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In a conventional competing risks model, the time to failure of a particular
experimental unit might be censored and the cause of failure can be known or
unknown. In this thesis the analysis of this particular model was based on the
cause-specific hazard of Cox model. The Expectation Maximization (EM) was
considered to obtain the estimate of the parameters. These estimates were then
compared to the Newton-Raphson iteration method. A generated data where the
failure times were taken as exponentially distributed was used to further compare
these two methods of estimation. From the simulation study for this particular case,
we can conclude that the EM algorithm proved to be more superior in terms of

mean value of parameter estimates, bias and root mean square error.
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To detect irregularities and peculiarities in the data set, the residuals, Cook
distance and the likelihood distance were computed. Unlike the residuals, the
perturbation method of Cook's distance and the likelihood distance were effective
in the detection of observations that have influenced on the parameter estimates.
We considered both the EM approach and the ordinary maximum likelihood
estimation (MLE) approach in the computation of the influence measurements. For
the ultimate results of influence measurements we utilized the approach of the one-
step. The EM one-step and the maximum likelthood (ML) one-step gave
conclusions that are analogous to the full iteration distance measurements. In
comparison, it was found that EM one-step gave better results than the ML one-
step with respect to the value of Cook's distance and likelihood distance. It was also
found that Cook's distance is better than the likelihood distance with respect to the

number of observations detected.
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Fakulti: Sains dan Pengajian Alam Sekitar

Dalam model risiko bersaing konvensional, masa kegagalan dari unit ujikaji
tertentu boleh jadi tertapis dengan punca kegagalan mungkin diketahui atau tidak
diketahui. Dalam tesis ini analisis model risiko bersaing adalah berlandaskan model
bahaya punca-tertentu Cox. Pemaksimuman Jangkaan (PJ) dipertimbangkan untuk
memperolehi anggaran bagi parameter. Anggaran ini dibandingkan dengan
anggaran yang diperolehi dari kaedah lelaran Newton-Raphson. Data yang dijana
dengan masa kegagalannya tertabur secara eksponen digunakan selanjutnya untuk
membandingkan kedua-dua kaedah anggaran ini. Dari kajian simulasi khususnya

bagi masalah ini, didapati algoritma PJ mempunyai kelebihan terhadap anggaran



parameter berdasarkan nilai min, kepincangan dan punca kuasa dua min ralat

(PKMR).

Untuk melihat ketidaktentuan dan keganjilan data dalam model, reja, jarak
Cook dan jarak kebolehjadian dihitung. Tidak seperti reja, kaedah jarak Cook dan
jarak kebolehjadian adalah berkesan dalam menentukan cerapan yang
mempengaruhi anggaran parameter. Kedua-dua pendekatan iaitu PJ dan anggaran
maksimum kebolehjadian dilaksanakan dalam perhitungan ukuran pengaruh.
Sebagai keputusan muktamad ukuran pengaruh, satu-langkah digunakan. PJ satu-
langkah dan kebolehjadian maksimum (KM) satu-langkah memberikan kesimpulan
yang sama dengan ukuran jarak lelaran penuh. Secara perbandingan, didadapati
bahawa PJ satu-langkah memberikan keputusan yang lebih baik daripada KM satu-
langkah berdasarkan nilai jarak Cook dan jarak kebolehjadian yang diperolehi. Juga
didapati bahawa jarak Cook adalah lebih baik daripada jarak kebolehjadian dari

segi bilangan cerapan yang dikesan sebagai berpengaruh.
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CHAPTER1

INTRODUCTION

GENERAL OVERVIEW

In the early concept of regression expansion, many researchers concentrated
on the residuals to detect weaknesses in models. Residuals were also used to
indicate odd data points. Plots like residual plots versus projection values, and
residual plots versus projection variables were recommended. Tests on residuals
were practiced in most statistical analyses with the help of computer programmes.
However, problems still arise whereby residual failed to fulfil normal assumptions.
These problems initiated the use of other techniques on regression problems. Some

of these techniques were able to improve the results of the estimation.

In the later years, efforts were directed towards the identification of isolated
points and extreme cases. This procedure was known as regression diagnostic, and
it helped to detect potential cases that could influence estimates of the regression.
The procedure was also designed to assist researchers in making the decision

whether the assumptions made on the model are suitable and valid. Literatures by



Cook (1977, 1979), Andrews and Pregibon (1978), Cook and Weisberg (1980),

Belsley et al. (1980), and Cook and Weisberg (1982), introduced several diagnostic
measurements in order to detect and identify influential individual or group cases

withrespect to the parameter estimates.

Cook proposed that the influence of data point be tested using distance

measurement,
D, =By~ B X X (B, ~ PMsc?) (1.01)
i=1..,n
where ﬁ indicates an estimate for £ with full data. Full data in this context refers

to the failure time' for all observations that can be obtained until the study is
completed, while ,B(,) indicates estimate for B by deleting data point 7, XX is a

positive (semi-) definite matrix, s is the parameter number, and o is the variance.
Equation (1.01) becomes the basis for most distance measurements in detecting the

influence of an observation or a case.

Influence diagnostics which have been popular in terms of their
implementations are Cook’s D, DFBETAS and DFFITS (see Belsley et al 1980;
Cook and Weisberg, 1982). These distance measurements are formed through

standardized residuals and diagonal matrix for observation from Hessian matrix

(H=X(XX)"X"). The diagnostic of influence that is built based on the least

" The time observed on individual or object from one original point to the time an anticipated event
occurs,



square method needs to be adjusted in order to accommodate non-linear model.

Pregibon (1981) and Cook and Weisberg (1982) contributed a lot towards the
analysis of influence for models involving non-linear models. Cook (1986) also
introduced the method of global measures to assess small distractions in models
and applied it to linear regression analysis. The application of global measure
analysis to specific problems has been described in several recent publications.
Reid and Crepeau (1985) treated the influence function for proportional hazard
regression model (PHRM), Bin Daud (1987) and Barlow (1997) used PHRM to
analyse global measures, Bechman, Nashtshsheim, and Cook (1987) described
applications to mixed model analysis of variance. Escobar and Meeker (1988)
described several methods using SAS macros for local influence analyses with
censored data and parametric regression models. Thomas and Cook (1989, 1990)
applied local influence methods to generalized linear model, while Pettitt and Bin
Daud (1989) did the same for the PHRM. Weissfed and Schneider (1990)
compared numerical results of local influence analysis methods and case deletion
methods for Weibull regression analysis with censored data. Wellman and Gunst
(1991) proposed one-step approximation to Cook’s distance to identify influential
points within the context of linear measurement error models, and Escobar and
Meeker (1992) described new interpretations for some local influence statistics and
showed how these statistics can be extended and complemented to the traditional

case deletion influence statistics for linear least squares.



Studies on diagnostic and influence in regression originally involved full

data. In survival analysis?, where most observations have to be censored, the study

of the compatibility of the models and influence diagnostic becomes necessary.

Survival models, like other statistical models, can also be considered as
situational estimates to a more complex process, and may, therefore, give a less
definite result. This can give rise to doubts about the models. A variation study on
the results of the analysis with small modifications on the data is then necessary.
Therefore, one important factor in statistical analysis is to conduct a study on result
suitability. Residual value and Hessian matrix are useful components in detecting
extreme points, but, they cannot be used to assess the effect on model suitability in
general, and parameter estimate, in particular. In this research, we extend the
techniques of studying result suitability of a survival model focusing on competing

risks model.

Several researchers have used competing risks in their studies. Kimball
(1969) compared two models for the estimation of competing risks from grouped
data. Gail (1975) compared actuarial model with other models of competing risk in
analysis for failure time data. Prentice et al. (1978) discussed the analysis of failure
times in the presence of competing risks based on Cox model. Holt (1978)
compared two models of competing risks with special reference to matched pair
experiments. Larson (1984) used log-linear model. Larson and Dinse (1985) and

Kuk (1992) fitted more complex models incorporating different failure types. Lubin

?Analysis for failure time data



(1985) and Kay (1986) analysed competing risks via PHRM for prostate cancer

data. Farewell (1986) considered a mixture of logistic regression and Weibull
regression. Dinse (1986) developed a likelihood-based approach, which leads to
nonidentifiability and breaks down if the hazard functions of the competing risks
are proportional. Gray (1988) used competing risks analysis in reliability study for
comparing the probability of failures of a certain type being observed among
different groups. Robins and Greenland (1989), and Bagai et al. (1989) used non-
parametric approach on two independent risks. Heckman and Honorore (1989)
discussed threats to competing risk model. Benichou and Gail (1990) looked into
estimated absolute cause-specific risk in cohort studies. Goetghebeur and Ryan
(1990) derived a modified logrank test to compare survival in two groups while
Dewanji (1992) suggested a modification of that approach. Narendranathan and
Stewart (1991) described simple methods for testing various hypotheses of
proportionality between the cause-specific hazards in competing risks model.
Taylor (1995) studied a logistic regression with a Kaplan-Meier estimator.
Goetghebeur and Ryan (1995) used PHRM to analyse competing risks survival data
when failure types are missing for some individuals. Lunn and McNeil (1995) and
Flehinger et al. (1998) analysed competing risks by using PHRM and the hazard
function, respectively. Flehinger et al. (1996) discussed masking failure situation,
whereby failure times are assumed to be irrelevant. Lam (1998) suggested
distribution-free tests for the equality of k cause-specific hazard rates in a
competing risks model and Chao (1998) used mixture models for fitting long-term

survival data with competing risks.



