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This thesis discussed nonlinear modeling and measures of nonlinear
behaviour. A set of data, representing the average weight of dried tobacco
leaves (in

Several nonlinear models were used to fit the data, however only the
Gompertz and the Logistic models were found to be suitable. The estimates of
the parameters were calculated by using the Gauss-Newton algorithm in S-

PLUS Programming Language.

A good estimator was the one which had the properties closed to the
behaviour of a linear estimate. The nonlinear behaviour of the estimates was
assessed using two different approaches, namely the analytical and the
empirical approaches. These approaches were employed so that they could

complement the existence of any laggings .
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The study showed that the analytical approach of curvature measures of Bates
and Watts could measure the average nonlinearity but could not determine the
parameters that caused the nonlinear behaviour. Meanwhile, the bias formula
of Box could only give the percentage of the extent to which the parameter
estimates may exceed or fall short of the true parameter value, but could not

be used to compare different parameterizations.

An advantage of using direct measure of skewness of Hougaard was that it
was scale-independent and could be used to measure nonlinearity in different
parameterizations. The empirical approach of simulation studies had
successfully revealed the full extent of the nonlinear behaviour of the

estimates and at the same time, suggested useful reparameterizations.

Reparameterization was used in order to remove or reduce the nonlinear
behaviour of the parameter estimates. The study showed that the nonlinear
behaviour of the parameter estimates was successfully reduced after
reparameterization. The Logistic model in a reparameterized model function
was found to best fit the data as it has the lo

therefore the closest-to-linear behaviour .
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Tesis ini membincangkan permodelan taklinear dan sukatan tingkahlaku
taklinear. Satu set data yang mewakili purata berat daun tembakau kering
sepokok (dalam gram) mengikut masa dalam minggu, digunakan dalam
penyelidikan ini. Beberapa model taklinear digunakan untuk memodelkan
data, walau bagaimanapun hanya model Gompertz dan model Logistic sahaja
yang didapati sesuai. Nilai-nilai penganggar dikira menggunakan pendekatan

Gauss- Newton dalam bahasa komputer S-PLUS.

Penganggar yang baik ialah penganggar yang tingkahlakunya hampir sama
dengan penganggar linear. Tingkahlaku taklinear dinilai menggunakan dua

pendekatan yang berbeza iaitu secara analitik dan empirik. Pendekatan yang



berbeza digunakan supaya dapat mengimbangi sebarang kekurangan yang

wujud.

Kajian mendapati pendekatan analitik sukatan kelencongan Bates dan Watts
dapat mengukur tahap sifat taklinear secara purata, tetapi tidak dapat
menentukan parameter yang menyebabkan wujudnya tingkahlaku taklinear
dalam model. Rumus pincang oleh Box pula hanya dapat memberi peratusan
sejauh mana sesuatu penganggar kurang atau lebih daripada nilai yang
sepatutnya tetapi tidak dapat digunakan sebagai pengukur taklinear untuk

perbandingan dua pemparameteran yang berbeza.

Kelebihan yang ada menggunakan ukuran kepencongan oleh Hougaard ialah
ianya adalah bebas skala dan boleh digunakan untuk menilai tingkahlaku
taklinear dalam pemparameteran yang berbeza untuk dibuat satu
perbandingan. Pendekatan empirik dalam kaedah simulasi pula dapat
mendedahkan sejauh mana tingkahlaku taklinear penganggar dan pada

masa yang sama mencadangkan pemparameteran semula yang berguna.

Pemparameteran semula digunakan untuk mengurangkan atau membuang
tingkahlaku taklinear penganggar. Kajian menunjukkan tingkahlaku taklinear
penganggar dapat dikurangkan dengan jayanya selepas proses
pemparameteran semula. Model Logistic dalam fungsi model yang

diparameterkan semula telah dipilih sebagai model yang lebih baik untuk



memodelkan data yang diberi kerana model ini mempunyai tingkahlaku

taklinear yang terkecil dalam sukatan kelencongan penganggarnya dan

dengan itu yang paling hampir dengan tingkahlaku linear.
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CHAPTER 1

INTRODUCTION

One of the important tasks in statistics is to find the relationships, if any, that
exist in a set of variables. In data modeling, one of the variables, often being
called the response or dependent variable is denoted by y. This variable
normally becomes our particular interest. The other variable, which we
normally call explanatory variable or independent variable or regressor, is to

explain the behaviour of y, and is denoted by x.

In order to have a rough idea of some relationship between y and x, we
normally do a scatter plot of y against x whereby we can express this

relationship via some function x and mathematically we can write it as
v, = f(x,0)+¢ [1.1]
where <9=(<91,¢92,...,«9p)7is a set of p unknown parameters and ¢, is an

additive error term. If the errors ¢ (t=1,2,...,n) satisfy E(g)=0 and

Var(g,)=c?, then the value & which minimises the sum of squares of

1

residuals

n

S(0) Z - f(x,0)F [1.2]



is called the least squares estimate of &. The model function f(x,8) is

determined by the parameter vector 6 and the experimental settings x,.

Therefore a different set of parameters can yield a different model function.

Ifwe introduce  f£,(6) = f(x,,6) then the sum of squares function [1.2] can

be written as
$@) =|y- 1) [1.3]

where f(6’)=[f](¢9),f2(¢9),...,f,,(¢9)]T and the double vertical bars indicate the
length of a vector. The geometric interpretation of S(8) is that, it is the square
of the distance between the vector y and f(6) in an n-dimensional sample
space. If we substitute values for 8 in f(8) , the f(6) will trace a p-

dimensional surface which we call as solution locus in this sample space
(Bates and Watts, 1980). Therefore, the least squares estimate 6 is the

parameter value such that f(é) is the point in the solution locus closest toy.

Most algorithms for computing the least squares estimate 6 are based on a

local linear approximation to the model. If we take a fixed parameter value, 6°,

the model function is approximated by

f(x,@);f(x,0°)+2p:(0,—a° [1.4]

where p= number of parameters.

17



Equivalently, [1.4] can be written as
R 0
f(@)zf(@ )+Z(91—91 )12 [15]
1=1

- ¥(x9)
a0

where v, =[v.(x),v,(x,),0 v, (x)] = ( i=1,2,...,p) is evaluated at

g =g"

When using linear approximation, we are to replace the solution locus by it

tangent plane at f(@o), and at the same time to impose a uniform co-ordinate
system on that tangent plane. Bates and Watts (1980 & 1988) termed these
two components of the linear approximation as the planar assumption and the

uniform co-ordinate assumption respectively.

The measures, which indicate the adequacy of a linear approximation, are
called the measures of the nonlinearity. The very first attempt to measure
nonlinearity was made by Beale in 1960 (Ratkowsky, 1983). Box also
presented a formula for estimating the bias in the least square estimators
which is known as the Box bias formula (Cook, 1986). Ratkowsky ( 1983) used
simulation studies not only to predict bias to the correct order of magnitude but
also to the correct extent of nonlinear behaviour of the model. Bates and Watts
also developed new measures of nonlinearity but it was based on the
geometric concept of curvature (Bates and Watts, 1980). To determine how

planar the expectation surface is and how uniform the parameter lines are on

18



the tangent plane, Bates and Watts used second derivatives of the
expectation function or the model function f(x,,d) to derive curvature

measures of intrinsic and parameter effect nonlinearity.

As Ratkowsky (1989) pointed out that although the bias formula introduced by
Box has been used as a measure of the extent to which parameter estimates
may exceed or fall short of the true parameter values, it is not an accurate
measure for comparing parameters in two different parameterisations. He
also noted that the percentage bias, which is obtained from the Box's bias
formula, is not location-independent since it is possible to obtain a high
percentage bias simply because the values of the estimates are close to zero.
To overcome this problem, we therefore use a direct measure of skewness
introduced by Hougaard (1985), and the curvature measures of nonlinearity

introduced by Bates and Watts (1980).

In this study, we will employ all the four measures to assess nonlinearity. Our
major aim is to achieve models that behave very much close to linear models.
If the extent or degree of nonlinearity is considerably high, we will then do a
reparameterisation on the models. Using the Box's formula, as the bias is
expressed as percentage of the least square estimate of the parameter, if the
absolute value of the percentage bias is in excess of 1%, this indicates that

the nonlinear behaviour is readily unacceptable.

19



The statistical significance of intrinsic and parameter effect nonlinearity of

Bates and Watts may be assessed by comparing these values with L

JF

where F=F(p, n-p, «) is obtained from the F -distribution table
corresponding to significance level «. The solution locus may be considered

to be sufficiently linear over an approximate 95% confidence region if intrinsic

nonlinearity is less than . Similarly, the projected parameter lines of 4

1
JF
may be assumed to be sufficiently parallel and uniformly spaced if

parameter effect is less than L.

JF

One of the advantages of using simulation studies is that we can study the
sampling properties of the least square estimators. Using the parameter
estimates obtained from the simulation studies, we will calculate the first four

moments of the set of estimates, namely, the sample mean m,, the sample

variance m,, the skewness coefficient g, = —-, and the kurtosis coefficient

m,?

2 =(m—;)—3 where m; and m, are the third and the fourth sample moments
L]
about the mean respectively. Based on the above four moments, we then

examine whether the estimator exhibits normal behaviour by performing a

standard-normal distribution test on the moments said earlier.

20



The closeness of the set of simulated parameter estimates approaching to a

normal distribution can also be visually assessed by examining the histogram
of each parameter. In fact, the histogram will clearly illustrate whether the least

square estimators having a negative or positive skewness.

To calculate the Hougaard direct measure of skewness, we need to find the
estimate of the third moment of each parameter and standardise it using the
appropriate element of asymptotic covariance matrix. As there is a close link
between the extent of nonlinear behaviour of an estimator and the extent of
nonnormality in the sampling distribution of the estimator, the standardised
third moment is then used as a guide whether the estimator is close-to-linear
or contains some considerable nonlinearity. If the standardised third moment
of the parameter is less than 0.1, then the estimator of the parameter is said to
be very close-to-linear behaviour. If it is in between 0.1 and 0.25, then the
estimator is reasonably close-to-linear. However if the standardised third
moment is greater than 0.25, the skewness is already very apparent.
Therefore, for any standardised third moments exceeding a value of 1, this

indicates that the nonlinear behaviour is already unacceptable.

As we noted, some of these measures of nonlinearity do not identify the
nonlinear-behaving  parameters, nor do they suggest suitable
reparameterisations, hence we would rely on the histograms of the parameter

estimates obtained from our simulation studies. As suggested by Ratkowsky
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(1983), a histogram with a long right-hand tail characterise a lognormal
distribution, so to reparameterise the model, he suggested a replacement of
the parameter in the model function by the exponential of the parameter. On
the other hand, a histogram with a long left-hand tail suggests a replacement
of the parameter by a logarithm of the parameter. A comparison of the various
measures of the nonlinearity for each parameter estimate before and after the
reparameterisation, will reveal whether the reparameterisation really do

improve the nonlinear models to behave closer to linear models.

Statement of the Problem

Nonlinear models are defined as models having at least one parameter
appears nonlinearly, whereby at least one of their derivatives with respect to
any parameters are not independent of their parameters. In the estimation
properties of these models, nonlinear models differ greatly if compared to
linear models. In linear models, with the assumption that the errors are
independent, and identically distributed (i.i.d), they will result to having
unbiased, normally distributed, and minimum variance estimators. However,

nonlinear models only tend to do so as the sample sizes become very large.

In this study of nonlinear modeling, a set of experimental data representing the

average weight (in grams) of dried tobacco leaves per tree against the time in

week was obtained from MARDI, Serdang. The sample size of this set of data
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is similar to those actually obtained in practice by scientists in agricultural
research. So with the given data, we are to fit the data using appropriate
models and finally will choose the ones that behave very close to linear

models.

This research will focus on three aspects of nonlinear modeling. The first is to
estimate the least square estimators of the parameters that exist in the
proposed nonlinear models. In order to estimate the parameters of the model,
we will use least square method as mentioned earlier. Unfortunately, unlike a
least square estimator of a parameter in linear model, a least square estimator
of a parameter in a nonlinear model has unknown properties for finite sample
size. Nevertheless, Ratkowsky (1983) proposed that as sample sizes
increases, we might observe that the estimator will tend to become more and
more unbiased, more and more normally distributed and approach a minimum
possible variance. The solution for approximately minimum variance is
addressed by the use of iterative numerical methods. In this study, we will
employ Gauss-Newton method as it is favoured for its fast convergence
characteristic, provided if we have good initial parameter estimates or starting

values.

The second part of the study is to measure the nonlinearity in the parameters.

Various widely used methods will be incorporated; the Box bias formula, the

Bates and Watts curvature measure, the Ratkowsky simulation studies and
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the Hougaard direct measure of skewness. A comparison for the various
nonlinear measures for the specified nonlinear models and parameters will be
done. This is then will be used as a guideline for making reparameterisations.

Our final part of the research is to reparameterise the initial or basic model.
One specified model can have different parameterisations, by which it is
meant that the parameters of the new parameterisations or
reparameterisations are related to the old parameterisations by an expression
that involves parameters only (Ratkowsky,1983). Bates and Watts (1980) refer
to various reparameterisations of the same specified nonlinear model as
model functions and in this study we will adopt the same terminology. As
Ratkowsky (1983) suggested it that reparameterisations would actually do
improve the model function to behave closer-to-linear model provided that

the intrinsic nonlinearity is always less than the parameter effect.

Some Key Words and Definition
For the sake of completeness, a brief review of some important concepts that
were used frequently in this study is given below. Some important key words

include relative curvature measures, parameter effect, intrinsic nonlinearity,

linear approximation and solution locus.
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