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Applied mathematics, which means application of mathematics to problems, is a
wonderful and exciting subject. It is the essence of the theoretical approach to
science and engineering. It could refer to the use of mathematics in many varied
areas. Mathematical model is applied to predict the behaviour of the system. This
behaviour is then interpreted in terms of the word model so that we know the

behaviour of the real situation.

We can apply mathematical languages to transform ecology's phenomena into
mathematical model, including changes of populations and how the populations of
one system can affect the population of another. The model i1s expected to give us

more information about the real situation and as a tool to make a decision.

i



Some models that constitute autonomous differential equations are presented,
Malthusian and logistic model for single population; two independent populations,
competing model, and prey-predator model for two populations; and extension of
prey-predator model involving three populations. In this thesis we will study the

effect of harvesting on models.

The models are based on Lotka-Volterra model. All models involve harvesting
problem and some stable equilibrium points related to maximum profit or maximum
sustainable yield problem. The objectives of this thesis are to analyse, to investigate
the stability of equilibrium point of the models and to control the exploitation efforts
such that the population will not vanish forever although being exploited. The
methods used are linearization method, eigenvalues method, qualitative stability test
and Hurwitz stability test. Some assumptions are made to avoid complexity. Maple
V software release 4 is used to determine the equilibrium points of the model and
also to plot the trajectories and draw the surface. The single population model is

solved analytically.

We found that in single population model, the existence of population depends on
the initial population and harvesting rate. In model that involves two and three
populations, the populations can live in coexistence although harvesting is applied.

The level of harvesting, however, must be strictly controlled.
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Matematik gunaan, yang bererti penggunaan matematik kepada penyelesaian
masalah, adalah suatu perkara yang sangat bagus dan menarik. la adalah inti pati
bagi pendekatan berasaskan teori kepada sains dan kejuruteraan. la boleh merujuk
kepada kegunaan matematik dalam berbagai bidang. Model matematik digunakan
untuk meramalkan kelakuan sistem. Kelakuan ini kemudian ditafsirkan sehingga

kita boleh mengetahui kelakuan bagi situasi yang sebenarnya.

Kita dapat menggunakan bahasa matematik untuk menjelmakan fenomena ekologi
kepada model matematik, termasuk perubahan populasi dan bagaimana populasi
dalam satu sistem dapat mempengaruhi populasi yang lain. Model itu diharap
memberi kita banyak maklumat tentang situasi yang sebenarnya dan sebagai alat

untuk membuat keputusan.



Beberapa model berupa persamaan pembezaan berautonomi dipersembahkan, model
Mathusian dan model logistik untuk satu populasi, dua populasi yang bebas, model
persaingan, dan model mangsa-pemangsa untuk dua populasi, dan perluasan bagt
model mangsa-pemangsa yang meliputi tiga populasi Dalam tesis i1 kita akan

mengkaji kesan tuaian ke atas model

Model-model 1tu berasaskan model Lotka-Volterra Kesemua model meliputi
masalah penuaian dan beberapa titik keseimbangan yang stabil dihubungkan kepada
masalah keuntungan maksimum dan hasil berterusan yang maksimum Matlamat
tests i1 adalah untuk menganalisis, menyiasat kestabilan titik kesetmbangan model,
dan mengawal usaha eksploitasi supaya populasi tidak akan pupus untuk selama-
lamanya meskipun populasi dieksploitasikan Kaedah yang digunakan adalah kaedah
pelinearan, kaedah miar eigen, ujian kestabilan kualitatif dan upan kestabilan
Hurwitz Beberapa anggapan dibuat untuk menghindan kerumitan Penisian Maple V
(verst 4) digunakan untuk menentukan titik keseimbangan bagi model dan juga
memplot trajekton dan melukis permukaan Bagi model satu populasi, model

diselesaikan secara analitik

Kita mendapati bahawa dalam model satu populasi untuk populasi wujud 1a mesti
bergantung kepada populas: awal dan kadar tuaian Pada model yang melibatkan dua
atau tiga populasi, populasi dapat hidup bersama meskipun dikenakan tuaian

Tentunya, tahap tuatan dikawal dengan ketat
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CHAPTER I

INTRODUCTION

Many problems in the world usually involve continuously changing
quantities such as distance, velocity, acceleration, or force On the other hand. many
problems 1n the life sciences deal with aggregates of individuals that are clearly
discrete rather than continuous Since denvatives, and hence differential equations,
are meaningful only for quantities that change continuously, one might think that
differential equations would arise only 1n the formulation of physical problems This
1s not the case However, 1f the population 1n a biological problem 1s sufficiently
large, 1t can usually be approximated, or modelled, by a continuous system 1n which
the rate of change can be expressed as denvatives and the behaviour of the system

can be described by a system of differential equations

Population dynamics 1s the study of changes in the populations of systems
and how the population of one system can affect the population of another
Population change may have important economic and social consequences For
example, the farmer wants to know how large the pest population 1s when his crop 1s
most vulnerable and what effects pesticide spraying will have, and the fisherman
wants to know what effects fishing quotas will have on fishing stock and

consequently on fishing catches
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There are three main ways in which animals of two different populations can
interact. They can help each other's population growth, or can hinder such growth or
one can help and the other can hinder. These are respectively known as the
symbiotic, the competitive species and the prey-predator systems. In the last
mentioned, one species, the predator feeds on the other, the prey; for example, foxes
catch and kill rabbits, and sharks consume the small fish in the sea. Hence, the
presence of sharks increases the death rate of small fish and the presence of small
fish increases the supply, and hence the birth rate of sharks. In the competitive
species system, the two populations compete for the same resources, usually food. In
the prey-predator system it is not clear how the populations of the species vary and a

mathematical model may help us to predict the behaviour of the populations.

This research presents a model of the population behaviour by using
deterministic model which is presented as a system of differential equations. The
models are Malthusian model, logistic model, while the model that involves two or
more populations is based on Lotka-Volterra model. Chapter II reviews the
literatures in order to analyse and investigate the stability of the system and also give
a brief description pertaining to population and harvesting. Chapter I1I presents one
population behaviour model which follows Malthusian model and logistic growth.
The model is extended such that it involves harvesting problem. Chapter IV presents
the interaction of the two-population model with harvesting which covers two
independent populations model, competing model, and prey-predator model. Chapter
V presents how the model 1s extended to three populations model with harvesting

and divided into two cases. The first kind of model presents model with two preys
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and one predator without harvesting and model with rate of harvesting proportional
to the size of predator population. The second one shows model with one prey and
two predators. Firstly, this kind of model is investigated without harvesting then the
model is modified to incorporate harvesting function. The two kinds of harvesting,
that is, constant rate of harvesting and rate which is proportional to the size of

population are considered. Chapter V describes conclusions for all kinds of models.

All the considered models will be analyzed for the stability of their
equilibrium point, if any, and we will determine the necessary and sufficient
conditions for the existence of the equilibrium point, if possible. For this purpose,
some assumptions are considered. The methods used to study the stability of the
equilibrium point are linearization methods, eigenvalue method, qualitative stability
test, and also Hurwitz stability test. The objectives of this research are to control the
model, include the parameters, initial values and level of harvesting so that the
populations will not vanish although they are harvested and to determine the kind of
stability of positive equilibrium point. Some of the equilibrium points, which are
stable, are related to maximum profit problem, known as maximum economic rent
(MER), and to maximum sustainable yield (AMSY) problem. In addition, in some
cases, the level of harvesting needs to be controlled so that the equilibrium point is

stable and gives either MER or MSY.

The model that involves a single population is solved analytically and the
graph of the solution is also described. While for the other models, the stability of

their equilibrium point is investigated by the linearization method and plotting the



trajectories around the equilibrium point for non-linear systems. Maple V software is
used to display the solution or trajectories of the model graphically. Such a graphical
display is often much more illuminating and helpful in understanding and
interpreting the solution of the model. The related computer programmes are given
in the appendix, and the books on Maple V by various authors are listed in the list of

references.



CHAPTER II

LITERATURE REVIEW

This chapter reviews the notion of dynamical system and 1ts stability, thus,
several definitions and theorems are given Linear system and almost linear system
are also considered since they provide many useful properties Since most of
dynamical system problems are unsolvable, another approach 1s presented to give
qualitative information of the system Furthermore, population model and 1its

interaction and also harvesting function are described briefly

Dynamical Systems

A continuous, finite-dimensional dynamical system 1s described by a first-

order vector-differential equation
x()= £ (x(t), 1) 21
where x(¢)1s the value at time ¢ of the n-dimensional state vector

/xl

n1s the order of the system



The solution with the given initial conditionsx, at ¢, 1s denoted by
x(¢, x,.1,), or by «(¢), if no confusion can arise A solution 1s also called a

trajectory or a motion or a path or an orbut, 1t 1s represented by a curve in the n-

dimensional state space

The dynamical system (2 1) 1s called stationary 1f the vector function f does
not depend explicitly on time Such dynamical system 1s called autonomous, and 1s

governed by the equation

#1)= f(x(r)) (22)

The motions of an autonomous system are invanant for a translation of time,

that 1s, 1f x(¢, x,, , ) 1s a motion of (2 2), then
x(t,' Xo, 4o ) = x(t + T, xy, 8, + T)

forall ¢, x,,¢,,and T

A dynamical system 1s called /inear if the function f 1s linear with respect
tox Then the system equation 1s

)= 1) x(0),
where J(¢) 1s an (1, n) matrix The equation of a linear autonomous system 1s

x(¢) = Jx(e)
If for all t

flx..1)=0, (23)



then

x(trx,,t,)=1x,
for any ¢, A point x, satisfying (2.3) is called an equi/ibrium point or a critical
pont or an equilibrium state. Therefore, a solution which passes through x, at some

time, remains there for all time. The solution is called the equilibrium solution or

constant trajectory, and if x, =0, it is called the null solution.

Definitions of Stability and Limit Cycle

Let x, be an equilibrium point of the dynamical system
x=f (x, t),
with

f(x.,1)=0 forall 1.

Definition 2.1 The equilibrium point x,, or the equilibrium solution x(t)z x, 1s said
to be stable if for any given ¢, and positive &, there exists a positive number
5(, t, )such that

<o

B

e

implies

|t xy, ) x, [ < &

forall r>¢,.



