

UNIVERSITI PUTRA MALAYSIA

CHEMICAL CONSTITUENTS AND BIOLOGICAL ACTIVITIES OF FLAVONOIDS FROM HYDROPONICALLY GROWN PEGAGA (CENTELLA ASIATICA, LINN., URBAN) EXTRACTS

FEZAH BT. OTHMAN

FSAS 2003 16

CHEMICAL CONSTITUENTS AND BIOLOGICAL ACTIVITIES OF FLAVONOIDS FROM HYDROPONICALLY GROWN PEGAGA (*CENTELLA ASLATICA*, LINN., URBAN) EXTRACTS

By

FEZAH BT. OTHMAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of Requirements for the Degree of Master of Science

March 2003

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

CHEMICAL CONSTITUENTS AND BIOLOGICAL ACTIVITIES OF FLAVONOIDS FROM HYDROPONICALLY GROWN PEGAGA (CENTELLA ASIATICA, LINN., URBAN) EXTRACTS

By

FEZAH OTHMAN

February 2003

Chairman: Associate Professor Dr. Radzali B. Muse, Ph.D.

Faculty: Science and Environmental Studies

This study was carried out mainly to determine the major flavonoid compounds present in *Centella asiaticae* extracts and their allelopathic, anti-microbial and anti-inflammatory activities. The yield of extracts of *C. asiatica* was also determined and it was found that methanol was the most effective solvent to obtain crude extract from *C. asiatica*. Analysis on the nutrient composition of *C. asiatica* showed that the mean values of the nutrients analysed were about the same among the four groups (leaf, petiole including stolon, root and whole plant). The mineral profiles showed that *C. asiatica* leaf contains significantly (p<0.05) higher levels of P, Fe, Na and Mg compared to other parts; Ca and K contents were significantly (p<0.05) higher in the root part compared to other parts of *C. asiatica*. The level of vitamin C also was found significantly (p<0.05) higher in the leaf part compared to petiole including stolon, root and whole plant of *C. asiatica*.

Determination of total polyphenol content showed that fresh samples of *C*. *asiatica* exhibited significantly (p<0.05) higher content of total polyphenol compared to air-dried samples. Similarly, the content of salicylic acid was found significantly (p<0.05) higher in fresh samples (especially from the root part) compared to air-dried samples of *C. asiatica*. In the antioxidant studies using the ferric thiocyanate (FTC) and thiobarbituric acid (TBA) methods, it was found that the root extract of *C. asiatica* exhibited significantly (p<0.05) higher percentage of total antioxidant activity compared to other *C. asiatica* extracts but lower when compared to the reference antioxidants (α -tocopherol and butylated hydroxytoulene, BHT).

Analysis of flavonoid compounds using HPLC method revealed that catechin, luteolin, quercetin and kaempferol were present as the major flavonoid compounds in the leaf extracts of *C. asiatica*, while catechin, rutin, quercetin and naringin were present as the major flavonoid

extracts. Results from both seed germination and anti-microbial assays indicated that the extracts of *C. asiatica*, especially the methanol extract might contain some bioactive compounds that are able to affect the biological activity of the seeds and microbes used in the experiments. In the anti-inflammatory studies, both *C. asiatica* methanol and water extracts exhibited significant (p<0.05) levels of anti-inflammatory activities. Thus, with the presence of flavonoids and other compounds with possible cytotoxicity and antioxidative action in *C. asiatica*, coupled with favourable amounts of minerals and vitamins, it is worth promoting this plant (*C. asiatica*) as a potential anti-inflammatory agent in the future.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

UNSUR-UNSUR KIMIA DAN AKTIVITI-AKTIVITI BIOLOGI FLAVONOID EKSTRAK PEGAGA (*CENTELLA ASLATICA*, LINN., URBAN) YANG DITANAM SECARA HIDROPONIK

Oleh

FEZAH OTHMAN

Febuari 2003

Pengerusi: Profesor Madya Dr. Radzali B. Muse, Ph.D.

Fakulti: Sains dan Pengajian Alam Sekitar

Kajian ini telah dijalankan terutamanya untuk mengenalpasti sebatian flavonoid utama dan kesan ekstrak-ekstraknya ke atas aktiviti-aktiviti allelopatik, antimikrobial dan anti-inflamatori. Hasil-hasil ekstrak *C. asiatica* juga telah dikenalpasti dan didapati metanol merupakan pelarut yang paling berkesan untuk mendapatkan ekstrak kasar dari *C. asiatica*. Analisis terhadap komposisi nutrien *C. asiatica* menunjukkan nilai nutrien purata dalam *C. asiatica* adalah hampir sama di antara empat kumpulan (daun, petiol termasuk stolon, akar dan tumbuhan keseluruhan). Analisis profil mineral bahagian daun menunjukkan kandungan P, Fe, Na dan Mg signifikan (p<0.05) paling tinggi berbanding dengan bahagian lain; Ca dan K signifikan (p<0.05) paling tinggi pada bahagian daun berbanding dengan bahagian petiol termasuk stolon, akar serta keseluruhan pokok *C. asiatica*.

Penentuan polifenol total menunjukkan sampel segar ada mengandungi polifenol total yang signifikan (p<0.05) paling tinggi jika dibanding dengan sampel kering-udara. Kandungan asid salisilik juga didapati signifikan (p<0.05) paling tinggi pada sampel segar (terutama pada bahagian akar) berbanding dengan sampel C. asiatica yang kering-udara. Dalam kajilidikan antioksidan, menggunakan kaedah ferrik tiosianat (FTC) dan asid tiobarbiturik (TBA), didapati bahagian akar C. asiatica menunjukkan aktiviti antioksidan total yang signifikan tertinggi (p<0.05) berbanding dengan kawalan dan bahagian lain tetapi lebih rendah daripada kawalan rujukan (tokoferol α dan hidroksitoulena butilat, BHT). Analisis sebatian-sebatian flavonoid dengan menggunakan kaedah HPLC telah menunjukkan katekin, luteolin, kuersetin dan kaempferol adalah komponen flavonoid utama dalam ekstrak daun, sementara katekin, rutin, kuersetin dan naringin adalah komponen flavonoid utama dalam ekstrak Keputusan yang didapati dari asai-asai percambahan biji benih dan antiakar. mikrobial telah menunjukkan ekstrak C. asiatica, terutamanya ekstrak metanol berkemungkinan mengandungi sebatian-sebatian bioaktif yang mampu mempengaruhi aktiviti-aktiviti biologi biji benih dan mikrob yang digunakan di dalam ujikaji-ujikaji.

Dalam kajilidikan aktiviti biologi anti-inflamatori, kedua-dua ekstrak metanol dan air *C. asiatica* menunjukkan paras aktiviti anti-inflamatori yang signifikan (p<0.05) berbanding dengan kawalan. Oleh itu, dengan kehadiran flavonoid dan lainlain sebatian yang bersifat sitotoksik dan antioksidatif pada *C. asiatica*, tumbuhan ini (C. asiatica) berpotensi untuk dicadangkan sebagai agen anti-inflamatori pada masa akan datang.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest appreciation to my supervisors, Associate Professor Dr. Radzali Muse, Prof Dr. Maziah Mahmood, Associate Professor Dr. Johari Ramli and Associate Professor Dr. Mohd. Aspollah Sukari for their guidance, help, knowledge and encouragement and critical review towards the completion of my thesis. I would like to thank Associate Professor Dr. Nor Aripin Shamaan, En. Ismail Omar, Associate Professor Dr. Mohd Arif Syed, Associate Professor Dr. Juzuhayati Arshad, Dr. Nazamid Shaari, Dr. Azizah Abd. Hamid, Dr. Mohd. Yunus Shukor, Dr. Azlan Jualang and Dr Aziz Ahmad for their useful comments and suggestions throughout the run of the research. I also would like to extend my gratitude to En. Onn, En. Ibrahim, En. Osman, En. Khalid, Pn. Siti Rodiah, En. Shamsuddin, En. Zamros and En. Hussin (from Biochemistry and Microbiology Department, FSAS), En. Bakari and En. Ibrahim (Nutrition Laboratory, FKVSP), En. Halim and En. Mohd. Khairi (Biochemistry Laboratory, FSMB), En. Sugeng and Pn. Ratna Asmah (Chemistry Laboratory, FSAS), En. Hajaraih (Microbiology Laboratory, FKVSP), Pn. Sapiah (Histology Laboratory, FKVSP) and Pn. Siti Muskinah (Nutrition Laboratory, FPSK) for their technical assistance and support in the field

Government of Malaysia and Universiti Putra Malaysia, I am truly grateful for the financial support from which I was able to complete my research work successfully. Last but not least, I want to thank my family and friends for their love, support and encouragement throughout my study.

I certify that an Examination Committee met on 27th February 2003 to conduct the final examination of Fezah Bt. Othman on her Master of Science thesis entitled "Chemical Constituents and Biological Activities of Flavonoids from Hydroponically Grown *Centella asiatica*, L., Urban (Pegaga)" in accordance with Universiti Putra Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) regulation 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

MOHD. ARIF SYED, Ph.D.

Associate Professor Department of Biochemistry and Microbiology, Faculty of Science and Environmental Studies, Universiti Putra Malaysia. (Chairman)

RADZALI MUSE, Ph.D.

Associate Professor Department of Biochemistry and Microbiology, Faculty of Science and Environmental Studies, Universiti Putra Malaysia. (Member)

MAZIAH MAHMOOD, Ph.D.

Professor Department of Biochemistry and Microbiology, Faculty of Science and Environmental Studies, Universiti Putra Malaysia. (Member)

JOHARI RAMLI, Ph.D.

Associate Professor Department of Biochemistry and Microbiology, Faculty of Science and Environmental Studies, Universiti Putra Malaysia. (Member)

MOHD. ASPOLLAH HJ. SUKARI, Ph.D.

Associate Professor Department of Chemistry, Faculty of Science and Environmental Studies, Universiti (Member)

GULAM RUSUL RAHMAT ALI, Ph.D. Professor / Deputy Dean, School of Graduate Studies, Universiti Putra Malaysia.

Date: 2 6 JUN 2003

This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirements for the degree of Master of Science. Members of the Supervisory Committee are as follows:

RADZALI MUSE, Ph.D.

Associate Professor Department of Biochemistry and Microbiology, Faculty of Science and Environmental Studies, Universiti Putra Malaysia. (Chairman)

MAZIAH MAHMOOD, Ph.D.

Professor Department of Biochemistry and Microbiology, Faculty of Science and Environmental Studies, Universiti Putra Malaysia. (Member)

JOHARI RAMLI, Ph.D.

Associate Professor Department of Biochemistry and Microbiology, Faculty of Science and Environmental Studies, Universiti Putra Malaysia. (Member)

MOHD. ASPOLLAH HJ. SUKARI, Ph.D.

Associate Professor Department of Chemistry, Faculty of Science and Environmental Studies, Universiti Putra Malaysia. (Member)

AINI IDERIS, Ph.D. Professor / Dean School of Graduate Studies, Universiti Putra Malaysia. Date: **12** JUN 2003

DECLARATION

I hereby declare that thesis is based on my original work except for equations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

mus (

FEZAH OTHMAN Date:: 2 4 MAR 2003

TABLE OF CONTENTS

Page

ABSTRACT	ii
ABSTRAK	
ACKNOWLEDGEMENTS.	
APPROVAL	
DECLARATION	
LIST OF TABLES	
LIST OF FIGURES	
LIST OF ABBREVIATIONS	xvi

CHAPTER

Ι	INTRODUCTION.	1
	Background	1
	Objectives of the Study	3
II	LITERATURE REVIEW	4
	Phytochemicals in Funtional Medicine	4
	How are Phytochemicals Produced in Plants?	· 5
	Flavonoids	6
	Determination of Flavonoids	8
	What is Hydroponics?	9
	Hydroponics: A Promising Technique for Plant Secondary	
	Metabolite Production	10
	Biological Activities of Phytochemicals	12
	Phytochemicals as Antioxidants	12
	Phytochemicals as Anti-microbial Agents	17
	Anti-microbial Activity of Flavonoids	18
	Mechanisms of Anti-microbial Actions	20
	Phytochemicals in Inflammation	23
	Flavonoids Modulation of Inflammatory Cells	26
	Non-steroidal Anti-inflammatory Drugs (NSAIDs)	29
	How NSAIDs Relieve Inflammation	30
	Phenylbutazone	30
	Medicinal Plants in Malaysia	32
	Centella asiatica (Linn., Urban)	33
	Morphology of C. asiatica	34
	Traditional Uses of C. asiatica	36
	Chemical Constituents of C. asiatica	37
	Scientific Evidence for the Effectiveness of C. asiatica	40

т	т	٦
- 1	L	I
-	-	-

MATERIALS AND METHODS	43
Plant Materials	43
Yield of Extracts of C. asiatica	44
Reagents	44
Determination of Yield of Extract of C. asiatica	44
Nutrient Composition of C. asiatica (Linn., Urban)	44
Preparation of Plant Materials	45
Moisture Analysis	45
Crude Protein Analysis	46
Fat Analysis	47
Crude Fibre Analysis	47
Ash Analysis	48
Mineral Analysis: Calcium, Iron, Sodium, Magnesium,	10
Phosphorus and Potassium	48
Ascorbic Acid: Indophenol Dye Method	51
Reagents	51
Standardization of the Indophenol Reagents	52
Preliminary Test for Appreciable Amount of Basic	52
Substances	53
Sample Preparation	54
Total Polyphenol Assay	55
Reagents	55
Preparation of Standard Polyphenol Solutions and Extracts	
of C. asiatica	55
Determination of Total Polyphenol	56
Salicylic Acid Assay	57
Reagents	57
Preparation of Standard Salicylic Acid Solutions and	57
Extracts of <i>C. asiatica</i>	58
Determination of Salicylic Acid in <i>C. asiatica</i>	58
	59
Total Antioxidant Assays	59 60
Reagents	60
Preparation of <i>C. asiatica</i> Extracts	60 60
Ferric Thiocyanate (FTC) Method Thiobarbituric Acid (TBA) Method	61
Analysis of Flavonoids in <i>C. asiatica</i> Extracts	62
Thin Layer Chromatography (TLC) Method	62
	62
Reagents Preparation of <i>C. asiatica</i> Extracts	
Standard Flavonoids	63
Adsorbent	63
Chromatography Solvents	64
	64
Detection	65
Spectrophotometry Method.	65
Preparation of Extracts Determination of Flavonoid Contents	65
	66
High Performance Liquid Chromatography Method	00 66
Extraction and Hydrolysis Conditions	00

Determination of Flavonoids Content	67
Biological Activities of C. asiatica	68
Seed Germination Assay	69
Anti-microbial Assay	70
Preparation of Extracts	7 0
Preparation of Media	71
Testing for Anti-microbial Activities	72
Anti-inflammatory Assay	73
Experimental Animals	73
Preparation of Extracts	73
Carrageenan-induced Paw Oedema Assay	74
TPA-induced Ear Oedema Assay	77
Histopathological Studies of the Oedematous Ear	78
Staining and Coverslipping	81
RESULTS AND DISCUSSIONS	82
Yield of Extracts of C. asiatica	82
Nutrient Composition of C. asiatica	84
Total Polyphenol Content in C. asiatica	87
Salicylic Acid Content in C. asiatica	89
Total Antiovidant Activity of C asiatica	92

RESULTS AND DISCUSSIONS	82
Yield of Extracts of C. asiatica	82
Nutrient Composition of C. asiatica	84
Total Polyphenol Content in C. asiatica	87
Salicylic Acid Content in C. asiatica	89
Total Antioxidant Activity of C. asiatica	92
Analysis of Flavonoid Compounds in C. asiatica Using TLC,	
Spectrophotometry and HPLC Methods	96
Biological Activities of C. asiatica Extracts	108
Allelopathic Activity of C. asiatica Extracts	109
Anti-microbial Activity of C. asiatica Extracts	117
Anti-inflammatory Activity of C. asiatica Extracts	121

CONCLUSIONS	132
REFERENCES	134
APPENDICES	155
Appendix A1	155
Appendix A2	156
Appendix A3	157
Appendix A4	158
Appendix A5	159
Appendix A6	160
Appendix A7	161
BIODATA OF THE AUTHOR	162

LIST OF TABLES

Table		Page
1	Sources of antioxidants from higher plants	14
2	Plants with anti-microbial activity	19
3	Major classes of anti-microbial compounds from plants	21
4	Terpenoids of Centella asiatica	39
5	Composition of mobile phase for RP-HPLC analysis of flavonoid compounds	68
6	Yield of extracts from different parts (leaf, petiole and stolon, and root) of <i>C. asiatica</i> using solvents of different polarity	83
7	Nutrient composition of different parts (whole plant, leaf, petiole and stolon, and root) of C. asiatica	85
8	Qualitative and Quantitative Analyses of Flavonoid Compounds in <i>C. asiatica</i> by (i) Thin Layer Chromatography, (ii) Spectrophotometry and (iii) High Performance Liquid Chromatography Methods	97
9	Maximal UV absorption by standard flavonoids in analar grade methanol	98
10	Anti-microbial activities of methanol, petroleum ether and water extracts of <i>C. asiatica</i>	118
11	Time course of anti-inflammatory activity of <i>C. asiatica</i> extracts in carrageenan-induced hind paw oedema in ICR mice.	122
12	Effect of topical application of <i>C. asiatica</i> extracts on the TPA-induced ear oedema in ICR mice	124

LIST OF FIGURES

Figure		Page
1	Chemical structures of some flavonoid compounds	7
2	Modulation of key enzymes in the arachidonic acid cascade by phytochemicals during inflammation	27
3	Chemical structures of Phenylbutazone	31
4	Centella asiatica (Linn., Urban), "Pegaga Kampung" variety	35
5	Chemical structures of some triterpenoids	37
6	Injection of carrageenan into the sub plantar region of the mouse hind paw.	75
7	Measurement of oedematous hind mouse paw using a Vernier caliper	76
8	A general procedure for making tissue slides	79
9	Total polyphenol content (mg pyrogallol eq./g dry weight tissue) in different parts (leaf, petiole and stolon, and root) of fresh and air-dried samples of <i>C. asiatica</i>	88
10	Salicylic acid content (mg salicylic acid eq./g dry weight tissue) in different parts (leaf, petiole and stolon, and root) of fresh and air-dried samples of C. asiatica	91
11	(i) Absorbance values of extracts from different parts (leaf, petiole including stolon and root) of <i>C. asiatica</i> using FTC method. (ii) Total antioxidant activity of extracts from different parts of <i>C. asiatica</i> using FTC method	93
12	Total antioxidant activity of extracts from different parts (leaf, petiole and stolon, and root) of C. asiatica using TBA method.	95
13	Thin layer chromatogram of <i>C. asiatica</i> using n-buthanol: acetic acid: water, BAW (4:1:5) as the development chromatography solvent	100
14	Thin layer chromatogram of C. asiatica using benzene: ethyl acetate: methanol, BEM (5:1:4) as the development	
	chromatography solvent	102

Figure

15	Effect of different concentrations (0, 10, 100, 250, 500 and 1000 mg/ml) of methanol extract of <i>C. asiatica</i> on the germination of <i>S. oleracea</i> and <i>C. frutescens</i> seeds	110
16	Effect of different concentrations (0, 10, 100, 250, 500 and 1000 mg/ml) of petroleum ether extract of <i>C. asiatica</i> on the germination of <i>S. oleracea</i> and <i>C. frutescens</i> seeds	111
17	Effect of different concentrations (0, 10, 100, 250, 500 and 1000 mg/ml) of water extract of <i>C. asiatica</i> on the germination of <i>S. oleracea</i> and <i>C. frutescens</i>	112
18	Effect of methanol extract of <i>C. asiatica</i> at a concentration of 250 mg/ml on the growth of <i>S. oleracea</i> seeds	114
19	Effect of methanol extract of <i>C. asiatica</i> at a concentration of 250 mg/ml on the growth of <i>C. frutescens</i> seeds	115
20	Cidal effect (clear inhibition zone) of C. asiatica extracts on B. subtilis.	119
21	HE-stained vertical sections of mouse ear	127
22	A standard curve for estimation of total polyphenol concentration (mg pyrogallol eq. / ml) in C. asiatica extracts.	154
23	A standard curve for estimation of salicylic acid concentration (mg salicylic acid eq. / ml) in <i>C. asiatica</i> extracts	155
24	A standard curve for estimation of apigenin concentration (mg apigenin / ml) in <i>C. asiatica</i> extracts	156
25	A standard curve for estimation of kaempferol concentration (mg kaempferol / ml) in C. asiatica extracts	157
26	A standard curve for estimation of quercetin concentration (mg quercetin / ml) in <i>C. asiatica</i> extracts	158
27	A standard curve for estimation of rutin concentration (mg rutin / ml) in <i>C. asiatica</i> extracts	1 5 9
28	HPLC profiles of mixed standard flavonoids (A), leaf (B), root (C) and petiole (including stolon) (D) extracts of <i>Centella asiatica</i> and. A: apigenin, C: catechin, K: kaempferol, L: luteolin, N: naringin, Q: quercetin and R: rutin.	160

LIST OF ABBREVIATIONS

5, 12 - HPETE - 5, 12 - hydroperoxyeicosatetraenoic acid

A - absorbance

- AAS atomic absorption spectrophotometer
- AMP adenosine monophosphate
- AOA activity of antioxidant
- BAW n-buthanol: acetic acid: water
- BEM benzene: ethyl acetate: methanol
- BHA butylated hydroxyanisole
- BHT butylated hydroxytoulene
- ¹³C NMR ¹³C nuclear magnetic resonance
- COX cyclooxygenase
- CV coefficient of variation
- Da dalton
- DCPIP 2, 6 dichloro-phenol-indophenol
- DNA deoxyribonucleic acid
- FTC ferric thiocyanate
- HCl-hydrochloric acid
- HPLC high performance liquid chromatography
- LTB₄ leukotriene B₄
- M Molar
- mg milligram
- min minute
- ml milliliter

- mm millimeter
- mM milliMolar
- MPO-myeloperoxidase
- NA nutrient agar
- Na₂CO₃ sodium carbonate
- NaOH sodium hydroxide
- NB nutrient broth
- nm nanometer
- NSAIDs non-steroidal anti-infl
- OH hydroxyl group
- PDA potato dextrose agar
- PGE₂ prostaglandin E₂
- PGH₂ prostaglandin H₂
- PVP polyvinyl pyrrolidone
- RNA-ribonucleic acid
- ROS reactive oxygen species
- RP-HPLC reversed-phase high-performance liquid chromatography
- t_R retention time
- SEM standard error of the mean
- SD standard deviation
- SOD superoxide dismutase
- TBA thiobarbituric acid
- TBHQ tert-butylhydroquinone
- TECA titrated extract of Centella asiatica
- TFA trifluoroacetic

 $\ensuremath{\text{TLC}}\xspace$ – thin layer chromatography

TPA-12-0-tetradecanoyl-phorbol-acetate

UV - ultra violet

v/v – volume per volume

wt - weight

w/v – weight per volume

xviii

CHAPTER 1

INTRODUCTION

Background

Over the years, plants play important roles both as staple foods and sources of natural products for food supplements. The dependence of early human civilisation on herbs and medicinal plants for the purpose of healing the sick was well documented in the history of Egyptians, Chinese and Romans (Esnon, 2000).

Inflammatory-related diseases such as arthritis, asthma and rheumatic fever are always considered serious health problems in many countries. Although many drugs and therapeutic techniques have been developed, treatment of these diseases remains unsatisfactory (Samuelsson, 1993). With the increasing number of global elderly population and rapid changing lifestyle in many countries, the demand for drugs to treat inflammatory-related diseases especially arthritis and asthma is expected to increase.

Many drugs from aspirin to cortisone control inflammation. At present, aspirin-like non-steroidal anti-inflammatory drugs (NSAIDs), corticosteroids and methotrexate are commonly used for treating arthritis and other inflammatory diseases. Unfortunately, many of these drugs are claimed to have less side effects but usually they also reduce anti-inflammatory activity (Frishman, 2002; Buttgereit *et al.*, 2001; Takeuchi *et al.*, 2001; Fosslien, 1998; Simon, 1997). Therefore, there

is an urgent need in finding new anti- inflammatory agents that are more potent but with minimal side effects.

In Malaysia, the indigenous and naturalised plants are recognised by most rural communities as important sources of medicines. It is estimated that there are about 12,000 species of flowering plants and out of these about 1,300 species have been claimed to be medicinal (Teo *et al.*, 1990). One of these plants that naturally have some potential sources of fine phytochemicals and some interesting biological activities is *Centella asiatica*. *C. asiatica* is usually consumed fresh or as a fresh juice and the Malays sometimes used it as a tonic to treat mental fatigue, anxiety and post partum wounds. A range of biological activities has been found for *C. asiatica* extracts including wound healing activity, anti-inflammatory, antimicrobial and toxicity effects (Teik, 1997). Some of these effects may be attributed to the use of *C. asiatica* in folk medicine.

Today, products of *Centella* such as *Centella* juice, tea and tablets can be easily found at pharmacies and departmental stores. Many researchers and ethnobotanists from developed countries have exploited *C. asiatica* in order to investigate the biological activities of the fine chemicals presents in this plant. As a result, numerous data have been reported on the therapeutic effects of *Centella* especially the triterpenoid compounds from *Centella* (Kartnig, 1988). The triterpenes of *Centella* are extensively studied for their potential as improving factor in wound healing (Shukla *et al*, 1999a; Morriset *et al*, 1987), anti-ageing (Kartnig, 1988) and memory enhancing (Veerendra and Gupta, 2002).

Objectives of The Study

Even though recent studies conducted internationally have confirmed the efficacy of *Centella asiatica* triterpenoids, primarily in the treatment of skin injuries and diseases, data on the content of flavonoids and anti-inflammatory activities of *C. asiatica* are still lacking. In view of this reason, studies were carried out based on the following objectives:

1) To determine and to quantify the major flavonoid compounds present in *C*. *asiatica* using thin layer chromatography (TLC), spectrophotometry and reversedphase high-performance liquid chromatography (RP-HPLC) methods. In addition, total antioxidants as well as total polyphenol and salicylic acid content in *C*. *asiatica* extracts were also determined.

2) To examine the biological activities of *C. asiatica* extracts using seed germination, anti-microbial and anti-inflammatory assays.

CHAPTER 2

LITERATURE REVIEW

Phytochemicals in Functional Medicine

Since the beginning of life, plants have played a major role in influencing human being and similarly, men have influenced the forms and characteristics of plants in helping them to adapt to man's progress. Historically, plants have been beneficial to the medical community and humans have looked to plants as their primaty medicinal source (Carper, 1988).

According to Lin (1994), the term phytochemical refers to any compound found in plants and the word is commonly used to define the biologically active molecules in plants that are not classified as vitamins or nutrients by more traditional definitions. While phytochemicals have key functions in plants, they may also play a significant role in human health. Phytochemicals have recently gained much attention from the research community since studies have consistently shown several benefits from consuming these natural phytochemical compounds.

For nearly thirty years, synthetic drug research dominated the pharmaceutical industry until natural drug research began to make a come back around 1990 when it was realised that even with the advanced computerized technology that exists today, scientist cannot abandon nature as a source for drugs

(Pizzorno & Murray, 1987). This is because, plants contain plenty of powerful phytochemical defences, many of which are too complex to be accurately replicated in the laboratory. This chemical complexity is probably due to the building of defence mechanisms to avoid enemies in nature and thus made the plants as a rich source of "medicines" (Das, 1989).

Many important drugs today are plant-derived and the most widely used pharmaceutical in the world is aspirin, which was originally derived from the plant *Filipendula ulmaria* (Middleton & Drzewieki, 1985). Ephedrine, which is derived from the species *Ephedra sinica*, is presently used as a bronchodilator (White *et al.*, 1997). Several drugs come from the opium poppy (*Papaver somniferum*), including morphine, an analgesic and papaverine, an antispasmodic (Calixto *et al.*, 2000). The rosy periwinkle (*Catharanthus roseus*) has given the medical community two very important drugs: vinblastine, a treatment for Hodgkin's disease and vincristine, a treatment for paediatric leukaemia (Noble, 1990). Despite this, less than 1,325 of the world's 265,000 flowering plant species have been thoroughly tested for their medicinal potential (Soepadmo, 1999).

How Are Phytochemicals Produced in Plants?

Plants have developed extensive systems for managing reproduction, response to injury, protection from ultraviolet light, and resistance to disease. Attending to these important functions requires communication between plant cells and between the plant and its environment. Plant use phytochemicals both as a mean of "communication" and as a response to environmental stress.

"Communication" also occurs between phytochemicals and the human organism when we eat plant-based foods (Borris, 1996). The process by which the plant produces the chemicals needed for this communication, i.e., signalling molecules, is referred to as secondary metabolism (Cuppett, 1998). The secondary metabolites produced from this process influence diverse communication activities. This is much agreed by Alaluf *et al.*, (2002) who mentioned that secondary metabolites such as carotenoids, not only provide colour to signal pollinators such as birds and insects but they also protect DNA from damage in dry and/or light intensive environments.

There may be well over 10,000 different phytochemical secondary metabolites that have biological activity in humans. Based on chemical structure and synthesis pathways, these phytochemicals are catergorized into at least 14 general classes: carotenoids, coumarins, flavonoids, glucurates, indoles, isothiocyanates, lignans, monoterpenes, diterpenes and triterpenes, phenolic acids, phtalides, phytates, polyacetylenes, and sulfides. Of these, the flavonoids are the largest class, with over 4,000 different representatives (Harborne and William, 2000).

Flavonoids

The flavonoids are polyphenolic compounds possessing 15 carbon atoms; two benzene rings joined by a linear three-carbon chain. Figure 1 shows chemical structures of some flavonoid compounds.