed features of all compositions in the two systems under study.

The equivalent circuit of $Sr_{1-x}Ba_xSnO_3$ and $Sr_{1-x}La_xSnO_{3\pm\delta}$ samples with x = 0, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 samples sintered at 1300 °C / 24 h can be expressed by the combination of parallel network of quasi-dc, dipole, and C_{inf} in series with the electrode resistance (Rs)

v

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia bagi memenuhi keperluan untuk ijazah Doktor Falsafah

STRUKTUR DAN SIFAT DIELEKTRIK BAGI SEBATIEN STANNAT GANTIAN

Oleh

IFTETAN AHMAD TAHA

Oktober 2003

Pengerusi: Profesor Abdul Halim Bin Shaari, Ph.D.

Sains dan Pengajian Alam Sekitar Fakulti :

Stannat-alkalin-bumi yang mempunyai formula kimia am MSnO₃ (M=Ba, La dan Zn) telah diutarakan sebagai seramik elektronik yang berpotensi seperti kapasitor stabil terma, sensor kelembapan, sensor karbon dioksida. Tiada maklumat teknikal yang boleh dipercayai kesan penggantian keatas sistem MSnO₃ yang boleh didapati daripada sorotan ilmiah. Memandangkan terdapat jurang maklumat dalam penyelidikan yang telah dilaporkan, satu kajian sistematik dan mendalam telah dijalankan keatas sistem, SrSnO3 dan Mg2SnO4.

Kedua-dua sistem tersebut iaitu $Mg_{2-x}M_xSnO_{4\pm\delta}$ dengan M=Ca dan Nb, dan Sr₁. _xN_xSnO_{3±δ} dengan N=Ba, La dan Zn, telah dikaji sepenuhnya dari segi sintesis, pemerosesan dan penentuan ciri fizik, mikrostruktur dan elektrik. Teknik keadaan pejejal lazim telah digunakan dalam penyediaan sampel. Dua suhu pensinteran telah digunakan untuk sistem $Mg_{2-x}M_xSnO_{4\pm\delta}$: iaitu 1300 °C selama 24 jam dan 1500 °C untuk selama 6 jam. Sementara untuk sistem Sr_{1-x}N_xSnO_{3±8}, suhu

vi

sintering adalah 1300 °C selama 24 jam dan 1400 °C untuk selama 12 jam. Kesan penggantian pendopan dan suhu sinteran keatas struktur, mikrostruktur dan ciri elektrik sistem tersebut telah dikaji.

Keputusan analisis pecahan sinar-X keatas sistem $Sr_{1-x}N_xSnO_{3\pm\delta}$ menunjukkan satu larutan pepejal fasa tunggal telah terbentuk dengan Ba sebagai unsur gantian. Sistem tersebut mempunyai kelarutan pepejal yang rendah bila digantikan dengan La dan Zn. Keputusan analisis XRD keatas sistem $Mg_{2-x}M_xSnO_{4\pm\delta}$ telah menunjukkan bahawa satu larutan pepejal fasa tunggal terbentuk pada sampel yang digantikan dengan Nb sehingga 0.05 sistem ini mempunyai larutan pepejal yang apabila digantikan dengan Ca.

Mikrograf imbasan elektron keatas sampel untuk semua kandungan dalam sistem $Mg_{2-x}M_xSnO_{4\pm\delta}$ dan $Sr_{1-x}N_xSnO_{3\pm\delta}$, secara umumnya menunjukkan butiran adalah berbentuk sfera dan berkait rapat dengan darjah keporosan. Terdapat iuga sampel yang masih menunjukkan darjah keporosan walaupun disinter pada suhu setinggi $1500 \,^{\circ}\text{C}$ / 6 jam. Untuk sampel gantian Ca dengan x = 0.4 yang disinter pada suhu 1500 °C / 6 jam dari berubah bentuk sfera ke kubus.

Satu analisis yang menyelurah bagi data elektrik yang diukur dalam julat frekuensi 10^{-2} hingga 10^{6} Hz untuk sampel Sr_{1-x}N_xSnO_{3±8} yang digantikan dengan Ba dan La menunjukkan bahawa kesan peningkatan suhu sinteran dari 1300 °C / 24 jam hingga 1400 °C/ 12 jam telah menyebabkan penurunan dalam ketelusan relatif dan kehilangan tangen. Dalam Mg_{2-x}M_xSnO_{4±6} yang digantikan oleh Nb dengan $0 \le x \le 0.1$ persinteran sehingga 1500 °C / 24 jam telah menghasilkan

vii

penambahan ketelusan relatif. Secara umum, kapasitan rendah, kerintangan tinggi (pada peringkat 10^9 - $10^{10} \Omega$) dan kehilangan dielektrik rendah adalah sifat yang paling banyak dicerap bagi semua komposisi di dalam sistem yang dikaji.

Litar setara bagi sistem $Sr_{1-x}Ba_xSnO_3$ dan $Sr_{1-x}La_xSnO_{3\pm\delta}$, dengan x = 0, 0.1, 0.2, 0.4, 0.6, 0.8 dan 1 yang disinter pada 1300 °C/ 24 jam boleh diungkap secara kombinasi rangkaian selari kuasi-dc, dwikutub dan C_{inf} sesiri dengan rintangan elektrod (Rs).

ACKNOWLEDGEMENTS

Firstly, I am very grateful to "ALLAH" s.w.t. for giving me the strength, and patient to complete this research within the specified time.

It is my pleasure to extend my sincere gratitude to, Professor Dr. Abdul Halim Shaari for his continuos supervision, guidance. Also I want to express my acknowledgment to my co-supervisor Associate Professor Dr. Wan Mohd. Daud Wan Yusoff for his assistance and fruitful discussion. I am also pleased to thank my co-supervisor Professor Dr. Lee Chnoong Kheng for her comments, suggestions throughout the research work

I am grateful to all the lecturers in the Physics Department for their kindness. Special thanks are due to Dr. Noorhana Yahya and Dr. Jumiah Hassan, for their assistance, discussion and moral support.

I would like to express my sincere gratitude to my lab mates: Dr. Imad Hamadneh, Ms. Ari Sulistyo Rini, Zohra, Mr. Kabashi, Mr. Mustafa, Mr. Ali, Mr. Ramadan, Mrs. Azizah, Mrs. Halema, Ms. Huda, Mr. Som and also I want to thank all postgraduate students in the Physics Department.

I want to thank Ms. Azilah, Mrs. Faridah, Mr. Ho and all members of Electron Microscopy Unit, UPM for their kind assistance.

My very special thanks go to my family in Iraq, my father Prof. Ahmad Al-Haje Taha from Mosul University, Iraq, my mother for her prayer for me and my kids, my lovely sisters, my brother-in-law, Mr. Radwan for their support from far.

Finally, I want to thank my husband Associate Professor Dr. Waleed A. Thanoon from Faculty of Engineering for his generous support and assistance during my studies. Thanks to my kids Dalia, Kaldoon and Zadoon for their love, understanding and time they missed their mother.

May Allah Bless You All

TABLE OF CONTENTS

	Page
DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGMENT	ix
APPROVAL SHEETS	xi
DECLERATION FORM	xiv
TABLE OF CONTENT	xvii
LIST OF FIGURES	xiv
LIST OF PLATES	xxv
LIST OF ABBREVIATION	xxvi

CHAPTER

.

1	INTRODUCTION Relevance of Electronic Ceramics	1
	Ceramic Insulator and Canacitor Materials	3
	General Introduction of Alkaline – Farth Stannates	4
	Scone of the Present Study	5
	Objectives	6
	Layout of the Thesis	6
		Ū
2	LITERATURE REVIEW	8
	Magnesium Stannate (Mg ₂ SnO ₄) and Related Compounds	8
	MgO- Nb ₂ O ₅ System and Related Compounds	12
	MSnO ₃ and Related Compounds	12
	Strontium Stannate (SrSnO ₃) and Related Compounds	13
	Barium Stannate (BaSnO ₃) and Related Compounds	16
	Calcium Stannate (CaSnO ₃) and Related Compounds	21
	ZnSnO ₃ and Relevance	23
3	THEORY	25
	Introduction	25
	Synthesis Processing	25
	Mixing and Milling	25
	Compacting	26
	Calcination	27
	Sintering	28
	Ceramic Structures	28
	Perovskite Structure	30
	Spinel Structure	31
	Solid Solutions	31
	Dielectric Theory	32
	Dielectric Material	32
	Dielectric Polarization	35
	Electronic Polarization	36
	Ionic Polarisation	36

	Molecular Polarisation	38
	Space Charge Polarisation	38
	Frequency Dependence of Relative Permittivity ε_r	38
	Impedance Spectroscopy	40
	AC conductivity	47
	Effect of DC Conduction	47
	Dielectric Response Model	48
4	PREPARATION AND CHARACTERISATION TECHNIQUES	55
	Preparation Method	55
	Solid State Synthesis	56
	Magnesium Stannate-Substituted Samples $Mg_{2-x}M_xSnO_{4\pm\delta}$	56
	Strontium Stannate-Substituted Samples Sr _{1-x} M _x SnO ₃	57
	Characterization Technique	60
	X-ray Diffraction Technique	60
	Scanning Electron Microscopy	62
	Dielectric Spectroscopy	63
	Sources of Errors	65
	Sol- Gel Synthesis	65
	Chemical Reaction in Sol-Gel Process	66
	Process Mg ₂ SnO ₄ by Sol-Gel	66
	Characterization Technique for Sol – Gel	67
	Infrared Spectroscopy (IR)	67
	Thermal Analysis	67
5	RESULTS AND DISCUSSION	70
	Structural and Microstructural Properties	70
	Magnesium Stannate-Substituted Samples	70
	Structural Analysis	70
	Microstructural Analysis	83
	Strontium Stannate-Substituted samples	91
	Structural Analysis	91
	Microstructural Analysis	99
6	RESULTS AND DISCUSSION	108
	Dielectric Properties	108
	Magnesium Stannate-Substituted Samples	108
	1-Substitution with Ca	109
	Frequency Response of ε ', ε ', C', C'' and tan δ Complex Plane Analysis	109
	Erequency Desponse of AC Conductivity of	120
	2-Substitution with Nb	129
	Frequency Response of ε ', ε '', C', C'' and tan δ	129
	Complex Plane Analysis	141
	Frequency Response of AC Conductivity, σ_{ac}	150
	Strontium Stannate-Substituted Sample	152
	1-Substitution with Ba	152
	Frequency Response of ε ', ε '', C', C'' and tan δ	152
	Complex Plane Analysis	169
	Frequency Response of AC Conductivity, σ_{ac}	180

		2-Substitution with La	182
		Frequency Response of ε ', ε '', C', C'' and tan δ	182
		Complex Plane Analysis	195
		Frequency Response of AC Conductivity, σ_{ac}	202
		3-Substitution with Zn	205
		Frequency Response of ε ', ε '', C', C'' and tan δ	205
		Complex Plane Analysis	211
		Frequency Response of AC Conductivity, σ_{ac}	214
7	Struct	ural Microstructural and Dielectric Properties of MgsSnQ	
	Ргера	red by Sol -Gel Technique.	215
	- · · · ·	·····	
8	CONC	CLUSION AND FUTURE WORK	237
	Concl	usion	237
	1-Sr ₁₋ ,	M _x SnO ₃	238
	2- Mg	$_{2-x}M_{x}SnO_{4\pm\delta}$	239
	Sugge	stions for Future Research	242
REFE	ERENCE	3	244
APPE	ENDIX		252
	Α	Size and Oxidation State of the Ions Involved in This	
		Research	253
	B1	$Mg_{2-x}Ca_xSnO_{4\pm\delta}$ Powders where x = 0.1, 0.2, 0.4, 0.6,	
		0.8, and 1 Calcined at 1500 / 6 h	254
	C1	Standard XRD Pattern for Mg ₂ SnO ₄	255
	C2	Standard XRD Pattern for CaSnO ₃	255
	C3	Standard XRD Pattern for SnO ₂	256
	C4	Standard XRD Pattern for MgNb ₂ O ₆	256
	C5	Standard XRD Pattern for Mg ₄ Nb ₂ O ₉	257
	C 6	Standard XRD Pattern for Mg5Nb4O15	257
	C7	Standard XRD Pattern for SrSnO ₃	258
	C8	Standard XRD Pattern for BaSnO ₃	258
	C9	Standard XRD Pattern for La ₂ Sn ₂ O ₇	259
	C10	Standard XRD Pattern for ZnSnO ₃	259
	D1	EDAX Spectrum and Semi Quantitative analysis of	
		$Mg_{1.4}Ca_{0.6}SnO_{4\pm\delta}$ Sample Sintered at 1300 °C / 24 h	260
	D2	EDAX Spectrum and Semi Quantitative Analysis of	
		$Mg_{1.6}Ca_{0.4}SnO_{4\pm\delta}$ Sample Sintered at 1500 °C / 6 h	261
	D3	EDAX Spectrum and Semi Quantitative Analysis of	
	-	$Mg_1Ca_1SnO_{4\pm\delta}$ Sample Sintered at 1500 °C / 6 h	262
	D4	EDAX Spectrum and Semi Quantitative Analysis of	
	Dr	$Mg_{1.9}Nb_{0.1}SnO_{4\pm\delta}$ Sample Sintered at 1300 °C / 24 h	263
	DS	EDAX Spectrum and Semi Quantitative Analysis of	
	D	$Mg_{1.6}Nb_{0.4}SnO_{4\pm\delta}$ Sample Sintered at 1300 °C / 24 h	264
	D6	EDAX Spectrum and Semi Quantitative Analysis of	0.15
	DC	BashO ₃ Sample Sintered at 1400 °C / 12 h	265
	ע/	EDAX Spectrum and Semi Quantitative Analysis of	
	Da	Sr _{0.9} La _{0.1} SnU ₃ Sample Sintered at 1300 °C / 24 h	266
	D8	EDAX Spectrum and Semi Quantitative Analysis of	

	Sr _{0.8} Zn _{0.2} SnO ₃ Sample Sintered at 1300 °C / 24 h	267
Ε	Dielectric Response Model for Quasi-dc Behavior	268
F	Papers Published and Presented Throughout this Thesis	269

270

,

LIST OF FIGURES

Figure		Page
3.1:	Perovskite Structure (Pumpuch, 1976)	30
3.2:	Spinel Structure (A.R. von Hoppel)	31
3.3:	Polarization figure	34
3.4:	Schematic representation of different mechanisms of polarisation (A.R. Von Hippel, 1954)	37
3.5:	Variation of the total polarisation and dielectric absorption as a function of frequency (Wei, 1999)	39
3.6:	Brickwork model of grain and grain boundary regions in a ceramic placed between metal electrodes (Irvine 1990)	42
3.7:	Sample plots with associated simplified equivalent circuit for each of the four complex planes	45
3.8:	General classification of all types of dielectric responses found in solids. The upper set of diagrams represent the shape of the log χ `(ω)– dotted curves, and log χ ``(ω)- solid curves, The lower set of diagrams represent the corresponding complex plots from (Jonscher, 1983)	46
3.9:	General classification of all types of dielectric responses found in solids. The upper set of diagrams represent the shape of the log χ '(ω)-dotted curves, and log χ ''(ω)-solid curves, The lower set of diagrams represent the corresponding complex plots from (Jonscher, 1983)	52
3.10:	Different types of dielectric dispersion behavior	54
4.1:	Flow chart of the synthesis of $Mg_{2-x}M_xSnO_{4\pm\delta}$ ceramic by solid-state route	58
4.2:	Flow chart of the synthesis of $Sr_{1-x}M_xSnO_3$ ceramic by solid -state route	59
4.3:	Flow chart of the synthesis of $Mg_2SnO_{4\delta}$ by sol-gel technique	69
5.1:	XRD patterens for powders prepared by solid – state route calcined at different temperatures	73
5.2:	XRD patterns of powders of $Mg_{2-x}Ca_xSnO_{4\pm\delta}$ calcined: (A) at 1100 °C for 24 h; (B) at 1300 °C for 24 h	78

5.3:	XRD patterns of powders of $Mg_{2-x}Nb_xSnO_{4\pm\delta}$ where $(0 \le x \le 0.1)$ calcined at 1100 °C for 24 h	80
5.4:	XRD patterns of powders of $Mg_{2-x}Nb_xSnO_{4\pm\delta}$ where $(0 \le x \le 1)$ calcined at: (A) 1100 °C for 24 h; (B) 1300 °C for 24 h	81
5.5:	Microstructural evolution of $Mg_{2-x}Ca_xSnO_{4\pm\delta}$ samples ($0 \le x \le 2$) sintered at 1300 °C for 24 h	85
5.6:	Microstructural evolution of $Mg_{2-x}Ca_xSnO_{4\pm\delta}$ samples ($0.2 \le x \le 1$) sintered at 1500 °C for 6 h	86
5.7:	Microstructural evolution of $Mg_{2-x}Nb_xSnO_{4\pm\delta}$ samples (0.01 $\leq x \leq 0.1$) sintered at 1300 °C for 24 h	88
5.8:	Microstructural evolution of $Mg_{2-x}Nb_xSnO_{4\pm\delta}$ samples where $(0.2 \le x \le 1)$ sintered at 1300 °C for 24 h	89
5.9:	Microstructural evolution of $Mg_{2-x}Nb_xSnO_{4\pm\delta}$ samples ($0 \le x \le 1$) sintered at 1500°C for 6 h	90
5.10:	XRD patterns of Sr _{1-x} Ba _x SnO ₃ powders calcined at 1100 °C for 24 h	93
5.11:	XRD patterns of $Sr_{1-x}La_xSnO_3$ powders calcined at: (A) 1100 °C for 24 h; (B) 1300 °C for 24 h	95
5.12:	XRD patterns of $Sr_{1-x}Zn_xSnO_3$ powders ($0 \le x \le 1$) calcined at 1100 °C for 24 h	98
5.13:	Microstructure evolution of $Sr_{1-x}Ba_xSnO_3$ samples (where $0.1 \le x \le 1$) sintered at 1300 °C for 24 h	100
5.14:	Microstructure evolution of $Sr_{1-x}Ba_xSnO_3$ samples (where $0 \le x \le 1$ sintered at 1400 °C for 12 h	1) 101
5.15:	Microstructural evolution of $Sr_{1-x}La_xSnO_{3\pm\delta}$ samples (where $0.1 \le x \le 1$) sintered at 1300 °C for 24 h	104
5.16:	Microstructure evolution of $Sr_{1-x}La_xSnO_{3\pm\delta}$ samples (where $0.1 \le x \le 1$) sintered at 1400 °C for 12 h	105
5.17:	Microstructure evolution of $Sr_{1-x}Zn_xSnO_3$ samples (where $0.1 \le x \le 1$) sintered at 1300 °C for 24 h	106
5.18:	Microstructure evolution of $Sr_{1-x}Zn_xSnO_3$ samples (where $0.1 \le x \le 1$) sintered at 1400 °C for 12 h	107
6.1:	Variation of relative permittivity ε_r for Mg _{2-x} Ca _x SnO _{4±δ} samples sintered at 1300 °C for 24 h as a function of frequency at 25°C	110

6.2:	Variation of tan δ for Mg _{2-x} Ca _x SnO _{4±δ} samples sintered at 1300 °C for 24 h, (a) at all the frequency range; (b) at high frequency range only	112
6.3:	Frequency response of C', C'' of $Mg_{2-x}Ca_xSnO_{4\pm\delta}$ samples sintered at 1300 °C for 24 h	114
6.4:	Frequency response of ε ', ε '' of Mg _{2-x} Ca _x SnO _{4±δ} samples ($0 \le x \le 2$ sintered at 1300 °C for 24 h	2) 116
6.5:	Impedance and modulus plots for Mg_2SnO_4 samples sintered at 1300 °C for 24 h measurement taken at 25 °C	119
6.6:	Spectroscopic plots for Mg_2SnO_4 samples sintered at 1300 °C for 24 h measurement taken at 25 °C	120
6.7:	Impedance plots for $Mg_{2-x}Ca_xSnO_{4\pm\delta}$ samples (where $0 \le x \le 1$) sintered at 1300 °C for 24 h measurement taken at 25 °C	122
6.8:	Modulus plots for $Mg_{2-x}Ca_xSnO_{4\pm\delta}$ samples (where $0 \le x \le 1$) sintered at 1300 °C for 24 h measurement taken at 25 °	124
6.9:	Frequency response of AC conductivity of: (a) Mg_2SnO_4 ; (b) $Mg_{2-x}Ca_xSnO_{4\pm\delta}$ samples sintered at 1300 °C for 24 measurement taken at 25 °C	127
6.10:	Variation of relative permittivity ε_r for Mg _{2-x} Nb _x SnO _{4±δ} samples (0.01 \le x \le 0.1) sintered at 1300 °C for 24 h as a function of frequency at 25 °C	130
6.11:	Variation of loss tangent (tan δ) for Mg _{2-x} Nb _x SnO _{4±δ} samples (0.01 \leq x \leq 0.1) sintered at 1300 °C for 24 h as a function of frequency at 25 °C.	130
6.12:	Variation of relative permittivity for Mg _{2-x} Nb _x SnO _{4±δ} samples sintered at 1500 °C for 6 h as a function of frequency at 25 °C (a): for $0.01 \le x \le 0.05$; (b) for $0.2 \le x \le 0.8$	132
6.13:	Variation of loss tangent (tan δ) for Mg _{2-x} Nb _x SnO _{4±δ} samples sintered at 1500 °C for 6 h as a function of frequency at 25 °C (a) for 0.01 $\leq x \leq 0.05$; (b) for $0 \leq x \leq 0.8$): 133
6.14:	Variation of relative permittivity ε_r for Mg _{2-x} Nb _x SnO _{4±δ} ($0 \le x \le 0$) samples sintered at 1300 °C for 24 h and 1500 °C for 6 h as a function of Nb concentration at 1 kHz	.05) 134
6.15:	Variations of C', C'' for $Mg_{2-x}Nb_xSnO_{4\pm\delta}$ samples ($0 \le x \le 0.1$) sintered at 1300 °C for 24 h measurement taken at 25 °C	136

6.16:	Variations of ε ', ε '' for Mg _{2-x} Nb _x SnO _{4±δ} samples ($0 \le x \le 0.8$) sintered at 1300 °C for 24 h measurement taken at 25 °C	138
6.17 :	Impedance for $Mg_{2-x}Nb_xSnO_{4\pm\delta}$ samples (0.01 $\leq x \leq$ 0.8) sintered at 1300 °C for 24 h mesurment taken at 25 °C	143
6.18:	Modulus for $Mg_{2-x}Nb_xSnO_{4\pm\delta}$ samples (0.01 $\le x \le 0.8$) sintered at 1300 °C for 24 h mesurment taken at 25 °C	146
6.19:	Impedance plots for $Mg_{2-x}Nb_xSnO_{4\pm\delta}$ (where $0 \le x \le 0.05$) samples sintered at 1500 °C for 6 h measurement taken at 25 °C	148
6.2 0:	Modulus plot for $Mg_{2-x}Nb_xSnO_{4\pm\delta}$ (where $0 \le x \le 0.05$) samples sintered at 1500 °C for 6 h measurement taken at 25 °C	149
6.21:	Frequency response of AC conductivity of $Mg_{2-x}Nb_xSnO_{4\pm\delta}$ samples (where $0 \le x \le 0.1$) sintered at 1300 °C for 24 h mesurmer taken at 25 °C	it 151
6.22	Frequency response of AC conductivity for $Mg_{2-x}Nb_xSnO_{4\pm\delta}$ samples ($0 \le x \le 0.8$) sintered at 1500 °C for 6 h mesurment taken at 25 °C	152
6.23:	Variation of relative permittivity for $Sr_{1-x}Ba_xSnO_3$ samples ($0 \le x \le 1$) sintered at 1300 °C for 24 h as a function of frequency at 25 °C, (a): at all frequencies range; (b) at high frequencies only	154
6.24:	Variation of $tan\delta$ for $Sr_{1-x}Ba_xSnO_3$ samples ($0 \le x \le 1$) sintered at 1300 °C for 24 h as a function of frequency at 25 °C, (a): at all frequencies range; (b) at high frequencies only	155
6.25:	Variation of relative permittivity ε_r for $Sr_{1-x}Ba_xSnO_3$ samples (where $0 \le x \le 1$) sintered at 1400 °C for 12 h as a function of frequency at 25 °C: (a) all frequencies range; (b) at high frequencies only	es 157
6.26:	Variation of $\tan \delta$ for $Sr_{1-x}Ba_xSnO_3$ samples (where $0 \le x \le 1$) sintered at 1400 °C for 12 h as a function of frequency at 25 °C, (a): at all frequencies range; (b) at high frequencies only	158
6.27:	Variation of experimental and theoretical value obtained from equivalent circuit of C', C'' for $Sr_{1-x}Ba_xSnO_3$ samples (where $0 \le x \le 1$) sintered at 1300 °C for 24 h as a function of frequency at 25 °C	159
6.28 :	Equivalent circuit model represents dielectric response for Figure 6.27	161

xxi

6.29:	Frequency response of real and imaginary permittivity (ϵ ', ϵ '') of Sr _{1-x} Ba _x SnO ₃ samples (where $0 \le x \le 1$) sintered at 1300 °C for 24 h	165
6.30:	Frequency response of ε ', ε '' of Sr _{1-x} Ba _x SnO ₃ (where $0 \le x \le 1$) samples sintered at 1400 °C for 12 h	167
6.31:	Impedance plots for $Sr_{1-x}Ba_xSnO_3$ (where $0 \le x \le 1$) samples sintered at 1300 °C for 24 h measurement taken at 25 °C	1 7 0
6.32:	Modulus plots for Sr _{1-x} sintered at 1300 °C for 24 h measurement taken at 25 °C	172
6.33:	Spectroscopy plots for Sr _{1- x} Ba _x SnO ₃ samples sintered at 1300 $^{\circ}$ C for 24 h measurement taken at 25 $^{\circ}$ C	175
6.34:	Impedance plots for $Sr_{1-x}Ba_xSnO_3$ samples (where $0 \le x \le 1$) sintered at 1400 °C for 12 h measurement taken at 25 °C	178
6.35:	Variation of log σ_{ac} for Sr _{1-x} Ba _x SnO ₃ samples (where $0 \le x \le 1$) sintered sintered at 1300 C for 24 h as afunction of frequency at 25 °C	181
6.36:	Variation of log σ_{ac} for Sr _{1-x} Ba _x SnO ₃ samples (where $0 \le x \le 1$) sintered at 1400 °C for 12 h as afunction of frequency at 25 °C	181
6.37:	Variation of relative permittivity for $Sr_{1-x}La_xSnO_3$ samples (where $0 \le x \le 1$) sintered at 1300 °C for 24 h as a function of frequency at 25 °C, at all frequencies range; (b) at high frequencies only.	es 184
6.38:	Variation of loss tangent $(\tan \delta)$ for $Sr_{1-x}La_xSnO_{3\pm\delta}$ (where $0 \le x \le 1$) sintered at 1300 °C for 24 h as a function of frequency at 25 °C, at all frequencies range; (b) at high frequencies only	185
6.39:	Variation of relative permittivity for $Sr_{1-x}La_xSnO_{3\pm\delta}$ samples $(0 \le x \le 1)$ sintered at sintered at 1400 °C for 12 h as a function of frequency at 25 °C	186
6.40:	Variation of tan δ for Sr _{1-x} La _x SnO _{3±δ} samples ($0 \le x \le 1$) sintered at 1400 °C for 12 h as a function of frequency at 25 °C	186
6.41:	Variation of experimental and theoretical value obtained from equivalent circuit of C', C'' for $Sr_{1-x}La_xSnO_{3\pm\delta}$ samples sintered at 1300 °C for 24 h as a function offrequency at 25 °C	189
6.42:	Equivalent circuit model represent dielectric response for Figure 6.41 (a and f)	19 2

6.43:	Frequency response of real and imaginary permittivity (ϵ ', ϵ '') of Sr _{1-x} La _x SnO _{3±δ} samples (where $0.1 \le x \le 1$) sintered at 1300 °C for 24 h	193
6.44:	Impedance plots for $Sr_{1-x}La_xSnO_{3\pm\delta}$ samples (where $0.1 \le x \le 1$) sintered at 1300 °C for 24 h measurement taken at 25 °C	196
6.45:	Modulus plots for $Sr_{1-x}La_xSnO_{3\pm5}$ samples (where $0.1 \le x \le 1$) sintered at 1300 °C for 24 h measurement taken at 25 °C	198
6.46:	Combined spectroscopic plots of M ^{$\$} and Z ^{$\$} for Sr _{1-x} La _x SnO _{3±δ} samples sintered at 1300 °C for 24 h as a function of frequency at 25 °C	199
6.4 7 :	Variation of log σ_{ac} for Sr _{1-x} La _x SnO _{3±δ} samples (where $0.1 \le x \le 1$) sintered at 1300 °C for 24 h as a function of frequency at 25 °C	203
6.48:	Variation of log σ_{ac} for Sr _{1-x} La _x SnO _{3±δ} samples (where $0.1 \le x \le 1$) sintered at 1400 °C for 12 h as a function of frequency at 25 °C	204
6.49:	Variation relative permittivity for $Sr_{1-x}Zn_xSnO_3$ samples (where $0.1 \le x \le 1$) sintered at 1300 °C / 24 h as a function of frequency at 25 °C	207
6.50:	Variation tan δ for Sr _{1-x} Zn _x SnO ₃ samples samples (where $0.1 \le x \le 1$) sintered at 1300 °C for 24 h as a function of frequency at 25 °C: (a) at all frequencies range; (b) at high frequencies only	208
6.51:	Frequency response of real and imaginary permittivity (ϵ ', ϵ '') of Sr _{1-x} Zn _x SnO ₃ samples (where $0.1 \le x \le 1$) sintered at 1300 °C for 24 h	209
6.52	Impedance plots for $Sr_{1-x}Zn_xSnO_3$ samples (where $0.1 \le x \le 1$) samples sintered at 1300 °C for 24 h measurement taken at 25 °C	212
6.53	Variation of log σ_{ac} for Sr _{1-x} Zn _x SnO ₃ samples(where $0.1 \le x \le 1$) sintered at 1300 °C for 24 h as a function of frequency at 25 °C	214
7 .1:	TGA, DTA and DTG curves of the Mg-Sn precursor gel	216
7.2:	Infrared spectra of Mg_2SnO_4 : (a) dried gel, powders calcined at: (b) 300 °C, (c) 600 °C, (d) 800 °C, and (e) 1000 °C	217
7.3:	XRD patterns for powders prepared by sol-gel route calcined at different calcination temperatures	219
7.4:	Diagrammatic representation of the composition of MgO and SnO_2 grains at various stages of calcination	221
7.5:	XRD pattern for samples prepared by solid – state route (SS) and sol gel route (SG) sintered in air at 1200 °C for 24 h	221

