

UNIVERSITI PUTRA MALAYSIA

SEARCH FOR NEW ANTIOXIDANTS AND OTHER RELATED BIOACTIVE COMPOUNDS FROM ZINGIBERACEOUS SPECIES

HABSAH MOHAMAD

FSAS 2002 55

SEARCH FOR NEW ANTIOXIDANTS AND OTHER RELATED BIOACTIVE COMPOUNDS FROM ZINGIBERACEOUS SPECIES

By

HABSAH MOHAMAD

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

November 2002

Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

SEARCH FOR NEW ANTIOXIDANTS AND OTHER RELATED BIOACTIVE COMPOUNDS FROM ZINGIBERACEOUS SPECIES

By

HABSAH MOHAMAD

November 2002

Chairman: Prof. Dr. Md. Nordin Hj. Lajis

Faculty: Science and Environmental Studies

Thirty-one species from Zingiberacea family were screened for their antioxidant (FTC method), antimicrobial (disc diffusion method), and antitumour promoting (EBV EA assay method) activities. Three species, *Alpinia zerumbet, Alpinia rafflesiana* and *Etlingera elatior*, were selected for further study, based on their promising preliminary biological activities. Five known compounds were isolated from the rhizomes of *Alpinia zerumbet*, namely 5,6-dehydrokawain, flavokawin B, 1,7-diphenyl-5hydroxy-6-heptene-3-one, (-)-pinocembrin, and a mixture of stigmasterol and β-sitosterol. From the fruits of *Alpinia rafflesiana*, seven compounds were isolated, namely 5,6-dehydrokawain, flavokawin B, 1,7-diphenyl-5hydroxy-6-heptene-3-one, (-)-pinocembrin, cardamonin, (-)-pinostrobin, and 2',3',4',6'-tetrahydroxychalcone. This is the first report on the isolation of 2',3',4',6'-tetrahydroxychalcone from *Alpinia*. From the rhizomes of

Etlingera elatior, 11 compounds were isolated, namely stigmast-4-en-3-one, stigmast-4-ene-3,6-dione, stigmast-4-en-6 β -ol-3-one, stigmast-4-en-6 α -ol-3one, a mixture of stigmasterol and β -sitosterol, 5α , 8α -epidioxyergosta-6, 22dien-3 β -ol, 16-hydroxylabda-8(17),11,13-trien-16,15-olide, tetracosanoic acid, 1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)-1,6-heptadiene-3,5-dione or demethoxycurcumin 1,7-bis(4-hydroxyphenyl)-2,4,6-1,7-bis(4-hydroxyphenyl)-1,4,6-heptatrien-3-one. 16heptatrienone, Hydroxylabda-8(17),11,13-trien-16,15-olide and 1,7-bis(4-hydroxyphenyl)-2,4,6-heptatrienone were identified as new compounds. The structure of these compounds were established based on spectral data and comparison with literature data.

The three diarylheptanoids, demethoxycurcumin, 1,7-bis(4hydroxyphenyl)-2,4,6-heptatrienone, 1,7-bis(4-hydroxyphenyl)-1,4,6heptatrien-3-one, were found to have high antioxidant activity. 5,6-Dehydrokawain and (-)-pinocembrin showed weak antioxidant activity. Flavokawin B was found to be cytotoxic to a number of cell lines including MCF-7 and T-47D (Human, mammary carcinoma, positive estrogen receptor). Cardamonin showed cytotoxic activity against CEM-SS cell line. 5,6-Dehydrokawain, 1,7-diphenyl-5-hydroxy-6-heptene-3-one, (-)pinocembrin, stigmast-4-en-3-one, stigmast-4-ene-3,6-dione, stigmast-4-en-6β-ol-3-one, and tetracosanoic acid showed antitumour promoting activity.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia bagi memenuhi keperluan ijazah Doktor Falsafah

PENCARIAN SEBATIAN ANTIOKSIDAN BARU DAN SEBATIAN BIOAKTIF YANG BERKAITAN DARIPADA SPESIES ZINGIBERACEA

Oleh

HABSAH MOHAMAD

November 2002

Pengerusi: Prof. Dr. Md. Nordin Hj. Lajis

Fakulti: Sains dan Pengajian Alam Sekitar

Tiga puluh satu spesies daripada keluarga Zingiberaceae telah dikaji untuk menentukan aktiviti antioksidan (kaedah FTC), aktiviti antimikrobial (kaedah pembauran cakera), dan aktiviti anti-penggalakan tumor (kaedah EBV EA). Tiga spesies, iaitu Alpinia zerumbet, Alpinia rafflesiana dan Etlingera elatior, telah dipilih untuk kajian lebih lanjut, berdasarkan aktiviti biologi yang tinggi daripada ekstrak mentah spesies ini. Lima sebatian yang diketahui telah dipencilkan daripada rizom Alpinia zerumbet, , iaitu 5,6-dehidrokawain, flavokawin B, 1,7-difenil-5-hidroksi-6-hepten-3-on, (-)pinosembrin, dan campuran β-sitosterol dan stigmasterol. Tujuh sebatian telah dipencilkan daripada buah Alpinia rafflesiana, iaitu 5,6dehidrokawain, flavokawin B, 1,7-difenil-5-hidroksi-6-hepten-3-on, (-)-2',3',4',6'-(-)-pinostrobin dan pinosembrin, kardamonin, tetrahidroksikalkon. Ini merupakan laporan yang pertama mengenai 2',3',4',6'-tetrahidroksikalkon daripada Alpinia. Sebelas pemencilan

sebatian telah diasingkan daripada rizom *Etlingera elatior*,, iaitu stigmast-4en-3-on, stigmast-4-en-3,6-dion, stigmast-4-en-6 α -ol-3-on, stigmast-4-en-6 β ol-3-on, campuran β -sitosterol dan stigmasterol, 5α ,8 α -epidioksiergosta-6,22-dien-3 β -ol, 16-hidroksilabda-8(17),11,13-trien-16,15-olida, asid tetrakosanoik, 1-(4-hidroksi-3-metoksifenil)-7-(4-hidroksifenil)-1,6heptadien-3,5-dion, 1,7-bis(4-hidroksifenil)-2,4,6-heptatrienon dan 1,7bis(4-hidroksifenil)-1,4,6-heptatrien-3-on. Sebatian 16-hidroksilabda-8(17),11,13-trien-16,15-olida dan 1,7-bis(4-hidroksifenil)-2,4,6-heptatrienon merupakan sebatian baru. Struktur sebatian-sebatian ini dikenalpasti berdasarkan data spektroskopi dan perbandingan dengan data literatur.

Ketiga-tiga sebatian diarilheptanoid, iaitu demetoksikurkumin, 1,7-bis(4hidroksifenil)-2,4,6-heptatrienon dan 1,7-bis(4-hidroksifenil)-1,4,6heptatrien-3-on, menunjukkan aktiviti antioksidaan yang tinggi. 5,6-Dehidrokawain dan (-)-pinosembrin menunjukkan aktiviti antioksidaan yang rendah. Flavokawin B didapati sitotoksik terhadap beberapa talian sel termasuk MCF-7 dan T-47D (sel karsinoma mamari manusia, estrogen reseptor positif). Kardamonin didapati sitotoksik terhadap talian sel CEM-SS. Sebatian 5,6-dehidrokawain, 1,7-difenil-5-hidroksi-6-hepten-3-on, (-)pinosembrin, stigmast-4-en-3-on, stigmast-4-en-3,6-dion, stigmast-4-en-6 α ol-3-on, stigmast-4-en-6 β -ol-3-on dan asid tetrakosanoik menunjukkan aktiviti anti-penggalakan tumor.

ν

ACKNOWLEDGEMENTS

In the name of Allah, the most Gracious and the most Merciful.

My sincere gratitude goes to a number of people, without whose support this thesis would not have been possible. In particular, I would like to extend my heartfelt gratitude to

My supervisor:

Prof. Dr. Md. Nordin Hj.Lajis

My co-supervisors:

Prof. Dr. Abdul Manaf Ali

Assoc. Prof. Dr. Mohd Aspollah Hj. Sukari

Assoc. Prof. Dr. Taufiq Yap Yun Hin

Others:

Kolej Universiti Sains dan Teknologi Malaysia, Terengganu.

Prof. Dr. Nobuji Nakatani, Dr. Hiroe Kikuzaki, En. Ahmad Abdul Rahman,

Assoc. Prof. Dr. Khozirah Shaari, En. Nasir Tsafe Umar, En. Abdul Ghafar

Colleagues:

Amran, Mukram, Lim Yang Mooi, Yih Yih, Faridah, Pn. Rohaya, Samsul and Sharin.

I certify that an Examination Committee met on 26th November 2002 to conduct the final examination of Habsah Mohamad on her Doctor of Philosophy thesis entitled "Search for New Antioxidants and Other Related Compounds from Zingiberaceous Species" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

FAUJAN HJ. AHMAD, Ph.D.

Associate Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Chairman)

MOHD NORDIN HJ. LAJIS, Ph.D.

Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

MOHD ASPOLLAH HJ. SUKARI, Ph.D.

Associate Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

ABDUL MANAF ALI, Ph.D.

Professor Faculty of Food Science and Biotechnology Universiti Putra Malaysia (Member)

TAUFIQ YAP YUN HIN, Ph.D., CChem., MRSC Associate Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

NOBUJI NAKATANI, Ph.D.

Professor Food Chemistry, Graduate School of Human Life Science Osaka City University (Independent Examiner)

SHAMSHER MOHAMAD RAMADILI, Ph.D. Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: **3** 1 DEC **2002**

The thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

MOHD NORDIN HJ. LAJIS, Ph.D.

Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Chairman)

MOHD ASPOLLAH HJ. SUKARI, Ph.D.

Associate Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

ABDUL MANAF ALI, Ph.D. Professor

Faculty of Food Science and Biotechnology Universiti Putra Malaysia (Member)

TAUFIQ YAP YUN HIN, Ph.D., CChem., MRSC

Associate Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

eij

AINI IDERIS, Ph.D. Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date: 13 FEB 2003

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any degree at UPM or other institutions.

tenser

HABSAH MOHAMAD

Date: 31st December 2002

TABLE OF CONTENTS

	Page		
ABSTRACT	ii		
ABSTRAK			
ACKNOWLEDGEMENTS			
APPROVAL	vii		
DECLARATION	ix		
TABLE OF CONTENTS	х		
LIST OF TABLES			
LIST OF FIGURES	XV		
LIST OF ABBREVIATIONS	xxi		
CHAPTER			
1 INTRODUCTION	1		
2 LITERATURE REVIEW			
Antioxidants in Disease Prevention	7		
What Are Antioxidants and Free Radicals?	7		
Damage Caused by Free Radicals to Lipids, Proteins and DNA	10		
Mechanism of Lipid Oxidation and Antioxidant Defenses	11		
Natural Food Sources and Dietary Antioxidants in the	16		
Prevention of Specific Cancers			
Cancer Development and Mechanism of Prevention by	19		
Antioxidants	01		
Zingiberacea Family	21		
The Ginger Family (Zingiberaceae)	21		
Use and Commercial Importance of Zingiberaceae	24 25		
Phytochemical Study on Zingiberaceae Bioactive Compounds from Zingiberacea Family	23 26		
Overview on <i>Alpinia</i>	20 34		
Botany and Geographic Distribution	34 34		
Economic and Ethnopharmacognostic Use of <i>Alpinia</i>	34 36		
Phytochemical Work on <i>Alpinia</i>	37		

Phytochemical Work on Alpinia37A. zerumbet (Pers.) B. L. Burtt & R. M. Smith (A. nutans Rosc.)77Botanical Aspect of A. zerumbet77Uses of A. zerumbet79Phytochemical and Biological Activity Study of A. zerumbet79A. raffles81Botanical Aspect of A. raffles81Phytochemical and Biological Activity Study of A. raffle83

х

	Overview on Etlingera: The 'Nicolaia' Group Etlingera Elatior (Jack) R.M. Smith Botany and Geographic Distribution Uses, Medicinal Value, Biological Activity and Phytochemical Study of Etlingera elatior	83 84 84 86
	Biosynthesis	86
	Biosynthesis of Terpenoids	87
	Biosynthesis of Flavonoids, Styrylpyrones and	91
	Diarylheptanoids	
3	METHODOLOGY	
	General Instrumentation	95
	Chromatographic Methods	95
	Solvents	97
	Isolation of Compounds from Alpinia zerumbet	97
	Plant Material	97
	Extraction and Isolation	97
	Isolation of Constituents from Alpinia rafflesiana	99
	Plant Material	99
	Extraction and Fractionation of MeOH extract	99
	Isolation of AR1, AR2, AR3, AR6, AR7, AR9 and AR5	102
	Isolation of Constituents from Etlingera elatior	106
	Plant Material	106
	Fractionation of CHCl ₃ Extract	106
	Isolation of N4, N5 and N6	107
	Fractionation of Hexane Extract	110
	Isolation of N1, N8, N9, N10 and N12	110
	Fractionation of Ethyl Acetate Extract	111
	Isolation of NSH2	114
	Isolation of NSH4 and NSH5	114
	Bioassay Procedures	129
	Antioxidant Activity	129
	Antimicrobial Assay	132
	Antitumour Promoting Activity	133
	Cytotoxicity Assay	134
4	COMPOUNDS ISOLATED FROM ALPINIA ZERUMBET,	
	ALPINIA RAFFLESIANA AND ETLINGERA ELATIOR	_
	Structural Elucidation of the Compounds	138
	Alpinia zerumbet	140
	Isolation of the Compounds from <i>Alpinia zerumbet</i>	140

Isolation of the Compounds from Alpinia zerumbet140Characterisation of the Compounds Isolated from141A. zerumbet141

Alpinia Rafflesiana	169
Isolation of the Compounds from the Fruits of A. rafflest	iana 1 69
Characterisation of the Compounds Isolated from	170
A. raffle	
Etlingera elatior	187
Isolation of the Compounds from <i>E. elatior</i>	187
Characterisation of the Compounds Isolated from <i>E. ela</i>	
Biogenesis in <i>Etlingera elatior</i>	262
Relationship between the Species	265
5 BIOLOGICAL ACTIVITY STUDIES	
Biological Activity of Zingiberaceae Plant Extracts	267
Screening for Antioxidant Activity	267
Screening for Antimicrobial Activity	278
Screening for Anti-tumour Promoting Activity	280
Biological Activities of Alpinia zerumbet	284
Antioxidant Activity of Fractions from CHCL ₃ Extr	ract 284
of Alpinia zerumbet	
Antioxidant and DPPH Free Radical Scavenging Activiti	ies of 286
Pure Compounds Isolated from Alpinia zerumbet	
Antitumour Promoting Activity of Pure Compounds Iso	lated 289
from Alpinia Zerumbet	
Cytotoxic Activity of Pure Compounds Isolated from <i>Alp zerumbet</i>	vinia 290
Biological Activities of Etlingera elatior	293
Antioxidant Activity of Fractions From Ethyl Aceta	ate 293
Extracts of <i>Etlingera elatior</i>	
Antioxidant Activity of Diarylheptanoids from Ethyl Ace	etate 294
Extract of <i>Etlingera elatior</i>	
Antitumour Promoting Activity of Etlingera elatior	298
Cytotoxic Activity of Extracts from Etlingera elatior	301
Biological Activities of Alpinia rafflesiana	302
DPPH Free Radical Scavenging Activity	303
Antitumour Promoting Activity of Extracts and Fraction	ns 305
from Alpinia rafflesiana	im 206
Cytotoxic Activity of Extracts, Fractions and Cardamon	in 306
from Alpinia rafflesiana	
6 CONCLUSION	309
BIBLIOGRAPHY	
BIODATA OF THE AUTHOR	

LIST OF TABLES

Table		Page
2.1	Classification of antioxidants	9
2.2	Free radicals and their effects	10
2.3	Natural food sources of antioxidants	18
2.4	Order Zingiberales	22
2.5	Tribes and genera of Zingiberaceae family	23
2.6	Alpinia species from Peninsular Malaysia and Singapore	35
2.7	Chemical variations in the Alpinia species from Malaysia	43
2.8	Compound isolated from A. blepharocalyx	45
2.9	Compounds isolated from A. katsumadai	47
2.10	Compounds isolated from A. officinarum Hance	48
2.11	Compounds isolated from Alpinia oxyphylla	49
2.12	Compounds isolated from Renealmia alpinia Rottb.	50
2.13	Compounds isolated from Alpinia formosana	51
2.14	Compounds isolated from Alpinia speciosa	52
2.15	Compounds isolated from Alpinia japonica	53
2.16	Compounds isolated from Alpinia chinensis	54
2.17	Compounds isolated from A. calcarata	56
2.18	Compounds isolated from A. flabellata	57
4.1	The assignment of protons and carbons of 5,6-	143
	dehydrokawain (AN1)	
4.2	The assignment of protons and carbons of flavokawin B (AN3)	15 0
4.3	The assignment of protons and carbons of 1,7-Diphenyl-5- hydroxy-6-heptene-3-one (AN4)	156
4.4	Assignment of protons and carbons of (-)-pinocembrin (AN5)	162
4.5	Assignment of carbons for stigmasterol and β -sitosterol	168
4.6	Assingment of protons and carbons of cardamonin (AR3)	171
4.7	Assignment of protons and carbons of 5-hydroxy-7- methoxyflavanone ((-)-pinostrobin) (AR9)	176
4.8	Assingment of protons and carbons for 2',3',4',6'-	183
4.0	tetrahydroxychalcone	105
4.9	Protons assignment of N1, N12, N4 and N6	208
4.10	Carbons assignment of N1, N12, N4 and N6	209
4.11	Assignments of protons and carbon of N5	216
4.12	Assignments of carbons of 16-hydroxylabda-8(17),11,13-	225
	trien-6,15-olide (N9)	
4.13	Assignment of protons of 16-hydroxylabda-8(17),11,13-trien- 16,15-olide (N9)	226

4.14	Assignments of protons and carbons of 1-(4-hydroxy 3- methoxyphenyl)-7-(4-hydroxyphenyl)-1,6-heptadiene-3,5-	237
	dione or demethoxycurcumin (NSH2)	
4.15	Assignment of carbons and protons of	245
	1,7-bis(4-hydroxyphenyl)-2,4,6-heptatrienone (NSH4)	
4.16	Assingment of protons and carbons of 1,7-bis(4-	255
	hydroxyphenyl)-,4,6-heptatrien-3-one (NSH5)	
5.1	Minimum inhibitory dose (μ g/disc) for antimicrobial activity	279
	of Zingiberaceae extracts	
5.2	Antitumour promoting activity of Zingiberaceae species	282
5.3	DPPH free radical scavenging activity of compounds isolated	289
	from Alpinia zerumbet.	
5.4	Antitumour promoting activity screening of compounds	290
	isolated from Alpinia zerumbet	
5.5	Cytotoxic activity of flavokawain B	292
5.6	Antitumour promoting activity of crude extracts of <i>Etlingera</i>	298
	elatior	
5.7	Antitumour promoting activity of compounds isolated from	299
	Etlingera elatior	
5.8	Cytotoxic activity of <i>Etlingera elatior</i> extracts	302
5.9	Antitumour promoting activity of the fractions from MeOH	306
	extract of Alpinia rafflesiana	
5.10	Cytotoxic effect of crude MeOH extracts, fractions and	308
	cardamonin from Alpinia rafflesiana against	
	CEM-SS cell line	

LIST OF FIGURES

Figure

1.1	Strategy for plant-derived drug discovery	5				
2.1	Steps in lipid autoxidation	12				
2.2	Inhibition of lipid oxidation by antioxidant (AH)					
2.3	Mechanism of chain-breaking inhibition by BHT	14				
2.4	$^{1}\text{O}_{2}$ quenching mechanism of ∞ - tocopherol	15				
2.5	$^{1}\text{O}_{2}$ quenching mechanism of ∞ - tocopherol	15				
2.6	Metal - chelating mechanism for flavones	16				
2.7	Mechanism of carcinogenesis	20				
2.8	Antioxidant gingerol related compounds and diarylheptanoids of ginger	28				
2.9	Antioxidant and anti-inflammatory compounds from	29				
	Zingiber cassumunar					
2.10	Curcuminoids from Curcuma domestica	30				
2.11	Antioxidant compounds from Curcuma xanthorhiza	31				
2.12	Antioxidant compounds from Alpinia speciosa	31				
2.13	Plant of Alpinia zerumbet	78				
2.14	Inflorescence of <i>Alpinia zerumbet</i>	78				
2.15	Flower of Alpinia zerumbet	78				
2.16	Ripe Fruits of Alpinia zerumbet	78				
2.17	Alpinia rafflesiana foliage	82				
2.18	Inflorescence of Alpinia rafflesiana	82				
2.19	Unripe fruits of Alpinia. rafflesiana	82				
2.20	Flower of Alpinia rafflesiana	82				
2.21	Flower of Alpinia rafflesiana	82				
2.22	Flower shoots and rhizome of Etlingera elatior	85				
2.23	Fruits of Etlingera elatior	85				
2.24	Flower of Etlingera elatior (pink)	85				
2.25	Flower of Etlingera elatior (white)	85				
2.26	Flower of Etlingera elatior (red)	85				
2.27	Biosynthetic relationship in the terpenoids series	87				
2.28	Squalene as origin of triterpenes and steroids	89				
2.29	Elimination of the methyl group at the C-14 position	90				
2.30	Elimination of the methyl group at the C-4 position	90				
2.31	Modifications of the C-7 side chain of phytosterols	90				
2.32	Postulated biogenesis among several labdane diterpenes	91				
2.33	Mainstreams of secondary metabolism	92				
2.34	Biosynthesis of flavonoids	93				
2.35	Biosynthesis of styrylpyrone	93				
2.36	Biosynthesis of diarylheptanoids and gingerol related compound	94				
3.1	Isolation of 5,6-dehydrokawain (AN1)	100				

3.2	Isolation of AN2, AN3,AN4 and AN5	101
3.3	Isolation of AR1,AR2, AR3, AR6, AR7, AR5 and AR9	105
3.4	Fractionation of CHCl ₃ extract of <i>Etlingera elatior</i>	108
3.5	Isolation of N4, N5 and N6	109
3.6	Fractionation of hexane extract and isolation of N10, N1,	112
	N8, N12, N9 and N4	
3.7	Fractionation of ethyl acetate extract Etlingera elatior	113
3.8	Isolation of NSH2	115
3.9	Isolation of NSH4 and NSH5	116
4.1	Strategy of structural elucidation	139
4.2	Structure of 5,6-dehydrokawain (AN1)	143
4.3	Mass spectrum of 5,6-dehydrokawain (AN1)	144
4.4	IR spectrum of 5,6-dehydrokawain (AN1)	144
4.5	¹ H NMR spectrum of 5,6-dehydrokawain (AN1)	145
4.6	¹³ C NMR spectrum of 5,6-dehydrokawain (AN1)	146
4.7	HMBC spectrum of 5,6-dehydrokawain (AN1)	147
4.8	Structure of flavokawin B (AN3)	149
4.9	IR spectrum of flavokawin B (AN3)	151
4.10	Mass spectrum of flavokawin B (AN3)	151
4.11	¹ H NMR spectrum of flavokawin B (AN3	152
4.12	¹³ C NMR spectrum of flavokawin B (AN3)	153
4.13	Structure of 1,7-Diphenyl-5-hydroxy-6-heptene-3-one (AN4)	155
4.14	IR spectrum of 1,7-diphenyl-5-hydroxy-6-heptene-3-one (AN4)	157
4.15	EIMS spectrum of 1,7-diphenyl-5-hydroxy-6-heptene-3- one (AN4)	157
4.16	¹ H NMR spectrum of 1,7-diphenyl-5-hydroxy-6-heptene-	158
	3-one (AN4)	
4.17	¹³ C NMR spectrum of 1,7-diphenyl-5-hydroxy-6-heptene- 3-one (AN4)	159
4.18	Structure of (-)-pinocembrin (AN5)	161
4.19	EIMS spectrum of (-)-pinocembrin (AN5)	163
4.20	Selected HMBC correlations in (-)-pinocembrin (AN5)	163
4.21	¹ H NMR spectrum of (-)-pinocembrin (AN5)	164
4.22	¹³ C NMR spectrum of (-)-pinocembrin (AN5)	165
4.23	CD and UV spectrum of (-)-pinocembrin (AN5)	166
4.24	Structure of β-sitosterol and sitosterol	167
4.25	Cardamonin	171
4.26	IR spectrum of cardamonin (AR3)	172
4.27	EIMS spectrum of cardamonin (AR3)	172
4.28	¹ H NMR spectrum of cardamonin (AR3)	173
4.29	¹³ C NMR spectrum of cardamonin (AR3)	174
4.30	5-hydroxy-7-methoxyflavanone ((-)-pinostrobin) (AR9)	176

4.31	IR spectrum of 5-hydroxy-7-methoxyflavanone	177
4.20	((-)-pinostrobin) (AR9)	400
4.32	EIMS spectrum of 5-hydroxy-7-methoxyflavanone ((-)-pinostrobin) (AR9)	177
4.33	¹ H NMR spectrum of 5-hydroxy-7-methoxyflavanone	178
7.00	((-)-pinostrobin) (AR9)	170
4.34	¹³ C NMR spectrum of 5-hydroxy-7-methoxyflavanone ((-)-	179
	pinostrobin) (AR9)	1. /
4.35	2′,3′,4′,6′-Tetrahydoxychalcone	181
4.36	HMBC correlation in the molecule of 2',3',4',6'-	182
	tetrahydoxychalcone	
4.37	¹ H NMR spectrum of 2',3',4',6'-tetrahydoxychalcone	184
	(AR5)	
4.38	¹³ C NMR spectrum of 2',3',4',6'-tetrahydoxychalcone	185
4.00	(AR5)	
4.39	EIMS spectrum $2', 3', 4', 6'$ -tetrahydoxychalcone (AR5)	186
4.40	Stigmast-4-en-3-one (N1)	190
4.41	¹ H-NMR spectrum of stigmast-4-en-3-one (N1)	191
4.42	¹³ C-NMR spectrum of stigmast-4-en-3-one (N1)	192
4.43 4.44	IR spectrum of stigmast-4-en-3-one (N1)	193
4.44 4.45	EIMS spectrum of stigmast-4-en-3-one (N1) ¹ H-NMR spectrum (expanded) of stigmast-4-en-3-one	193 194
4.40	(N1)	174
4.46	Stigmast-4-ene-3,6-dione (N12)	196
4.47	IR spectrum of stigmast-4-ene-3,6-dione (N12)	196
4.48	¹ H NMR spectrum of stigmast-4-ene-3,6-dione (N12)	197
4.49	¹ H NMR spectrum of stigmast-4-ene-3,6-dione (N12)	198
4.50	¹³ C NMR spectrum of stigmast-4-ene-3,6-dione (N12)	199
4.51	HMBC spectrum of stigmast-4-ene-3,6-dione (N12)	200
4.52	Stigmast-4-en-6β-ol-3-one (N4)	202
4.53	¹ H-NMR spectrum of stigmast-4-en-6β-ol-3-one (N4)	203
4.54	¹³ C-NMR spectrum of stigmast-4-en-6β-ol-3-one (N4)	204
4.55	EIMS spectrum of stigmast-4-en-6β-ol-3-one (N4)	205
4.56	IR spectrum of stigmast-4-en-6β-ol-3-one (N4)	205
4.57	¹ H-NMR spectrum (expanded) of stigmast-4-en-6β-ol-3-	206
	one (N4)	
4.58	Stigmast-4-en-6α-ol-3-one (N6)	207
4.59	¹ H NMR spectrum of mixture of stigmast-4-en-6α-ol-3-	210
4.60	one (N6) and N5	011
4.60	¹ H NMR spectrum (expanded) of mixture of stigmast-4-	211
161	en-6α-ol-3-one (N6) and N5	212
4.61	¹³ C NMR spectrum (expanded) of mixture of stigmast-4- en- 6α -ol-3-one (N6) and N5	212
	en-ou-or-o-one (100) and 100	

4.62	¹³ C NMR spectrum of mixture of stigmast-4-en- 6α -ol-3-one (N6) and N5	213
4.63	5α,8α-Epidioxyergosta-6,22-dien-3β-ol	215
4.64	EIMS spectrum of 5α , 8α -epidioxyergosta-6,22-dien-3 β -ol (N5)	216
4.65	¹³ C-NMR spectrum of 5α , 8α -epidioxyergosta-6,22-dien- 3 β -ol (N5)	217
4.66	¹ H-NMR spectrum of 5α , 8α -epidioxyergosta-6, 22-dien-	218
4.67	3β-ol (N5) ¹ H-NMR spectrum (expanded) of 5α,8α-epidioxyergosta- 6,22-dien-3β-ol (N5)	219
4.68	HMBC spectrum of 5α , 8α -epidioxyergosta-6,22-dien-3 β -ol (N5)	220
4.69	The characteristic mass spectral fragmentation of decalin nucleus of labdane-type diterpene	224
4.70	16-Hydroxy-8(17),11,13-labdatrien-16,15-olide (N9)	224
4.71	Selected HMBC, ¹ H- ¹ H COSY and NOESY correlation of	225
1.7 1	16-hydroxy-8(17),11,13-labdatrien-16,15-olide (N9)	220
4.72	EIMS spectrum of of 16-hydroxy-8(17),11,13-labdatrien-	227
1., -	16,15-olide (N9)	
4.73	IR spectrum of of 16-hydroxy-8(17),11,13-labdatrien-16,15- olide (N9)	227
4.74	¹³ C-NMR spectrum of 16-hydroxy-8(17),11,13-labdatrien-	228
2	16,15-olide (N9)	
4.75	¹ H-NMR spectrum of 16-hydroxylabda-8(17),11,13-trien- 16,15-olide (N9)	229
4.76	EIMS spectrum of tetracosanoic acid (N10)	231
4.77	IR spectrum of tetracosanoic acid (N10)	231
4.78	¹³ C NMR spectrum of tetracosanoic acid (N10)	232
4.79	¹ H NMR spectrum of tetracosanoic acid (N10)	233
4.80	β-diketone in its enol form	234
4.81	1-(4-hydroxy- 3-methoxyphenyl)-7-(4-hydroxyphenyl)-1,6- heptadiene-3,5-dione or demethoxycurcumin (NSH2)	236
4.82	¹ H NMR spectrum of 1-(4-hydroxy- 3-methoxyphenyl)-7- (4-hydroxyphenyl)-1,6-heptadiene-3,5-dione or	238
4.83	demethoxycurcumin (NSH2) ¹ H- ¹ H COSY correlations observed in 1-(4-hydroxy- 3- methoxyphenyl)-7-(4-hydroxyphenyl)-1,6-heptadiene-3,5- diono or demethoxycurcumin (NSH2)	239
4.84	dione or demethoxycurcumin (NSH2) NOESY correlations observed in 1-(4-hydroxy 3- methoxyphenyl)-7-(4-hydroxyphenyl)-1,6-heptadiene-3,5- dione or demethoxycurcumin (NSH2)	240

xviii

4.85	EIMS spectrum of 1-(4-hydroxy- 3-methoxyphenyl)-7- (4-hydroxyphenyl)-1,6-heptadiene-3,5-dione	241
4.86	or demethoxycurcumin (NSH2) Selected HMBC and HMQC correlations observed in 1-(4-hydroxy- 3-methoxyphenyl)-7-(4-hydroxyphenyl)-1,6- heptadiene-3,5-dione or demethoxycurcumin (NSH2)	241
4.87	¹ H- ¹ H COSY and HMBC correlations of 2,4,6- heptatrienone moeity	243
4.88	Structure and fragmentation in EIMS spectrum of 1,7- bis(4-hydroxyphenyl)-2,4,6-heptatrienone (Nsh4)	244
4.89	HMBC correlations of 1,7-bis(4-hydroxyphenyl)-2,4,6- heptatrienone	244
4.90	EIMS spectrum of 1,7-bis(4-hydroxyphenyl)-2,4,6- heptatrienone (NSH4)	246
4.91	¹³ C NMR spectrum of 1,7-bis(4-hydroxyphenyl)-2,4,6- heptatrienone (NSH4)	247
4.92	¹ H NMR spectrum of 1,7-bis(4-hydroxyphenyl)-2,4,6- heptatrienone (NSH4)	248
4.93	¹ H NMR spectrum (expanded) of 1,7-bis(4- hydroxyphenyl)-2,4,6- heptatrienone (NSH4)	249
4.94	¹ H- ¹ H CC3Y correlation spectrum of 1,7-bis(4-hydroxyphenyl)-2,4,6-heptatrienone (NSH4)	250
4.95	HMBC spectrum of 1,7-bis(4-hydroxyphenyl)-2,4,6- heptatrienone (NSH4)	251
4.96	HMQC spectrum of 1,7-bis(4-hydroxyphenyl)-2,4,6- heptatrienone (NSH4)	252
4.97	Structure and HMBC correlations of 1,7-bis (4- hydroxyphenyl)-1,4,6-heptatrien-3-one (NSH5)	254
4.98	EIMS spectrum of 1,7-bis(4- hydroxyphenyl)-,4,6- heptatrien-3-one (NSH5)	256
4.99	¹ H NMR spectrum of 1,7-bis(4- hydroxyphenyl)-,4,6- heptatrien-3-one (NSH5)	257
4.100	¹ H NMR spectrum (expanded) of 1,7-bis(4- hydroxyphenyl)-,4,6-heptatrien-3-one (NSH5)	258
4.101	¹ H- ¹ H COSY spectrum of 1,7-bis(4- hydroxyphenyl)-,4,6- heptatrien-3-one (NSH5)	259
4.102	HMBC and ¹³ C NMR spectrums of 1,7-bis(4- hydroxyphenyl)-,4,6-heptatrien-3-one (NSH5)	260
4.103	HMQC spectrum of 1,7-bis(4-hydroxyphenyl)-2,4,6- heptatrien-3-one (NSH5)	261
4.104	Biosynthesis of N1, N4 and N12 from β -sitosterol	262
4.105	Biosynthesis of N5 from ergosterol	263

4.106	Biosynthesis of 16-hydroxylabda-8(17),11,13-trien-16,15- olide	263		
4.107	Biosynthesis of NSH2, NSH5 and NSH4	264		
5.1	Antioxidant activity of <i>Alpinia</i> methanol extracts (FTC method)	271		
5.2	Antioxidant activity of <i>Alpinia</i> dichloromethane extracts (FTC method)	272		
5.3	Antioxidant activity of Costus extracts (FTC method)	273		
5.4	Antioxidant activity of Zingiber extracts (FTC method)	274		
5.5	Antioxidant activity of <i>Etlingera (Nicolaia</i> group) Extracts (FTC method)	275		
5.6	Antioxidant activity of <i>Curcuma</i> and <i>Alpinia chonchigera</i> Extracts (FTC method)	276		
5.7	Antioxidant activity of <i>Amomum</i> and <i>Etlingera</i> extracts (FTC method)	277		
5.8	Antioxidant activity of the fraction from CHCL ₃ extract of <i>Alpinia zerumbet</i>	285		
5.9	Antioxidant activity of the compounds isolated from <i>Alpinia zerumbet</i>	287		
5.10	Antioxidant activity of fractions K (Fr.K), G (Fr.G) and I (Fr.I) from ethyl acetate extracts of <i>Etlingera elatior</i>	288		
5.11	Antioxidative diarylheptanoids from <i>Etlingera elatior</i> 2			
5.12	Antioxidant activity of demethoxycurcumin (NSH2), 1,7-bis(4-hydroxyphenyl)-2,4,6-heptatrienone (NSH4) and 1,7-bis(4-hydroxyphenyl)-1,4,6-heptatrien-3-one (NSH5) (FTC method)	295		
5.13	Structure of potential antitumour promoting compound isolated from <i>Etlingera elatior</i>	296		
5.14	Structure of potential antitumour promoting compounds isolated from <i>Etlingera elatior</i>	300		
5.15	Scavenging activities of 2',4'-dihydroxy-6'- methoxychalcone (cardamonin) (1), (-)-pinostrobin (2) and 2',3',4',6'-tetrahydroxychalcone (3) on DPPH radical compared to those of quercetin and tocotrienol	304		
6.1	Compound isolated from Alpinia zerumbet and Alpinia rafflesiana	314		
6.2	Compounds isolated from Etlingera elatior	315		
6.2	Compounds isolated from Etlingera elatior	316		

LIST OF ABBREVIATIONS

[α] _D	_	specific rotation at sodium D-line
[ω]D δ	_	chemical shift in ppm
br	-	broad
COSY	_	Correlated Spectroscopy
¹³ C	_	carbon-13
CHCl ₃	-	chloroform
CH ₂ Cl ₂	_	dichloromethane
d	-	doublet
dd	_	doublet of doublets
DPPH	-	diphenyl- <i>p</i> -picrylhydrazyl
EA	-	early antigen
EBV	-	Eipstein-Barr virus
EIMS	-	Electron impact mass spectroscopy
EtOAc	-	ethyl acetate
FGHMBC	-	Field Gradient Heteronuclear Bond Connectivity (by
		2D Multiple Quantum NMR)
FGHMQC	-	Field Gradient ¹ H-Detected Heteronuclear Multiple
		Quantum Coherence (via Direct Coupling)
¹ H	-	proton
HPLC	-	High performance liquid chromatography
IC	-	inhibition concentration
id	-	internal diameter
IR	-	infrared
J		Coupling constant in Hz
Lit.	-	literature
т	-	multiplet
М	-	molar
MeOH	-	methanol
MID	-	minimum inhibition dose
Mol. wt.	-	molecular weight
mp	-	melting point
MS	-	mass spectrum/mass spectrometry
NMR	-	nuclear magnetic resonance
NOE	-	Nuclear Overhauser Enhancement
р	-	para
S	-	singlet
sh	-	shoulder
t TN/C	-	triplet
TMS	-	tetramethylsilane
TPA	-	12-O-tetradecanoylphorbol-13-acetate
UV	-	ultraviolet

CHAPTER 1

INTRODUCTION

Antioxidant is a chemical substance extremely useful to humans. It helps us to ward off many kinds of diseases related to lungs, kidneys, heart, cardiovascular system, muscle and brain, and it helps to retard the aging process. Antioxidant has the ability to prevent or delay the formation of free radicals and lipid peroxidation in the human bodies, two main causes of human diseases and aging.

Antioxidants can be obtained from synthesis and natural sources. Antioxidants from natural sources include a wide variety of compounds from a wide range of classes, including plant-based antioxidants; amino acids, peptides and protein hydrolyzates; phytates; phospholipids; and vitamin and enzymes (Shahidi, 1997). Among the plants that have been known to provide antioxidant compounds are those belonging to Zingiberaceae, or the ginger family. Most members of the Zingiberaceae family are recognizable by the characteristic aromatic leaves and fleshy rhizomes when both of them are crushed, and also by the elliptic to elliptic-oblong leaves arranged in two ranks on the leaf-shoot. The plants vary in height and size. The Zingiberaceae family comprises about 1200 species, with 1000 occuring in tropical Asia. The richest area, with 24 genera and about 600 species, is the Malesian region, which includes

Malaysia, Indonesia, Brunei, Singapore, the Philippines and Papua New Guinea. The Peninsular Malaysia itself is estimated to have about 18 genera with more than 160 species (Larsen, 1999).

Through the ages, plants from Zingiberaceae family have been frequently used as raw materials in traditional medicines and spices (Perry, 1980). Species such as Alpinia oxyphylla, Curcuma domestica, Curcuma *xanthorrhiza, Zingiber officinale, Zingiber cassumunar* and others have been documented as extremely helpful to the elders (Itokawa et al., 1981a; Burkill, 1966; Tilaar et al., 1991; Ibrahim and Rahman, 1988; Ammon et al., 1992; and Shiobara et al., 1985). To date, considerable studies have shown that Zingiberaceae species did display antioxidant property. For instance, gingerol and diarylheptanoids related compounds isolated from Zingiber officinale Rosc. have been observed to have antioxidant activity (Kikuzaki and Nakatani, 1993). In addition, Cassumunins A, B, and C from Zingiber cassumunar were claimed to dislay both antiinflammatory and antioxidant activity (Masuda and Jitoe, 1994). Zingiber is not the only genus in which antioxidant and related activities are inherent. The genus of *Curcuma* and *Alpinia* are also potent candidates to supply us with natural antioxidant and related activity compounds. Curcumin isolated from Curcuma domestica has been reported to display antioxidant activity (Toda et al., 1985). Curcuminoids from Curcuma

xantorrhiza were also declared to have promising antioxidant activity (Masuda *et al.*, 1992). In addition, 1'-acetoxychavicol acetate and 1'-acetoxyeugenol acetate isolated from *Alpinia galanga* were found to have antitumour activity (Itokawa *et al.*, 1987).

Because of the large number of species in the Zingiberaceae family, many of them are still left unstudied, as evidenced by unavailability of such reports. There is a huge opportunity for researchers to discover new antioxidant compounds from these unexplored species. Furthermore, if the plants had been selected for study, only certain parts of the plants were the focus of the research. For example, for *Alpinia zerumbet*, only the leaves (Mpalantinos *et al.*, 1998) and seeds (Hong *et al.*, 1996) have been studied thus far. In addition, only the rhizomes of *Alpinia rafflesiana* that have been studied (Sirat *et al.*, 1996), while for the case of *Etlingera elatior*, only the essential oil of flower shoots that has been studied (Wong *et al.*, 1993.

These previous successful studies, and the easy availability of a collection of the unexplored Zingiberaceae species at the Laboratory of Phytomedicine, Institute of Bioscience, Universiti Putra Malaysia and throughout the country, became the impetus for us to continue searching