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Applied mathematics, which means application of mathematics to problems, is a 

wonderful and exciting subject. It is the essence of the theoretical approach to 

science and engineering. It could refer to the use of mathematics in many varied 

areas. Mathematical model is applied to predict the behaviour of the system. This 

behaviour is then interpreted in terms of the word model so that we know the 

behaviour of the real situation. 

We can apply mathematical languages to transform ecology's phenomena into 

mathematical model, including changes of popUlations and how the populations of 

one system can affect the population of another. The model is expected to give us 

more information about the real situation and as a tool to make a decision. 
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Some models that constitute autonomous differential equations are presented; 

Malthusian and logistic model for single population; two independent populations, 

competing model, and prey-predator model for two populations; and extension of 

prey-predator model involving three populations. In this thesis we will study the 

effect of harvesting on models. 

The models are based on Lotka-Volterra model. All models involve harvesting 

problem and some stable equilibrium points related to maximum profit or maximum 

sustainable yield problem. The objectives of this thesis are to analyse, to investigate 

the stability of equilibrium point of the models and to control the exploitation efforts 

such that the population will not vanish forever although being exploited. The 

methods used are linearization method, eigenvalues method, qualitative stability test 

and Hurwitz stability test. Some assumptions are made to avoid complexity. Maple 

V software release 4 is used to determine the equilibrium points of the model and 

also to plot the trajectories and draw the surface. The single population model is 

solved analytically. 

We found that in single population model, the existence of population depends on 

the initial population and harvesting rate. In model that involves two and three 

populations, the populations can live in coexistence although harvesting is applied. 

The level of harvesting, however, must be strictly controlled. 
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Matematik gunaan, yang bererti penggunaan matematik kepada penyelesaian 

masalah, adalah suatu perkara yang sangat bagus dan menarik. Ia adalah inti pati 

bagi pendekatan berasaskan teori kepada sains dan kejuruteraan. Ia boleh merujuk 

kepada kegunaan matematik dalam berbagai bidang. Model matematik digunakan 

untuk meramalkan kelakuan sistem. Kelakuan ini kemudian ditafsirkan sehingga 

kita boleh mengetahui kelakuan bagi situasi yang sebenamya. 

Kita dapat menggunakan bahasa matematik untuk menjelmakan fenomena ekologi 

kepada model matematik, termasuk perubahan populasi dan bagaimana populasi 

dalam satu sistem dapat mempengaruhi popu]asi yang lain. Model itu diharap 

memberi kita banyak maklurnat tentang situasi yang sebenamya dan sebagai alat 

untuk membuat keputusan. 
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Beberapa model berupa persamaan pembezaan berautonomt dtpersembahkan, model 

MathusIan dan model lOglStik untuk satu populast, dua pOpUlasl yang bebas, model 

persamgan, dan model mangsa-pemangsa untuk dua populasl, dan perluasan bagt 

model mangsa-pemangsa yang mehputI tlga popuiasl Dalam tesiS 1m kita akan 

mengkaJI kesan tualan ke atas model 

Model-model ltu berasaskan model Lotka-Volterra Kesemua model mehputl 

masalah penuman dan beberapa btlk keselmbangan yang Stabll dlhubungkan kepada 

masalah keuntungan makslmum dan hasIl berterusan yang makslmum MatIamat 

teslS Int adalah untuk menganahsls, menYlasat kestabtlan tItlk keselrnbangan model, 

dan mengawal usaha eksplOltasl supa}'a populasl hdak akan pupus untuk selama­

lamanya mesklpun populasl dieksplOltaslkan Kaedah yang dlgunakan adalah kaedah 

pelmearan, kaedah rulm etgen, UJIan kestabtlan kuahtatlf dan liJIan kestabdan 

HUfWltz Beberapa anggapan dlbuat untuk menghmdan kermmtan PenSIan Maple V 

(versl 4) dlgunakan untuk menentukan tItlk kesetmbangan bagt model dan Juga 

memplot trajekton dan melukts permukaan Bag! model satu populasI, model 

dlse1esalkan secara anahttk 

Ktta mendapatI bahawa dalam model satu populasl untuk popuiasl wuJud Ia mestl 

bergantung kepada popuiasl awal dan kadar tualan Pada model yang mehbatkan dua 

atau tlga populasl, POpulasl dapat hldup bersama mesktpun dlkenakan tualan 

Tentunya, tahap tuman dtkawal dengan ketat 
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CHAPTER I 

INTRODUCTION 

Many problems m the world usually mvolve contmuously changmg 

quantItIes such as dIstance, velocIty, acceleratIOn, or force On the other hand. many 

problems m the hfe SCIences deal With aggregates of mdlvlduals that are clearly 

dIscrete rather than contmuous Smce denvatlVes, and hence differenhal equahons, 

are meanmgful only for quantItIes that change conhnuously, one mIght thInk that 

dIfferentIal equatIOns would anse only m the formulatIOn of phYSICal problems TIns 

IS not the case However, If the populatIon In a bIolOgical problem IS suffiCIently 

large, It can usually be apprmamated, or modelled, by a contmuous system In whIch 

the rate of change can be expressed as denvatIves and the behavIOur of the system 

can be descnbed by a system of dltTerenhal equahons 

PopulatIOn dynamICS IS the study of changes In the populatIOns of systems 

and how the populatIOn of one system can affect the populatIOn of another 

PopulatIOn change may have Important economIC and SOCIal consequences For 

example, the farmer wants to know how large the pest populatIOn IS when hIS crop IS 

most vulnerable and what etTects pestICIde spraymg Will have, and the fisherman 

wants to know what effects fishmg quotas Will have on fishmg stock and 

consequently on fishmg catches 
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There are three main ways in which animals of two different populations can 

interact. They can help each other's population growth, or can hinder such growth or 

one can help and the other can hinder. These are respectively known as the 

symbiotic, the competitive species and the prey-predator systems. In the last 

mentioned, one species, the predator feeds on the other, the prey; for example, foxes 

catch and kill rabbits, and sharks consume the small fish in the sea. Hence, the 

presence of sharks increases the death rate of small fish and the presence of small 

fish increases the supply, and hence the birth rate of sharks. In the competitive 

species system, the two populations compete for the same resources, usually food. In 

the prey-predator system it is not clear how the populations of the species vary and a 

mathematical model may help us to predict the behaviour of the populations. 

This research presents a model of the population behaviour by usmg 

deterministic model which is presented as a system of differential equations. The 

models are Malthusian model, logistic model, while the model that involves two or 

more populations is based on Lotka-Volterra model. Chapter II reviews the 

literatures in order to analyse and investigate the stability of the system and also give 

a brief description pertaining to population and harvesting. Chapter III presents one 

population behaviour model which follows Malthusian model and logistic growth. 

The model is extended such that it involves harvesting problem. Chapter IV presents 

the interaction of the two-population model with harvesting which covers two 

independent populations model, competing model, and prey-predator model. Chapter 

V presents how the model is extended to three populations model with harvesting 

and divided into two cases. The first kind of model presents model with two preys 
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and one predator without harvesting and model with rate of harvesting proportional 

to the size of predator population. The second one shows model with one prey and 

two predators. Firstly, this kind of model is investigated without harvesting then the 

model is modified to incorporate harvesting function. The two kinds of harvesting, 

that is, constant rate of harvesting and rate which is proportional to the size of 

population are considered. Chapter V describes conclusions for all kinds of models. 

All the considered models will be analyzed for the stability of their 

equilibrium point, if any, and we will determine the necessary and sufficient 

conditions for the existence of the equilibrium point, if possible. For this purpose, 

some assumptions are considered. The methods used to study the stability of the 

equilibrium point are linearization methods, eigenvalue method, qualitative stability 

test, and also Hurwitz stability test. The objectives of this research are to control the 

model, include the parameters, initial values and level of harvesting so that the 

populations will not vanish although they are harvested and to detennine the kind of 

stability of positive equilibrium point. Some of the equilibrium points, which are 

stable, are related to maximum profit problem, known as maximum economic rent 

(MER), and to maximum sustainable yield (MSY) problem. In addition, in some 

cases, the level of harvesting needs to be controlled so that the equilibrium point is 

stable and gives either !vIER or A1SY. 

The model that involves a single population is solved analytically and the 

graph of the solution is also described. While for the other models, the stability of 

their equilibrium point is investigated by the linearization method and plotting the 
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trajectories around the equilibrium point for non-linear systems. Maple V software is 

used to display the solution or trajectories of the model graphically. Such a graphical 

display is often much more illuminating and helpful in understanding and 

interpreting the solution of the model. The related computer programmes are given 

in the appendix, and the books on Maple V by various authors are listed in the list of 

references. 



CHAPTERU 

LITERATURE REVIEW 

ThIS chapter reVIews the notIOn of dynamIcal system and ItS stabIlIty, thus, 

several defimtIOns and theorems are gIven Lmear system and almost lmear system 

are also conSIdered smce they provIde many useful propertIes Smce most of 

dynamIcal system problems are unsolvable, another approach IS presented to give 

quahtattve mfonnatIOn of the system Furthennore, populatIon model and Its 

mteractIOn and also harvestmg functIOn are descnbed bnefly 

Dynamical Systems 

A contmuous, fimte-dImensIOnal dynamIcal system IS descnbed by a first-

order vector-dIfferential equatIOn 

x{t) = j{x{t), t} (2 1) 

where x{t )IS the value at ttme t of the n-dImensIOnal state vector 

x= 

n IS the order of the system 
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The solutIOn wIth the gIVen InItIal condltIOnsxo at to IS denoted by 

x(t, xo' (0 ) ' or by l(') , If no confusIOn can anse A solutIOn IS also called a 

trajectory or a motIOn or a palh or an orbll, It IS represented by a curve m the n­

dImensIOnal state space 

The dynamIcal system (2 1) IS called slatlOnary If the vector functIOn [ does 

not depend explIcItly on tIme Such dynamIcal system IS called autonomous, and IS 

governed by the equatIOn 

x(t) = f(x(t» (2 2 )  

The motIOns of an autonomous system are mvanant for a translation of time, 

that IS, If X(/, xo ' (0 ) IS a motIOn of (2 2 ), then 

X(/;Xo ' /o ) =X(/ + T;xo , to + T} 

for all t, xo ' to ,  and T 

A dynamIcal system IS called lmear If the function f IS lInear WIth respect 

to x Then the system equatIOn IS 

X(/} = .I(/} X(/) , 

where .I(t) IS an (n, n) matnx The equatIOn of a lmear autonomous system IS 

x(t) = .Ix(t) 

ff for all t 

[(xe' t)= 0 ,  (2 3) 
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then 

for any to A point xe satisfying (2.3) is called an eqUllzbnum pomt or a cntlcal 

pomt or an eqUllzbrlUm state. Therefore, a solution which passes through Xe at some 

time, remains there for all time. The solution is called the eqUllzbnum solutIOn or 

constant trajectory, and if Xe = 0, it is called the null solutIOn. 

Definitions of Stability and Limit Cycle 

Let Xe be an equilibrium point of the dynamical system 

with 

[{Xe' t } = 0 for all t. 

Definition 2.1 The equilibrium point Xe, or the equilibrium solution x{t } = xe is said 

to be stable if for any given to and positive 5, there exists a positive number 

o{&, to) such that 

implies 

I lxo -xe II < 0 

II x{t ; xo' to )- xe II < & 

for all I ? to . 


