UNIVERSITI PUTRA MALAYSIA

EFFICIENCY MEASUREMENT OF MALAYSIA'S MARITIME ENFORCEMENT AGENCIES USING DATA ENVELOPMENT ANALYSIS

SUTARJI BIN HAJI KASMIN

FSAS 2003 22
EFFICIENCY MEASUREMENT OF MALAYSIA'S MARITIME ENFORCEMENT AGENCIES USING DATA ENVELOPMENT ANALYSIS

By

SUTARJI BIN HAJI KASMIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements of the Degree of Doctor of Philosophy

2003
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements of the degree of Doctor of Philosophy

EFFICIENCY MEASUREMENT OF MALAYSIA’S MARITIME ENFORCEMENT AGENCIES USING DATA ENVELOPMENT ANALYSIS

By

SUTARJI BIN HAJI KASMIN

February 2003

Chairman : Professor Mohd Ibrahim bin Hj Mohamed, Ph.D.
Faculty : Science and Environmental Studies

The study is concerned with measuring the degree or amount of efficiency of Malaysia’s maritime enforcement agencies in pursuing their objectives. The ideal approach in determining efficiency in non-profit organization is one which will deal with multiple inputs and outputs simultaneously. This study therefore, attempts to broaden the scope of evaluation for the efficiency of non-profit organization in that it takes account all outputs as well as inputs that are required and desirable for effectiveness and allows for simultaneous interaction in their measurement and evaluation.

The study addressed the problem of four maritime enforcement agencies that are managed sectorally and functioning independently of one another. Under this system, each agency is established to enforce law and regulations related to its establishment, develops its own organization, manpower and training structures, acquire facilities and assets to meet its own requirement, operate independent budget and financial system, and established its own working culture independent of other organisation. This system is inherent with many weaknesses such as duplication of responsibilities, lack of
coordination among enforcement agencies and lack of focus on the economic use of assets. Hence, these agencies are believed to be inefficient to the extent that their operational effectiveness is also affected.

The methodology to measure relative efficiency is the use of Data Envelopment Analysis (DEA). DEA is a technique for comparing efficiencies between units having multiple inputs and outputs. In other words, DEA is an optimisation method of mathematical programming to generalise the single-output/single input efficiency measure to the multiple outputs/multiple inputs case by constructing an efficiency ratio of a single "virtual" output to single "virtual" input. The relative efficiency of each unit is calculated by forming the ratio of a weighted sum of outputs to the weighted sum of inputs.

The study involves 22 units which comprised two units of the Royal Malaysian Navy, five units of the Marine Police, nine units of the Department of Fisheries and six units of the Royal Customs and Excise Department. Of the 22 units, 14 are located in the Peninsular Malaysia and the other eight are located in Labuan, Sabah and Sarawak. However, due to insufficient data, five units, namely one unit each of the Marine Police and the Department of Fisheries, and three units of the Royal Customs and Excise Department are excluded.

The study tended to rebut the earlier belief that maritime enforcement agencies are inefficient under sectoral management. Of the 17 units being studied, 11 units or 64.7 percent are found efficient and only six units or 35.3 percent are found inefficient.
However, the analysis also reveals three weaknesses. First, there are indication that these agencies are not performing effectively due to poor command, control and coordination among these agencies. In other words, units of these agencies are “doing things right” but not enough to “doing the right thing”. Second, the major sources of inefficiencies are due to excessive inputs and lower output. Third, sectoral management of maritime enforcement agencies is no longer suitable in environment where resources are becoming more scarce and increasing competition to replace manpower with technology.

The research finding contributed to a fund of knowledge about efficiency measurement of maritime enforcement agencies. With slight modifications, the method is adaptable to measure the efficiency of other related agencies such as units of the Malaysian Armed Forces and Royal Malaysian Police.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGUKURAN KECEKAPAN RELATIF AGENSI PENGUATKUASA MARITIM MALAYSIA MENGGUNAKAN “DATA ENVELOPMENT ANALYSIS”

Oleh

SUTARJI BIN HAJI KASMIN

Februari, 2003

Pengerusi : Profesor Mohd Ibrail bin Hj Mohamed, Ph.D.
Fakulti : Sains dan Pengajian Alam Sekitar

Kajian ini berkaitan dengan pengukuran efisensi agensi penguatkuasaan maritim Malaysia. Maklumat efisensi agensi tersebut akan menjadi kayu pengukur setakat mana keupayaan kesemua agensi tersebut melaksanakan tugas dan tanggungjawab yang telah diamanahkan. Pendekatan yang ideal dalam menentukan tahap efisensi sesebuah organisasi awam ialah menggunakan input dan output yang berganda secara serentak.

Kajian ini dilakukan bagi mencari kepastian ke atas anggapan bahawa keempat-empat agensi penguatkuasa maritim adalah tidak efisen kerana kesemua agensi tersebut diuruskan secara sektoral dan berfungsi secara berasingan antara satu dengan yang lain. Dalam sistem sektoral seperti ini, setiap agensi ditubuhkan bagi menguatkuasakan undang-undang yang diwujudkan khusus untuk agensi tersebut tanpa mengambil kira peranan agensi lain yang sejenis dan menlaksanakan peranan yang serupa. Dalam konteks ini, agensi tersebut akan membangunkan reka bentuk organisasi, sistem keanggotaan, latihan dan kewangannya mengikut acuan yang diperlukan. Oleh itu, sistem ini dikaitkan dengan pelbagai kelemahan seperti pelaksanaan tugas yang bertindih,
tahap koordinasi yang lemah dan penggunaan sumber secara tidak ekonomi. Segala kelemahan seperti ini telah memberi anggapan bahawa organisasi penguatkuasa maritim adalah tidak efisen sehingga menjejaskan keberkesanan pelaksanaan operasinya.

Dalam kajian ini, pengukuran tahab efisensi dilakukan dengan menggunakan Data Envelopment Analisis (DEA). DEA ialah satu teknik untuk membuat perbandingan efisensi antara unit yang mempunyai input dan output berganda secara “mathematical programming”. Dalam pengiraannya, efisensi relatif diperolehi dalam bentuk kadar antara “weighted sum of outputs” dibahagi dengan “weighted sum of inputs”.

Dalam kajian ini, sebanyak 22 unit yang terdiri daripada dua unit Tentera Laut Diraja Malaysia, lima unit Polis Marin, sembilan unit Jabatan Perikanan dan enam unit Jabatan Kastam dan Eksais Diraja telah terlibat. Daripada jumlah ini, 14 unit terletak di Semenanjung Malaysia manakala 8 unit lagi berada di Labuan, Sabah dan Sarawak. Walaupun, 22 unit telah dibuat kajian, namun hanya 17 unit sahaja yang pengiraan tahap efisensinya dapat dilakukan kerana lima unit yang lainya tidak mempunyai data yang lengkap. Unit tersebut terdiri daripada setiap satu unit daripada Polis Marin dan Jabatan Perikanan dan tiga unit lagi daripada Jabatan Kastam dan Eksais Diraja.

Penemuan daripada kajian ini telah dapat menyangkal anggapan bahawa agensi penguatkuasaan maritim adalah tidak efisen. Sebaliknya, 11 daripada 17 unit atau 64.5 peratus daripadanya didapati efisen. Analisis selanjutnya telah mendedahkan tiga lagi kelemahan agensi penguatkuasaan maritim. Pertama, terdapat tanda bahawa agensi penguatkuasaan maritim telah tidak menyempurnakan tugas-tugasnya dengan berkesan
kerana kelemahan sistem perintah, kawalan dan koordinasi antara agensi yang berkenaan. Dengan lain perkataan, agensi-agensi tersebut telah melaksanakan tugas dengan betul (doing things right) tetapi kurang membuat tugas yang betul (doing the right thing). Kedua, punca utama yang menyebabkan enam unit tidak efisen ialah kerana penggunaan input yang berlebihan dan pengeluaran output yang sangat kurang. Ketiga, pengurusan agensi penguatkuasaan maritim secara sektoral sudah tidak sesuai lagi pada hari ini kerana sumber yang sedia ada semakin berkurang dan kecenderungan menggantikan tenaga manusia dengan teknologi telah meningkat.

Hasil kajian ini telah memberi sumbangan kepada peningkatan ilmu pengetahuan dalam bidang pengukuran efisensi agensi penguatkuasaan maritim. Selain daripada kegunaan untuk mengukur tahap efisensi agensi-agensi tersebut, penemuan ini boleh disesuaikan untuk mengukur efisensi perkhidmatan awam yang seumpama terutamanya untuk unit-unit dalam Angkatan Tentera Malaysia dan Polis Diraja Malaysia.
ACKNOWLEDGEMENTS

I owe a great debt to Professor Dr Mohd Ibrahim bin Hj Mohamad whose guidance, critical comments, constant encouragement and intellectual stimulation has tremendously assisted me during this period of candidature.

My sincerest gratitude extends to my co-supervisors namely Associate Professor Dr Azahari bin Ismail, Associate Professor Dr Salleh bin Yahya and Dr B. A. Hamzah whose patience, encouragement and critical comments have been a source of inspiration for me during the long hours of preparation, fieldwork, analysis and thesis preparation.

I also wish to thank the Royal Malaysian Navy especially Vice Admiral (Retired) Dato’ Seri Ahmad Ramli bin Hj Mohd Nor, Admiral (Retired) Tan Sri Dato’ Seri Abu Bakar bin Abdul Jamal and Admiral Dato’ Mohd Ramly bin Abu Bakar who have given me the opportunity, facilities and working environment to pursue my higher education. In additions, I also wish to thank other officers and men of the Royal Malaysian Navy who have helped me to provide data, information or other assistances directly or indirectly.

I am also very grateful to the Marine Police of Royal Malaysian Police (especially Superintendents Zakaria bin Yusuf and Hj Jumaat bin Omar), the Department of Fisheries (especially Encik Solehan bin Lamin), the Royal Customs and Excise Department (especially Encik Abdullah Zawawi bin Abd Latif), the Maritime Institute of Malaysia (especially Encik Iskandar Sazlan bin Mohd Salleh), the Marine Department
Peninsular Malaysia and the National Maritime Enforcement and Coordination Centre for their kindness to provide data, information and other assistances directly or indirectly to this study. To the many senior officers, friends and colleagues especially those in the Malaysian Armed Forces Headquarters (special mention to Lieutenant Commander Abu Bakar bin Malik RMN of the Defence Operation Room), the Malaysian Army, the Royal Malaysian Air Force, Joint Intelligence Staff Division (special mention to Encik Chan Ngor Chong), University Putra Malaysia, National University of Malaysia, Malaysian Armed Forces Defence College and Institute of Diplomacy and International Relations, Kuala Lumpur who have been a constant source of encouragement and assistances.

My appreciation is due to Mr Donald Chapman and his wife, Julie of Georgia, USA for their continuous support to obtain materials on performance measurements and Data Envelopment Analysis (DEA) from various sources in the USA. Special mention of their efforts is their success to link me with Dr Iqbal Ali, one of the leading authorities on DEA.

My wife, Hjh Siti Bunia binti Hj Ab Gapar deserves special thanks for her patience, counsel, understanding and support throughout the many days, nights and weekends I spent completing this research over the last five years and for so much more. Without her, none of this would have happened.
I certify that an Examination Committee met on 7th February 2003 to conduct the final examination of Sutarji bin Haji Kasmin, on his Doctor of Philosophy thesis entitled “Efficiency Measurement of Malaysia’s Maritime Enforcement Agencies Using Data Envelopment Analysis” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

RAMDZANI ABDULLAH, Ph.D.
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Chairman)

MOHD IBRAHIM HJ MOHAMED, Ph.D.
Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

AZAHARI ISMAIL, Ph.D.
Associate Professor
Faculty of Educational Studies
Universiti Putra Malaysia
(Member)

SALLEH YAHYA, Ph.D.
Associate Professor
Faculty of Economics and Management
Universiti Putra Malaysia
(Member)

HAMZAH AHMAD Ph,D.
No 26, Jalan 2/2 Taman Tun Abd Razak
68000 Ampang, Selangor
(Member)

MOHD EZANI MAT HASSAN Ph.D.
Associate Professor
Faculty of Business Management
Universiti Kebangsaan Malaysia
(Independent Examiner)

GULAM RUSUL RAHMAI ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
Date: 23 June 2003

x
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

MOHD IBRAHIM HJ MOHAMED, Ph.D.
Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Chairman)

AZAHARI ISMAIL, Ph.D.
Associate Professor
Faculty of Educational Studies
Universiti Putra Malaysia
(Member)

SALLEH YAHYA, Ph.D.
Associate Professor
Faculty of Economy and Management
Universiti Putra Malaysia
(Member)

HAMZAH AHMAD Ph.D.
No 26, Jalan 2/2
Taman Tun Abd Razak
68000 Ampang
Selangor
(Member)

AINI IDERIS, Ph.D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 12 JUN 2003
DECLARATION

I hereby declare that the dissertation is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

SUTARJI BIN HAJI KASMIN

Date: 23 MBR 2003
TABLE OF CONTENTS

ABSTRACT ii
ABSTRAK v
ACKNOWLEDGEMENTS viii
APPROVAL x
DECLARATION xiii
TABLE OF CONTENTS xiv
LIST OF TABLES xxii
LIST OF FIGURES xxviii
LIST OF ABBREVIATION xxix

CHAPTER

I INTRODUCTION

Malaysia’s Maritime Zones 1
The Importance of Malaysia’s Maritime Zones 8
Related Marine and Coastal Issues in Malaysia’s Maritime Zones 11
Management of Maritime Zones 21
Malaysia’s Maritime Enforcement System 23
Royal Malaysian Navy 26
Marine Police 28
Marine Department 29
Royal Customs and Excise Department 29
Fisheries Department 30
Elements of Maritime Enforcement System 31
Fundamental of Maritime Enforcement Capabilities 35
Basis of Operational Capabilities of Maritime Enforcement Agencies 36
Maritime Areas of Responsibilities 38
Problem Statement 43
Performance Measurement Techniques 51
Objectives of This Study 53
Organization of this Study 54

2. LITERATURE REVIEW

Introduction 57
Government Campaign to Improve Civil Service Quality 59
Total Quality Management 61
MS ISO 9000 : 2000 62
Performance Measurement Systems 64
Non-Frontier Approach to Efficiency Measurement 67
Cost Efficiency 69
Manpower Efficiency 69
Time Efficiency 70
Frontier Approach to Performance Measurement 70
Selection of Best Approach to Measure Efficiency 71
Comparison Between Parametric and Non-Parametric Techniques 72
Total Factor Productivity 72
Cost Benefit Analysis 74
Ratio Analysis 76
Engineering Approach 78
Econometric Approach 79
Stochastic Frontier Analysis 82
Regression Analysis 83
Mathematical Programming 85
Data Envelopment Analysis 87
 Origin and Concept of DEA 89
 DEA Mathematical Model 95
 Weight and Its Restriction 100
 DEA Properties and Characteristics 102
Performance Measurement in the Public Sector 104
Efficiency Measurement in the Maritime Enforcement Agencies 107
 The Royal Malaysian Navy 108
 Ships Combat Readiness Report 112
 Work-up 113
 Ships Operational Readiness Evaluation 113
 Tactical Training 114
 Exercises 115
 Performance Target 116
 Marine Police 117
 Fisheries Department 119
 Royal Customs and Excise Department 121
3. MATERIALS AND METHODS

Introduction 152

Selection of DMUs 153

Homogeneous Grouping 154

Size of Comparison Group 155

Availability of Data 155

Determining Initial List of Factors 157

Processes to Select the Initial List of Factors 158

Data Collection 161

Data Sources 162

Quantitative Data Collection 164

Data Collection From Official Documents 165
Comparison of Data From Ship’s Records 167

Qualitative Data Collection Process 169

Validation of Data Collection Process 180

Data Random Checks 181

Verification of Data Recording Techniques 181

Certification of Ships’ Records 184

Inputs and Outputs Data 184

Determining the Final List of Factors 188

Judgmental Screening 189

Selection of Inputs 190

Selection of Outputs 193

Non- DEA Quantitative Method 196

DEA- based Analysis 199

Application of DEA Model to Measure Efficiency 208

Selection of DEA Model 209

Selection of DEA Software 211

Efficiency Measurement Using Warwick – DEA Software 213

Summary 213

4. RESULTS AND ANALYSIS OF RESULTS

Introduction 215

Results 217

Validation of the Results 219

Smith and Myston Validation Technique 220

xvii
“Jackknifing” Technique 225

Analysis of Results 227

Overall Efficiency of DMUs 228

Comparative Efficiency Index Scores of Individual Agency 229

Distribution of Relative Efficiency Spectrum 234

Performance of Relatively Efficient DMUs 236

What Aspects of Performance That Contributes To Efficiency Rating? 236

Does It Has Well Rounded Performance? 247

Can It Improves Efficiency Further? 247

Identification of Reference Set 248

Identification of Sources of Inefficiencies by Judgement 250

Royal Malaysian Navy 251

Marine Police 251

Department of Fisheries 253

Royal Customs and Excise Department 255

Target Setting of Inefficient DMUs 259

DMU 10 (GEWILA 3, Johor Bahru) 261

DMU 13 (GEWILA 6, Kota Kinabalu) 262

DMU 14 (GEWILA 7, Sitiawan) 263

DMU 21 (Royal Customs and Excise Department Sabah) 264

DMU 20 (Royal Customs and Excise Department Penang) 265

DMU 5 (Marine Police Southern Region, Johor Bahru) 266
Causes of Small Patrol Coverage 268
Relationship of DMUs’ Efficiency Rating and the Presence of Illegal Activities in AOR 271
Identification of Best Practices 273
 The RMN’s Inspector General 275
 Ships’ Operational Readiness State 276
 Work-up and Inspection 276
 Integrated Logistic System 277
 “Built in Specialists” 277
Operationalisation of the Results 278
 Improvement of Resources Utilisation 278
 Reduction of Inputs and Increase of Outputs 279
 Resources Relocation 280
 Integrating Maritime Enforcement Agencies 281
Summary 283

5. INTEGRATED MARITIME ENFORCEMENT AGENCIES

Introduction 286
Models of Integrated Maritime Enforcement Agencies 287
Proposed Model for Malaysia’s Integrated Maritime Enforcement 288
 Proposed Design of An Integrated Maritime Enforcement Agency 289
 Selection of Suitable Integrated Maritime Enforcement Agency’s Model for Malaysia 291
Summary 293
6. CONCLUSION, RECOMMENDATIONS AND FUTURE RESEARCH

Conclusion 295
Recommendations 300
Direction of Future Study 302

REFERENCES A - 1
GLOSSARY OF TERMS B - 1
VITA C - 1
LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Statistics on Fisheries Product 1995 to 1997</td>
<td>9</td>
</tr>
<tr>
<td>1.2 Malaysia's Oil and Gas Production 1995 to 2000</td>
<td>10</td>
</tr>
<tr>
<td>1.3 Sighting of Foreign Government Vessels in Malaysia's Waters</td>
<td>20</td>
</tr>
<tr>
<td>1.4 Ordinances and Acts Enforceable by the Maritime Enforcement Agencies</td>
<td>26</td>
</tr>
<tr>
<td>1.5 Size and Location of Maritime Enforcement Agencies' Regional Areas of Responsibility</td>
<td>41</td>
</tr>
<tr>
<td>1.6 Detection and Arrest of Foreign Fishing Vessels</td>
<td>49</td>
</tr>
<tr>
<td>1.7 Arrest of Indonesian Illegal Immigrants Entering Malaysia</td>
<td>50</td>
</tr>
<tr>
<td>1.8 Percentage of Arrest of Ships Discharging Oil Illegally</td>
<td>51</td>
</tr>
<tr>
<td>2.1 Allocation of RMN Ships</td>
<td>109</td>
</tr>
<tr>
<td>2.2 Allocation of Marine Police Boats to Regional Command</td>
<td>118</td>
</tr>
<tr>
<td>2.3 Allocation of Fisheries Vessels to GEWILA</td>
<td>120</td>
</tr>
<tr>
<td>2.4 Allocation of Marine Assets to States Royal Customs and Excise Department</td>
<td>124</td>
</tr>
<tr>
<td>2.5 Application of the US Coast Guard as Maritime Power</td>
<td>143</td>
</tr>
<tr>
<td>2.6 Application of the US Navy as Naval Power</td>
<td>144</td>
</tr>
<tr>
<td>2.7 Geographical Reach of the US Coast Guard Roles and Missions</td>
<td>146</td>
</tr>
<tr>
<td>2.8 Selected Criteria for Each Standard Goal</td>
<td>148</td>
</tr>
<tr>
<td>3.1 Initial List of Units Selected for Study</td>
<td>154</td>
</tr>
</tbody>
</table>
3.2 Initial Lists of Inputs 160
3.3 Initial List of Outputs 161
3.4 Details of Headquarters and Ships Visited During Data Collection 169
3.5 List of Decision Making Criteria 170
3.6 Five Levels of Weight Scale for Decision Making Criterion 171
3.7 Decision Making Criterion for Logistic Support 171
3.8 Decision Making Criterion for Administrative Support 172
3.9 Decision Making Criterion for Training Facilities 172
3.10 Levels of Nine-Point Sufficiency Rating Decision Criteria 173
3.11 Ratings of Each Decision Making Criterion for All DMUs for the Logistic Support 174
3.12 Ratings of Each Decision Making Criterion for All DMUs for the Administrative Support 175
3.13 Ratings of Each Decision Making Criterion for All DMUs for the Base Training Facilities 176
3.14 Total Sufficiency Score for the Logistic Support of Each DMU 177
3.15 Total Sufficiency Score for the Administrative Support of Each DMU 178
3.16 Total Sufficiency Score for the Training Facilities of Each DMU 179
3.17 Qualitative Inputs Values of Each DMU for the Logistic Support, Administrative Support and Base Training Facilities 180
3.18 Inputs and Outputs Data of Maritime Enforcement Agencies for 1995 185
3.19 Inputs and Outputs Data of Maritime Enforcement Agencies for 186
1996

3.20 Inputs and Outputs Data of Maritime Enforcement Agencies for 187

1997

3.21 Average Annual Data of Maritime Enforcement Agencies 188

3.22 Characteristic of Ships and Boats of Maritime Enforcement Agencies 193

3.23 Outcomes of the Correlation Tests 198

3.24 First Run. Measurement of EIS With All Inputs and Outputs Included 201

3.25 Second Run. Measurement of EIS With All Inputs and Outputs Except IP 3 202

3.26 Third Run. Measurement of EIS With All Inputs and Outputs Except OP 3 203

3.27 Outcomes of DEA-based Analysis for the Final Selection of Inputs/Outputs Factors 204

3.28 EIS of Maritime Enforcement Agencies Using 1995 Data 205

3.29 EIS of Maritime Enforcement Agencies Using 1996 Data 206

3.30 EIS of Maritime Enforcement Agencies Using 1997 Data 207

3.31 Comparison of EIS of Maritime Enforcement Agencies Based on Annual Data and Average Data 208

3.32 Interpretation of DEA Models 210

4.1 Final EIS of Maritime Enforcement Agencies 218

4.2 DMUs Sequence of Final EIS 219

4.3 Outcomes of First Stage of Validation Tests 221
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Outcomes of Second Stage of Validation Tests</td>
<td>222</td>
</tr>
<tr>
<td>4.5</td>
<td>Outcomes of Third Stage of Validation Tests</td>
<td>223</td>
</tr>
<tr>
<td>4.6</td>
<td>Summary of EIS Based on the Three Stages of the Validation Tests</td>
<td>224</td>
</tr>
<tr>
<td>4.7</td>
<td>Summary of Validation Outcomes Using “Jackknifing” Technique</td>
<td>226</td>
</tr>
<tr>
<td>4.8</td>
<td>List of DMUs and their EIS</td>
<td>228</td>
</tr>
<tr>
<td>4.9</td>
<td>Relative Efficiencies of the Royal Malaysian Navy’s DMUs</td>
<td>229</td>
</tr>
<tr>
<td>4.10</td>
<td>Relative Efficiencies of the Royal Malaysian Police’s DMUs</td>
<td>230</td>
</tr>
<tr>
<td>4.11</td>
<td>Relative Efficiencies of the Department of Fisheries’ DMUs</td>
<td>231</td>
</tr>
<tr>
<td>4.12</td>
<td>Relative Efficiencies of the Royal Customs and Excise</td>
<td>232</td>
</tr>
<tr>
<td>4.13</td>
<td>Comparative EIS of All DMUs Analysed as a Group and DMUs Analysed Based on Individual Agency</td>
<td>233</td>
</tr>
<tr>
<td>4.14</td>
<td>Distributions of DMUs Over the Relative Efficiency Spectrum</td>
<td>234</td>
</tr>
<tr>
<td>4.15</td>
<td>Distributions of Efficiency Ranking of Maritime Enforcement Agencies</td>
<td>235</td>
</tr>
<tr>
<td>4.16</td>
<td>Virtual Inputs and Outputs of DMU 1 (Headquarters Naval Area 1 Kuantan)</td>
<td>238</td>
</tr>
<tr>
<td>4.17</td>
<td>Virtual Inputs and Outputs of DMU 2 (Headquarters Naval Region 2, Labuan)</td>
<td>238</td>
</tr>
<tr>
<td>4.18</td>
<td>Virtual Inputs and Outputs of DMU 3 (Marine Police North)</td>
<td>239</td>
</tr>
<tr>
<td>4.19</td>
<td>Virtual Inputs and Outputs of DMU 4 (Marine Police East)</td>
<td>240</td>
</tr>
<tr>
<td>4.20</td>
<td>Virtual Inputs and Outputs of DMU 6 (Marine Police Sabah)</td>
<td>241</td>
</tr>
<tr>
<td>4.21</td>
<td>Virtual Inputs and Outputs of DMU 8 (DOF GEWILA 1, Penang)</td>
<td>241</td>
</tr>
</tbody>
</table>