CHARACTERIZATION OF AN ORGANIC SOLVENT-TOLERANT PROTEASE FROM *PSEUDOMONAS AERUGINOSA* STRAIN K

LEE POH GEOK

FSAS 2003 27
CHARACTERIZATION OF AN ORGANIC SOLVENT-TOLERANT PROTEASE FROM PSEUDOMONAS AERUGINOSA STRAIN K

By

LEE POH GEOK

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, In Fulfilment of the Requirement for the degree of Doctor of Philosophy

March 2003
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctoral of Philosophy

CHARACTERIZATION OF AN ORGANIC SOLVENT-TOLERANT PROTEASE FROM PSEUDOMONAS AERUGINOSA STRAIN K

By

LEE POH GEOK

March 2003

Chairman: Professor Abu Bakar Salleh, Ph.D.

Faculty : Science and Environmental Studies

This study involves the isolation and screening of an organic solvent-tolerant producer from eleven Benzene-Toluene-Xylene-Ethylbenzene (BTEX) tolerant bacteria and Polycyclic-Aromatic-Hydrocarbons (PAHs) degraders. The bacteria were initially isolated following qualitative screening on skim milk agar plates and quantitative screening for organic solvent stable protease in liquid media. An organic solvent-tolerant protease producer identified as Pseudomonas aeruginosa strain K was selected for further analysis based on the stability of its protease in 25% (v/v) benzene and toluene.

Maximum protease production by Pseudomonas aeruginosa strain K was achieved after 48 h incubation at pH 7.0 and 37°C. Static condition and 4.0% (v/v) bacterial inoculum gave the optimum enzyme yield. Culture media containing sorbitol as the carbon source; casamino acids as the organic nitrogen source and sodium nitrate the inorganic nitrogen source, gave the highest level of protease production. Corn steep liquor, beef extract and ammonium nitrate on the other hand inhibited protease
activity. However, the addition of metal ions such as K+, Mg2+ and Ca2+ maximized enzyme synthesis.

The organic solvent-tolerant strain K protease was purified to homogeneity by ammonium sulphate precipitation and anion exchange chromatography with 124-fold increase in specific activity and about 40% recovery. The molecular weight of the purified enzyme as revealed by SDS-PAGE electrophoresis is about 51 kilodaltons (kDa). The strain K protease was an alkaline metalloprotease with an optimum pH and temperature of pH 10.0 and 70°C, respectively. The protease was activated by Zn2+ and Sr2+ while Fe3+ inhibited it. Activation effect was also observed when the purified enzyme was exposed to denaturing and reducing agents such as 6M urea, Triton-X-100 and Tween 20 for 1 h exposure to the purified enzyme. After 14 days of incubation, the purified organic solvent-tolerant enzyme was 1.11, 1.82, 1.50, 1.75 and 1.80 times more stable in 1-decanol, isooctane, decane, dodecane and hexadecane, respectively.

The gene coding for the organic solvent-tolerant protease was amplified from Pseudomonas aeruginosa strain K by polymerase chain reaction using consensus primers based on the multiple sequences alignment of alkaline and metalloprotease genes from Pseudomonas species. Nucleotide sequence analysis of the gene revealed an open reading frame containing 1440 bp, which codes for a polypeptide of 479 amino acid residues. The polypeptide composed of a N-terminal propeptide of 7 amino acid residues and a mature protein of 472 amino acid residues. Amino acid sequence comparison revealed that the organic solvent-tolerant protease gene shared high homology with alkaline and metalloprotease sequences from Pseudomonas
aeruginosa and Pseudomonas fluorescens. The recombinant strain K protease was successfully expressed in pGEX-4T-1 expression vector. In the presence of 1.0 mM IPTG, the recombinant strain K protease was released into the periplasm of the Escherichia coli BL21 (DE3) host.
PENCIRIAN GEN STABIL PELARUT ORGANIK DARIPADA
PSEUDOMONAS AERUGINOSA STRAIN K

Oleh

LEE POH GEOK

Mac 2003

Pengerusi: Profesor Abu Bakar Salleh, Ph.D

Fakulti: Sains dan Pengajian Alam Sekitar

Pengajian mengenai penyaringan dan pemencilan bakteria penghasil protease stabil pelarut organik telah dijalankan ke atas sebelas pencilan yang stabil kepada benzena, toluena, xilena dan etilbenzena (BTEX). Bakteria yang berkeupayaan mengdegradasi hidrokarbon polisiklik aromatik telah dipencil berdasar kepada pemencilan kualitatif di atas agar susu (SMA) dan pemencilan kuantitatif kepada protease stabil pelarut organik di dalam media kaldu. Satu pencilan yang menghasilkan protease stabil pelarut organik telah dikenalpasti sebagai *Pseudomonas aeruginosa* strain K. Pencilan tersebut dipilih untuk kajian selanjutnya berdasarkan kepada keupayaan proteasenya yang stabil dalam 25% (I/I) benzena dan toluena.

Penghasilan maksimum protease *Pseudomonas aeruginosa* strain K tercapai pada pH 7.0 dan 37°C selepas 48 jam pengeraman. Keadaan statik dan 4.0% (I/I) inokulum bakteria menghasilkan protease pada tahap yang maksimum. Penghasilan protease tertinggi diperolehi apabila bakteria strain K dikulturkan dalam media yang menggunakan sorbitol sebagai sumber karbon, asid casamino dan sodium nitrat sebagai sumber nitrogen organik dan nitrogen tidak organik. “Corn steep liquor”,

v
ekstrak daging and ammonium nitrat merencat aktiviti protease. Penambahan ion logam seperti K⁺, Mg²⁺ and Ca²⁺ meningkatkan sintesis enzim tersebut.

Protease stabil pelarut organik daripada strain K berjaya ditulenkan hingga homogen melalui pemendakan ammonium sulfate dan kromatografi penukaran anion dengan peningkatan aktiviti spesifik sehingga 124 kali ganda dan pulangan aktiviti sebanyak 40%. Berat molekul enzim yang ditulenken ialah kira-kira 51 kDa ditentukan melalui kaedah SDS-PAGE. Protease strain K adalah protease jenis alkali dan metalo dengan pH dan suhu optimumnya pada pH 10.0 dan 70°C. Ion logam seperti Zn²⁺ and Sr²⁺ mengaktifkan enzim ini manakala ion Fe³⁺ merencatkannya. Tindakan keaktifan protease juga dapat dikesan dengan kehadiran agen denaturasi dan penurun, di mana pendedahan selama 1 jam kepada 6M urea, Triton-X-100 and Tween 20 meningkatkan aktiviti enzim. Selepas pengeraman selama 14 hari dengan pelarut organik, protease yang telah ditulenken didapati lebih stabil sebanyak 1.11, 1.82, 1.50, 1.75 and 1.80 kali ganda untuk 1-decanol, isoctana, decana, dodecana and hexadecana berbanding dengan piawai.

Gen protease stabil pelarut organik daripada Pseudomonas aeruginosa strain K telah digandakan melalui tindakbalas berantai polimerasi dengan menggunakan primer-primer yang berdasarkan jujukan tindihan gen protease alkali dan metalo daripada spesies Pseudomonas. Analisis jujukan menunjukkan rangka bacaan terbuka bersaiz 1440 bp yang mengkodkan polipeptida yang mengandungi 479 residu asid amino. Polipeptida tersebut terdiri daripada 7 asid amino residu propeptida N-terminal dan 472 residu asid amino protein matang. Perbandingan asid amino menunjukkan homologi yang tinggi dengan protease alkali dan metalo daripada spesis
Pseudomonas aeruginosa dan Pseudomonas fluorescens. Protease daripada strain K rekombinan telah berjaya diekspreskan dengan vektor pengekspresan pGEX-4T-1. Kehadiran 1.0 mM IPTG menyebabkan protease strain K rekombinan dirembeskan ke dalam periplasma perumah Escherichia coli BL21 (DE3).
ACKNOWLEDGEMENTS

No written words to elaborate or express how privileged, grateful and honour, I am to be able to complete and write my thesis. This “mission impossible” will only be possible and come true by the power and assistance of the all mighty God. To my dearest mother and father, thank you for bringing me up to be who I am today. My success symbolizes and reflects on the undivided support and love from both of you.

My heartiest gratitude goes to my supervisors: Assoc. Prof. Dr. Che Nyonya Abdul Razak and Prof. Dr. Abu Bakar Salleh. I am truly thankful to Dr. Che Nyonya for giving me the opportunity to study on this interesting and advent project. My appreciation also goes to Prof. Dr. Abu Bakar Salleh for his willingness to help, listen and assist in every way, in the midst of his heavy responsibilities and duties. Above all, thank you for the advice, guidance, ideas, criticism and encouragement throughout the project. Not forgetting my supervisory committee members: Prof. Dr. Mahiran Basri and Assoc. Prof. Dr. Raja Noor Zaliha Abdul Rahman and Dr. Basyaruddin for their constructive comments, constant support and invaluable guidance. In taking this text from the raw manuscript stage to the final ready thesis stage, I have received tremendous assistance from the meticulous checking of the text to numerous suggestions for modifications and special learning aids from all of you.

I would like to dedicate my appreciation to Assoc. Prof. Dr. Tan Wen Siang, Prof. Dr Khatijah Yusoff and my dearest friends. I am grateful to Dr. Tan Wen Siang for providing me with wealth of comprehensive information, invaluable and
insightful contributions to the last chapter. Especially to five of the best and brightest friends: Ong Swee Tin, Kho Chiew Ling, Dr. Lau Wei Hong, Dr. Majid, Dr. Mao, Brother Laith and Leow. Thanks for your unending patience, good humour and support during the seemingly unending process of getting this research finished! Special recognition is addressed to all my Bacteriology lab mates and friends in Virology Lab, thank you for your friendship. I am also indebted to all the staff in Department of Biochemistry and Microbiology.
I certify that an Examination Committee met on 20th March 2003 to conduct the final examination of Lee Poh Geok on her Doctor of Philosophy thesis entitled “Characterization of an Organic Solvent-tolerant Protease from Pseudomonas aeruginosa strain K” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

KHATIJAH YUSOFF, Ph.D.
Professor,
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Chairperson)

ABU BAKAR SALLEH, Ph.D.
Professor,
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

RAJA NOOR ZALIHA ABDUL RAHMAN, Ph.D.
Associate Professor,
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

MAHIRAN BASRI, Ph.D.
Professor,
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

MOHD. AZIB BIN SALLEH
Professor,
Postgraduate Studies and Research Support Division
Universiti Sarawak Malaysia
(Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
University Putra Malaysia

Date: 9 JUN 2003
This thesis submitted to the Senate of the Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as followed:

ABU BAKAR SALLEH, Ph.D.
Professor,
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

RAJA NOOR ZALIHA ABDUL RAHMAN, Ph.D.
Associate Professor,
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

MAHIRAN BASRI, Ph.D.
Professor,
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

AINI IDERIS, Ph.D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 11 JUL 2003
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

LEE POH GEOK

Date: 9 June 2003

xii
TABLE OF CONTENTS

ABSTRACT II
ABSTRAK V
ACKNOWLEDGEMENTS VIII
APPROVAL X
DECLARATION XII
LIST OF TABLES XVIII
LIST OF FIGURES XIX
LIST OF ABBREVIATIONS XXIII

CHAPTER

1. INTRODUCTION 1
 1.1 Objectives of the Project 5

2. LITERATURE REVIEW 6
 2.1 Proteases 6
 2.1.1 Definition of Proteases 6
 2.1.2 Sources of Proteases 6
 2.1.2.1 Animal Proteases 7
 2.1.2.2 Plant Proteases 8
 2.1.2.3 Microbial Proteases 9
 2.4 Classification of Proteases 10
 2.5 Functional Properties of Proteases 11
 2.6 Organic Solvent-tolerant Microorganisms 12
 2.7 Organic Solvent-tolerant Proteolytic Enzymes 13
 2.8 Influence of Organic Solvents on Protease Activity 14
 2.9 Effect of Cultivation Conditions on Protease Production 18
 2.10 Effect of Physical Factors on Protease Production 19
 2.10.1 Effect of pH on Protease Activity 19
 2.10.2 Effect of Agitation Rates on Protease Activity 20
 2.10.3 Effect of Temperatures on Protease Activity 21
 2.11 Effect of Nutritional Conditions on Protease Production 23
 2.11.1 Effect of Carbon Sources on Protease Production 24
 2.11.2 Effect of Nitrogen Sources on Protease Production 25
 2.11.2.1 Effect of Organic Nitrogen Sources on Protease Production 25
 2.11.2.2 Effect of Inorganic Nitrogen Sources on Protease Production 27

xiii
2.11.2.3 Effect of Amino Acids on Protease Production 27
2.11.3 Effect of Metal Ions on Protease Production 28

2.12 Purification of Proteases 29
2.12.1 Concentration of Enzymes 29
2.12.2 Chromatographic Separation of Enzymes 31
2.12.3 Purity Determination of Proteins 36

2.13 Properties of Purified Proteases 36

2.14 Cloning, Sequencing and Expression of Organic Solvent-tolerant Protease Gene 42
2.14.1 Protein Engineering and Molecular Technologies 42
2.14.2 Genetic Engineering of Microbial Proteases 44

3. MATERIALS AND METHODS 48
3.1 Materials 48
3.2 General Methods 53
3.3 Bacterial Sources 53
3.4 Isolation and Screening of Proteolytic Microorganisms 53
3.5 Selection of Organic Solvent-tolerant Microorganisms 54
3.6 Identification of Microorganism 54
3.7 Assay of Protease Activity 54
3.7.1 Tyrosine Standard Curve 56
3.7.2 Preparation of Casein 56
3.7.3 Determination of Tyrosine Standard Curve 57
3.8 Preparation of Inoculum 58
3.9 Preparation of Stock Culture 58
3.10 Effect of Media on Protease Production 58
3.11 Growth Curve and Protease Production of *Pseudomonas aeruginosa* strain K 60
3.12 Physical Factors Affecting the Protease Production by *Pseudomonas aeruginosa* strain K 60
3.12.1 Effect of Temperatures on Protease Production 61
3.12.2 Effect of Inoculum Sizes on Protease Production 61
3.12.3 Effect of Agitation Rates on Protease Production 61
3.12.4 Effect of pH on Protease Production 61
3.13 Nutritional Factors Affecting the Protease Production by *Pseudomonas aeruginosa* strain K 62
3.13.1 Effect of Carbon Sources on Protease Production 62
3.13.2 Effect of Nitrogen Sources on Protease Production 63
3.13.2.1 Effect of Organic Nitrogen Sources on Protease Production 63
3.13.2.2 Effect of Inorganic Nitrogen Sources on Protease Production 63
Protease Production

3.13.2.3 Effect of Additional Inorganic Nitrogen Sources on Protease Production

3.13.2.4 Effect of Amino Acids on Protease Production

3.13.2.5 Effect of Additional Amino Acids on Protease Production

3.14 Effect of Metal Ions on Protease Production

3.15 Effect of Ca^{2+} Concentrations Protease Production

3.16 Effect of Organic Solvents on the Stability of Protease

3.18 Growth Curve and Protease Production of Pseudomonas aeruginosa strain K in Optimized Growth Medium

3.19 Purification of Organic Solvent-tolerant Protease

3.19.1 Ammonium Sulphate Precipitation

3.19.2 Anion-Exchange Chromatography

3.19.3 Protein Determination

3.20 Characterization of Organic Solvent-tolerant Protease

3.20.1 Determination of Molecular Mass

3.20.2 Detection of Protein and Proteolytic Activity

3.20.3 Effect of pH on Protease Activity and Stability

3.20.4 Effect of Temperatures on Protease Activity

3.20.5 Effect of Temperatures on Protease Stability

3.20.6 Effect of Exposure Time at 37°C and 50°C on Protease Stability

3.20.7 Effect of Metal Ions on Protease Activity

3.20.8 Effect of Protease Inhibitors on Protease Activity

3.20.9 Effect of Denaturing and Reducing Agents on Protease Activity

3.20.10 Organic Solvents Stability of strain K protease

3.20.11 Substrate Specificity of strain K protease

3.21 Cloning and Sequencing of Organic Solvent-tolerant Protease Gene

3.21.1 Genomic DNA Extraction

3.21.2 Quantification of Genomic DNA

3.22 Amplification of Organic Solvent-tolerant Protease Gene by Polymerase Chain Reaction (PCR)

3.23 Purification of the Amplified PCR Product

3.25 Transformation 79
3.26 Plasmid Preparation 80
3.27 DNA Sequencing 80
3.28 Construction of Organic Solvent-tolerant Protease Plasmid 81
3.29 Expression of Recombinant Organic Solvent-tolerant Protein 82
3.30 Preparation of Culture Supernatant and Cell Extract 83
3.31 Detection of Recombinant Organic Solvent-tolerant Protein by SDS-PAGE and Western Blot 83

4. RESULTS AND DISCUSSION 85
4.1 Isolation and Screening of Proteolytic Microorganisms 85
4.2 Identification of Bacteria 89
4.3 Effect of Media on Protease Production 93
4.4 Growth Curve and Protease Production of Pseudomonas aeruginosa strain K 96
4.5 Effect of Physical Factors Affecting Growth and Protease Production of Pseudomonas aeruginosa strain K 98
4.5.1 Effect of Temperatures on Protease Production 98
4.5.2 Effect of Inoculum Sizes on Protease Production 100
4.5.3 Effect of Agitation Rates on Protease Production 103
4.5.4 Effect of pH on Protease Production 106
4.6 Enzyme Optimization in the Production Media 109
4.7 Nutritional Factors Affecting Growth and Protease Production of Pseudomonas aeruginosa strain K 110
4.7.1 Effect of Carbon Sources on Protease Production 110
4.7.2 Effect of Nitrogen Sources on Protease Production 115
4.7.2.1 Effect of Organic Nitrogen Sources on Protease Production 115
4.7.2.2 Effect of Inorganic Nitrogen Sources on Protease Production 120
4.7.2.3 Effect of Additional Inorganic Nitrogen Sources on Protease Production 124
4.7.2.4 Effect of Amino Acids on Protease Production 127
4.7.2.5 Effect of Additional Amino Acids on Protease Production 131
4.7.3 Effect of Metal Ions on Protease Production 134
4.7.4 Effect of Ca²⁺ Concentrations on Protease Production 137
4.9 Growth Curve and Protease Production of Pseudomonas aeruginosa strain K in Optimized Growth Medium 146

xvi
4.10 Purification of Organic Solvent Protease
 4.10.1 Ammonium Sulphate Precipitation
 4.10.2 Anion-Exchange Chromatography
4.11 Characterization of Protease
 4.11.1 Determination of Molecular Mass
 4.11.2 Detection of Protein and Proteolytic Activity
 4.11.3 Effect of pH on Protease Activity and Stability
 4.11.4 Effect of Temperatures on Protease Activity
 4.11.5 Effect of Temperatures on Protease Stability
 4.11.6 Effect of Metal Ions on Protease Activity
 4.11.7 Effect of Protease Inhibitors on Protease Activity
 4.11.8 Effect of Denaturing and Reducing Agents on Protease Activity
 4.11.9 Effect of Organic Solvents on the Stability of the Purified Protease
 4.11.10 Substrate Specificity of strain K protease
4.13 Genomic DNA Extraction
4.14 Amplification of Organic Solvent-tolerant Protease Gene by Polymerase Chain Reaction (PCR)
4.16 Analysis of the Partial Nucleotide Sequence of the Organic Solvent-tolerant Protease Gene
4.17 Analysis of the Nucleotide Sequence of the Organic Solvent Tolerant Protease Gene
4.18 Analysis of the Deduced Amino Acid Sequence of the Organic Solvent-tolerant Protease Gene
4.19 Expression of the strain K Protease Gene in *Escherichia coli*
4.20 Detection of Recombinant Organic Solvent-tolerant Protein by SDS-PAGE and Western Blotting

5. CONCLUSION AND RECOMMENDATIONS
 5.1 Conclusion
 5.2 Recommendations

REFERENCES

APPENDICES

BIODATA OF THE AUTHOR
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Log $P_{O/w}$ Value of Common Solvents</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>Some Properties of Purified Microbial Proteases</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>Preparation of Tyrosine Standard Curve</td>
<td>57</td>
</tr>
<tr>
<td>4</td>
<td>Pseudomonas aeruginosa and Pseudomonas fluorescens Alkaline Proteases (apr), Metalloproteases and Alkaline Metalloproteinase Precursors Accession Numbers Extracted from the NCBI Database</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>Oligonucleotide Used as Primers for Specific Amplification of Genes Encoding for Organic Solvent-tolerant Protease Gene Fragments</td>
<td>77</td>
</tr>
<tr>
<td>6</td>
<td>Characteristics of Pseudomonas aeruginosa strain K</td>
<td>92</td>
</tr>
<tr>
<td>7</td>
<td>Effect of Temperatures on the Growth and Protease Production of Pseudomonas aeruginosa strain K</td>
<td>99</td>
</tr>
<tr>
<td>8</td>
<td>Effect of the Best Carbon and Organic Nitrogen Sources on Protease Production</td>
<td>120</td>
</tr>
<tr>
<td>9</td>
<td>General Effects of Organic Solvents on Biocatalysis</td>
<td>141</td>
</tr>
<tr>
<td>10</td>
<td>Effect of Organic Solvents on the Stability of Protease</td>
<td>142</td>
</tr>
<tr>
<td>11</td>
<td>Ammonium Sulphate Fractionation of Crude Enzyme</td>
<td>151</td>
</tr>
<tr>
<td>12</td>
<td>Purification Table of Pseudomonas aeruginosa strain K</td>
<td>153</td>
</tr>
<tr>
<td>13</td>
<td>Organic Solvent Stability of the Pools of Fractions</td>
<td>153</td>
</tr>
<tr>
<td>14</td>
<td>Organic Solvent Stability of the Purified strain K Protease in Organic Solvents</td>
<td>182</td>
</tr>
<tr>
<td>15</td>
<td>Spectrophotometric Assay of the Extracted Genomic DNA</td>
<td>187</td>
</tr>
<tr>
<td>16</td>
<td>Growth of Recombinant Bacteria after Induction by 1.0 mM IPTG</td>
<td>214</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Schematic Representation of Enzyme Deposited on a Solid Support Material and Used in an Organic Solvent</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>Procedure for Assay of Protease Activity</td>
<td>55</td>
</tr>
<tr>
<td>3</td>
<td>Experimental Procedure of Cloning of the Alkaline Protease strain K</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>Cloning and Sequencing Strategy of the Cloned Fragments by TOPO TA 2.1 Vector. The arrows represent the direction of the Sequencing Runs.</td>
<td>81</td>
</tr>
<tr>
<td>5</td>
<td>Zones of Lysis on SMA Plate</td>
<td>87</td>
</tr>
<tr>
<td>6</td>
<td>Selection of Organic Solvent-tolerant Microorganisms</td>
<td>88</td>
</tr>
<tr>
<td>7</td>
<td>Cellular Morphology of Pseudomonas aeruginosa strain K on a Nutrient Agar Plate</td>
<td>90</td>
</tr>
<tr>
<td>8</td>
<td>Gram Staining of Pseudomonas aeruginosa strain K</td>
<td>91</td>
</tr>
<tr>
<td>9</td>
<td>Effect of Media on Protease Production</td>
<td>94</td>
</tr>
<tr>
<td>10</td>
<td>Effect of Media on Bacterial Growth</td>
<td>95</td>
</tr>
<tr>
<td>11</td>
<td>Growth Curve and Protease Production of Pseudomonas aeruginosa strain K</td>
<td>97</td>
</tr>
<tr>
<td>12</td>
<td>Effect of Inoculum Sizes on Protease Production</td>
<td>101</td>
</tr>
<tr>
<td>13</td>
<td>Effect of Inoculum Sizes on Bacterial Growth</td>
<td>102</td>
</tr>
<tr>
<td>14</td>
<td>Effect of Agitation Rates on Protease Production</td>
<td>104</td>
</tr>
<tr>
<td>15</td>
<td>Effect of Agitation Rates on Bacterial Growth</td>
<td>105</td>
</tr>
<tr>
<td>16</td>
<td>Effect of pH on Protease Production</td>
<td>107</td>
</tr>
<tr>
<td>17</td>
<td>Effect of pH on Bacterial Growth</td>
<td>108</td>
</tr>
<tr>
<td>18</td>
<td>Effect of Carbon Sources on Protease Production</td>
<td>111</td>
</tr>
<tr>
<td>19</td>
<td>Effect of Carbon Sources on Bacterial Growth</td>
<td>112</td>
</tr>
<tr>
<td>20</td>
<td>Effect of Organic Nitrogen Sources on Protease Production</td>
<td>116</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>21</td>
<td>Effect of Organic Nitrogen Sources on Bacterial Growth</td>
<td>117</td>
</tr>
<tr>
<td>22</td>
<td>Effect of Inorganic Nitrogen Sources on Protease Production</td>
<td>122</td>
</tr>
<tr>
<td>23</td>
<td>Effect of Inorganic Nitrogen Sources on Bacterial Growth</td>
<td>123</td>
</tr>
<tr>
<td>24</td>
<td>Effect of Additional Inorganic Nitrogen Sources on Protease Production</td>
<td>125</td>
</tr>
<tr>
<td>25</td>
<td>Effect of Additional Inorganic Nitrogen Sources on Bacterial Growth</td>
<td>126</td>
</tr>
<tr>
<td>26</td>
<td>Effect of Amino Acids on Protease Production</td>
<td>128</td>
</tr>
<tr>
<td>27</td>
<td>Effect of Amino Acids on Bacterial Growth</td>
<td>129</td>
</tr>
<tr>
<td>28</td>
<td>Effect of Additional Amino Acids on Protease Production</td>
<td>132</td>
</tr>
<tr>
<td>29</td>
<td>Effect of Additional Amino Acids on Bacterial Growth</td>
<td>133</td>
</tr>
<tr>
<td>30</td>
<td>Effect of Metal Ions on Protease Production</td>
<td>135</td>
</tr>
<tr>
<td>31</td>
<td>Effect of Metal Ions on Bacterial Growth</td>
<td>136</td>
</tr>
<tr>
<td>32</td>
<td>Effect of Ca(^{2+}) Concentrations on Protease Production</td>
<td>138</td>
</tr>
<tr>
<td>33</td>
<td>Effect of Ca(^{2+}) Concentrations on Bacterial Growth</td>
<td>139</td>
</tr>
<tr>
<td>34</td>
<td>Effect of Different Percentages of Organic Solvents on the Stability of Protease</td>
<td>145</td>
</tr>
<tr>
<td>35</td>
<td>Growth Curve and Protease Production of Pseudomonas aeruginosa strain K in Optimized Growth Medium</td>
<td>147</td>
</tr>
<tr>
<td>36</td>
<td>Elution Profile of the Protease on DEAE-Sephacel Column</td>
<td>154</td>
</tr>
<tr>
<td>37</td>
<td>SDS-PAGE of Purified Protease Produced by Pseudomonas aeruginosa strain K</td>
<td>157</td>
</tr>
<tr>
<td>38</td>
<td>Electrophoresis of strain K Protease in 10% Polyacrylamide Gel Under Non-Denaturing Conditions</td>
<td>158</td>
</tr>
<tr>
<td>39</td>
<td>Effect of pH on Protease Activity</td>
<td>160</td>
</tr>
<tr>
<td>40</td>
<td>Effect of pH on Protease Stability</td>
<td>162</td>
</tr>
<tr>
<td>41</td>
<td>Effect of Temperatures on Protease Activity</td>
<td>164</td>
</tr>
<tr>
<td>42</td>
<td>Effect of Temperatures on Protease Stability</td>
<td>166</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>43</td>
<td>Effect of Temperature on Protease Stability at 50°C</td>
<td>168</td>
</tr>
<tr>
<td>44</td>
<td>Effect of Temperature on Protease Stability at 37°C</td>
<td>169</td>
</tr>
<tr>
<td>45</td>
<td>Effect of Metal Ions on Protease Activity</td>
<td>173</td>
</tr>
<tr>
<td>46</td>
<td>Effect of Protease Inhibitors on Protease Activity</td>
<td>176</td>
</tr>
<tr>
<td>47</td>
<td>Effect of Denaturing and Reducing Agents on Protease Activity</td>
<td>178</td>
</tr>
<tr>
<td>48</td>
<td>Organic Solvent Stability of the Purified Protease</td>
<td>180</td>
</tr>
<tr>
<td>49</td>
<td>Substrate Specificity of strain K protease</td>
<td>184</td>
</tr>
<tr>
<td>50</td>
<td>Gel Electrophoresis of Genomic DNA from Pseudomonas aeruginosa strain K</td>
<td>188</td>
</tr>
<tr>
<td>51</td>
<td>Gel Electrophoresis of PCR Products Amplified by using Primers For F1 and Rev R1, For F2 and Rev R1, and For F1 and Rev R2, respectively.</td>
<td>192</td>
</tr>
<tr>
<td>52</td>
<td>Gel Electrophoresis of PCR Products Amplified by using Primers For F0 and Rev R1228, For F1 and Rev R2, For F2 and Rev R1228, For F0 and Rev R2, F2 and Rev R1417, respectively.</td>
<td>194</td>
</tr>
<tr>
<td>53</td>
<td>Gel Electrophoresis of 410 bp PCR Product Amplified by using For KI and Rev KJ</td>
<td>195</td>
</tr>
<tr>
<td>54</td>
<td>Gel Electrophoresis of 358 bp PCR Product Amplified by using For KK and Rev KO</td>
<td>196</td>
</tr>
<tr>
<td>55</td>
<td>Gel Electrophoresis of 1440 bp PCR Product Amplified by using For K and Rev K</td>
<td>197</td>
</tr>
<tr>
<td>56</td>
<td>Nucleotide and Deduced Amino Acid Sequences of the Organic Solvent- tolerant strain K protease</td>
<td>200</td>
</tr>
<tr>
<td>57</td>
<td>Multiple Sequence Alignment of the Organic Solvent-tolerant Protease with Alkaline or Metalloproteases from Several Bacteria Species</td>
<td>205</td>
</tr>
<tr>
<td>58</td>
<td>Schematic Representation of Pseudomonas aeruginosa Alkaline Protease</td>
<td>207</td>
</tr>
<tr>
<td>59</td>
<td>Hydropathy Profile of the strain K Protease</td>
<td>209</td>
</tr>
<tr>
<td>60</td>
<td>Expression of Organic Solvent-tolerant Protease by pGEX-4T-1/KE6</td>
<td>213</td>
</tr>
<tr>
<td>61</td>
<td>SDS-PAGE Analysis of the GST Fusion Proteins after Induction by 1.0 mM IPTG</td>
<td>217</td>
</tr>
</tbody>
</table>
Western Blot Hybridization of the GST Fusion Proteins after Induction by 1.0 mM IPTG
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Adenine base nucleotide</td>
</tr>
<tr>
<td>AP</td>
<td>Alkaline Buffer</td>
</tr>
<tr>
<td>Apr</td>
<td>Alkaline protease</td>
</tr>
<tr>
<td>APS</td>
<td>Ammonium Persulphate</td>
</tr>
<tr>
<td>BCIP</td>
<td>Bromochloroindolyl phosphate</td>
</tr>
<tr>
<td>BHI</td>
<td>Brain Heart Infusion</td>
</tr>
<tr>
<td>BTEX</td>
<td>Benzene-Toluene-Xylene-Ethylbenzene</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>C</td>
<td>Cytosine base nucleotide</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>3,4-DCI</td>
<td>3,4-dichloroisocoumarin</td>
</tr>
<tr>
<td>DFP</td>
<td>Diisopropylflouro phosphate</td>
</tr>
<tr>
<td>dH₂O</td>
<td>Distilled water</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTPs</td>
<td>Deoxynucleotide triphosphates</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>E.64</td>
<td>L-3-carboxytrans-2, 3-epoxypropyl-leucylamido (4-guanidine) butane</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic Acid</td>
</tr>
<tr>
<td>FPLC</td>
<td>Fast Protein Liquid Chromatography</td>
</tr>
<tr>
<td>G</td>
<td>Guanine base nucleotide</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
</tbody>
</table>
g/L Gram per litre
GST Glutathione-S-Transferase
GTE Glucose-Tris-HCl-EDTA
h Hour
HPLC High Performance Liquid Chromatography
IAA Iodoacetic acid
IPTG Isopropyl β-D Thiogalactoside
kDa Kilodaltons
kbp Kilobase pairs
L Litre
M Molar
mA Milliampere
mg Milligram
mL Millilitre
mM Millimolar
min Minute
NBT Nitroblue tetrazolium salts
nm Nanometer
ORF Open reading frame
PAGE Polyacrylamide gel electrophoresis
PAHs Polycyclic-Aromatic-Hydrocarbons
PCMB p-chloromercuribenzoate
PCR Polymerase Chain Reaction
PMSF Phenylmethylsulfonyl fluoride
SDS Sodium dodecyl sulphate