SYNTHESIS AND CHARACTERIZATION OF SAMARIIUM DOPED Bi1.6Pbo.4Sr2Ca2Cu3O10 SUPERCONDUCTOR PREPARED VIA COPRECIPITATION METHOD

IMAD MOH’D KHAIR RASHID HAMADNEH

FSAS 2002 51
SYNTHESIS AND CHARACTERIZATION OF SAMARIUM DOPED
Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{10}$ SUPERCONDUCTOR PREPARED VIA
COPRECIPITATION METHOD

IMAD MOH'D KHAIR RASHID HAMADNEH

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA
2002
SYNTHESIS AND CHARACTERIZATION OF SAMARIUM DOPED Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{10}$ SUPERCONDUCTOR PREPARED VIA COPRECIPITATION METHOD

By

IMAD MOH'D KHAIR RASHID HAMADNEH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Doctor of Philosophy

September 2002
DEDICATIONS

To my wife, Lama and my son, Yazan, for their love, support and understanding....

To my late father, my mother and the family, for their love and concern....
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the Requirements for the degree of Doctor of Philosophy

SYNTHESIS AND CHARACTERIZATION OF SAMARIUM DOPED Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{10}$ SUPERCONDUCTOR PREPARED VIA COPRECIPITATION METHOD

By

IMAD "MOH'D KHAIR" RASHID HAMADNEH

September 2002

Chairman: Professor Abdul Halim bin Shaari, Ph.D

Faculty: Faculty of Science and Environmental Studies

The coprecipitation technique was used in the preparation of samarium doped Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{10}$ polycrystalline ceramic superconductor. In this study, four sites (calcium, bismuth, strontium and copper) were separately subjected to Sm doping with nominal composition ranging from $x=0$ to $x=0.3$ at different sintering times. The superconducting properties of the samples have been investigated. The pure sample, which exhibits $T_C(R=0)$ around $102-103$ K and $T_{C\text{-onset}}$ around 108 K, showed large flaky grains of $\sim 7 \mu$m in size which are randomly distributed. However at longer sintering time the pure superconductor showed a better orientation as compared to that of the short sintering time sample. The calculated value of Josephson current I_o, obtained from the ac susceptibility data showed a much higher value ($I_o=138.7 \mu$A) as compared to the conventional prepared to that of the sample prepared by conventional method.
(I₀ = 55.9 μA). This indicates better grain connectivity and higher 2223 phase content, which was confirmed by SEM photographs. In addition, the nature of the ultra fine particles of the oxalate powders produced by coprecipitation method have increased the diffusion reaction and shortened the heat treatment procedure for the sample preparation, this leads to better superconducting properties as compared to the samples prepared by conventional solid state technique where its diffusion reaction requires high sintering temperatures for long duration and sometimes several grindings.

The resistivity measurements showed the normal metallic behaviour followed by shifts in T_C(R=0) towards lower temperature as the samarium concentration increased due to the decrease in the 2223 phase and an increase in the formation of 2212 phase. However, the material lost its superconductivity at Sm concentration x > 0.20. When samarium was doped in Ca²⁺, Sr²⁺, and Cu²⁺ sites, it probably brings about changes in the hole carrier concentration which in turn alters T_C(R=0). Hence it could be deduced that the valency of the dopant has some influence on the electron pairing mechanism.

The temperature dependence of ac susceptibility data χ’ shows the shifting of the onset diamagnetism towards lower temperature as the Sm concentration increased due to the presence of low T_c phase. The imaginary component, χ’’, shows a shift in the intergranular coupling peak, Tp, towards lower temperature as the Sm concentration increased. Hence it can be deduced that the dynamic magnetic response of the samples are not only phase dependent but also dependant on the intergranular coupling. The calculated I₀ which revealed the quality of the coupling of the grains, showed a decrease
in its value as the samarium concentration increased. For highest doping percentage of samarium the values of I_0 decreased in the following order; I_0 (in Ca) $< I_0$ (in Cu) $< I_0$ (in Sr) $< I_0$ (in Bi).

The results of x-ray diffraction (XRD) pattern show that all samples with Sm concentration above $x=0.02$ contain unknown peaks which correspond to the non-superconducting phase. The intensity of these peaks increases toward higher value, as the Sm concentration increases. The volume of 2223 phase decreased drastically as the Sm concentration increases, whereas the amount of decrease varied due to the doping at different sites. In addition, there is a possibility that either Sm$^{2+}$ or Sm$^{3+}$ might have occupied other sites at the same sample.

When long sintering time was applied, the improvement in superconducting properties was obvious at low doping concentrations $x<0.06$ where the sample was still dominated by 2223 phase. Above that concentration, the grain size decreased and became short and thick, randomly distributed as compared to the pure phase. It is also observed that the superconducting properties and the microstructure improved when the sample was sintered for 48 hours and 100 hours, the high T_C phase dominates, indicating that the optimum time must be above 48 hours.
Abstrak disertasi yang dikemukakan kepada senat Universiti Putra Malaysia bagi memenuhi keperluan untuk ijazah Doktor Falsafah

SINTESIS DAN PENCIRIAN SUPERKONDUKTOR Bi_{1.6}Pb_{0.4}Sr_{2}Ca_{2}Cu_{3}O_{10} YANG DIDOPKAN DENGAN SAMARIUM MELALUI KAEDAH PEMENDAKAN BERSAMA

Oleh

IMAD "MOH'D KHAIR" RASHID HAMADNEH

Ogos 2002

Pengerusi : Profesor Dr. Abdul Halim Shaari, Ph.D
Fakulti : Sains dan Pengajian Alam Sekitar

Teknik pemendakan bersama telah digunakan bagi menyediakan superkonduktor seramik polihabtur Bi_{1.6}Pb_{0.4}Sr_{2}Ca_{2}Cu_{3}O_{10} yang didopkan dengan samarium. Dalam kajian yang dijalankan ini, empat tapak (kalsium, bismut, strontium dan kuprum) telah didopkan dengan Sm secara berasingan dengan komposisi nominal di antara julat x=0 hingga x=0.3 pada masa pensinteran yang berbeza. Sifat kesuperkonduksian bagi sampel-sampel ini telah dikaji. Di dapat sampel tulen menunjukan T_c(R=0) di antara 102 –103 K dan T_{onset} adalah sekitar 108 K. Sampel ini menunjukkan butiran besar dan berkeping yang bertaburan secara rawak dengan saiz butiran >7 μm. Pada masa pensinteran yang tinggi, superkonduktor tulen akan menunjukkan orientasi yang lebih baik berbanding orientasi pada sampel denganmassa persinteran yang lebih pendek.
Nilai perkiraan arus Josephson, I_0, yang diperolah daripada data kerentanan arus ulang alik, menunjukkan nilai yang lebih tinggi ($I_0 = 138.7 \mu A$) berbandingkan sampel yang di sediakan secara konvensional ($I_0 = 55.9 \mu A$). Ini disebabkan oleh penyambungan butir yang lebih baik dan kandungan fasa 2223 yang tinggi dan disahkan oleh gambar foto SEM. Tambahan pula, sifat semula jadi zarah halus serbuk oksalat yang dihasilkan melalui kaedah pemendakan bersama telah meningkatkan kadar tindakbalas resapan dan memendekkan tempoh proses rawatan haba dalam penyediaan sampel. Ini menghasilkan sifat kesuperkonduksian yang lebih baik berbanding dengan sampel yang disediakan menggunakan kaedah lazim iaitu tehnik tindakbalas keadaan pepejal, di mana tindakbalas resapannya memerlukan suhu persinteran yang tinggi dan lama serta turut memerlukan beberapa proses pengisaran.

Pengukuran kerintangan menunjukkan sifat logam normal dan diikuti dengan anjakan $T_C(R=0)$ kepada suhu rendah apabila kepekatan samarium meningkat. Ini disebabkan oleh pengurangan pada fasa 2223 dan peningkatan dalam pembentukan fasa 2212. Walau bagaimanapun, bahan ini akan kehilangan sifat kesuperkonduksian pada kepekatan $x>0.2$. Perubahan pada kepekatan pembawa lubang mungkin akan berlaku jika samarium didopkan pada tapak Ca$^{2+}$, Sr$^{2+}$ dan Cu$^{2+}$ seterusnya akan mengubah $T_C(R=0)$. Oleh itu bolehlah disimpulkan bahawa valensi bagi pendopan akan mempengaruhi mekanisme pasangan elektron.
Data-data kerentanan arus ulang-ali, \(\chi' \), yang bersandarkan suhu menunjukkan berlakunya suatu anjakan pada onset diamagnet akibat suhu yang lebih rendah dan pertambahan kepekatan Sm akibat kewujudan fasa \(T_C \) yang rendah. Komponen khayal, \(\chi'' \), menunjukkan anjakan pada puncak gandingan antara butiran \(T_p \) ke suhu yang lebih rendah apabila kepekatan Sm bertambah. Dengan yang demikian, bolehlah disimpulkan bahawa tindakbalas dinamik magnet sampel-sampel bukan hanya bersandarkan fasa tetapi juga bersandar pada gandingan antara butiran. Nilai kiraan \(I_0 \), menunjukkan kualiti gandingan butiran telah menunjukkan pengurangan nilainya apabila kepekatan samarium bertambah. Untuk kepekatan samarium yang paling tinggi, nilai bagi \(I_0 \) berkurangan dalam tertib berikut \(I_0(\text{dalam Ca}) < I_0(\text{dalam Cu}) < I_0(\text{dalam Sr}) < I_0(\text{dalam Bi}) \).

Keputusan pembelauan corak sinar-X atau XRD bagi semua sampel dengan kepekatan dopan Sm melebihi \(x=0.02 \), mengandungi puncak-puncak yang tidak diketahui yang berkaitan dengan fasa bukan superkonduktor. Keamatan puncak-puncak berikut didapat meningkat kepada nilai yang lebih tinggi sejajar dengan peningkatan komposisi dopan Sm. Isipadu fasa 2223 berkurang secara mendadak apabila komposisi dopan ditingkatkan, manakala kadar pengurangan berbeza-beza disebabkan oleh pendopanan pada tapak-tapak(site) yang berlainan. Tambah lagi, terdapat kemungkinan Sm\(^{2+}\) atau Sm\(^{3+}\) menduduki oleh tapak-tapak yang lain di dalam sampel yang sama.

Apabila masa pensinteran yang panjang dilakukan, didapat terdapat peningkatan bagi sifat-sifat kesuperkonduksian pada kepekatan dopan yang rendah iaitu pada \(x=0.06 \), di mana sampel masih di dominasi oleh fasa 2223. Pada kepekatan yang lebih tinggi,
saiz butiran akan berkurangan dan bentuknya menjadi pendek dan tebal serta bertaburan secara rawak berbanding fasa tulen. Turut dapat diperhatikan, sifat-sifat kesuperkonduksian dan mikrostrukturnya akan meningkat apabila sampel disinter selama 48 jam dan 100 jam, di mana fasa T_c yang tinggi akan berlaku dan ini menunjukkan bahawa masa optimum bagi pensinteran perlu dilakukan melebihi 48 jam.
ACKNOWLEDGEMENTS

In the name of Allah, the most Gracious and the most Merciful

Praise be to Allah the Almighty, for thee (alone) we worship and thee (alone) we ask for help. And praise be upon Mohammad s.a.w who his guidance has led us to the path whom God has favoured.

I am extremely grateful to my supervisor, Professor Dr. Abdul Halim Shaari for most of all, believing in me and for his invaluable advice, patience, guidance, ideas, criticism, encouragement and continuous discussion,

My deepest gratitude goes to my co-supervisors, Professor Dr. Lee Chnoong Kheng and Dr. Zainul Abidin Hassan for the comments, suggestions and wise guidance throughout the research work.

I am very grateful for the financial assistance provided through the Intensified Research Program in Priority Area (IRPA). My special thanks go to Associate Professor Dr. Wan Daud Wan Yusof for his suggestion and support. I am grateful to all the lecturers in the Physics Department for their kind help and discussion.

To Associate Prof. Dr. Fauziah Othman, Mr. Ho, Miss Azilah, Mrs. Faridah and all members of Electron Microscopy Unit, thanks a lot for your kind assistance.

x
I am extremely grateful to my lab mates; Iftetan Ahmad Taha, Kabashi, Talib, K. P. Lim, Mustafa Dihom, Ali, Zohra, J.Y. Teh, Huda, Mas, Ramadan, Sharmiwati, Jannah, Azman and Abdullah Chik. Thanks a lot for your kind help and understanding regarding this work.

To my friends who never fail to encourage me until the end; Associate Prof. Dr. Ahmad Kamal from UiTM, Dr. Nasri from UNITEN and Isam Qudsiah, my special thanks go to all of you. I am very thankful to Mr. Razak Harun, Mr. Razi, and other technical staff in the Physics Department for their technical favours. To Mr. Kamal, thanks a lot for your technical assistants.

To my late father, my mother, brothers and sisters, their love and support keep me going, And last but not least, to my wife, Lama and my son, Yazan, thank you for your love, continuous support, encouragement and understanding.

May GOD Bless You All.
I certify that an Examination Committee met on 25th September 2002 to conduct the final examination of Imad Moh'D Khair Rashid Hamadneh on his Doctor of Philosophy thesis entitled “Synthesis and Characterization of Samarium Doped Bi$_{1.6}$Pb$_0.4$Sr$_2$Ca$_2$Cu$_3$O$_{10}$ Superconductor Prepared via Coprecipitation Method” in accordance Universiti Pertanian Malaysia (Higher Degree) act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Sidek Abdul Aziz, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Chairman)

Abdul Halim Shaari, Ph.D.
Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Lee Chnoong Kheng, Ph.D.
Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Zainul Abidin Hassan, Ph.D.
Doctor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Roslan Abd. Shukor, Ph.D.
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(Independent Examiner)

\[\text{\textbf{AINI IDERIS, Ph.D.}}\]
Professor/ Dean,
School of Graduate Studies,
Universiti Putra Malaysia

Date: 23 OCT 2002
This thesis submitted to the Senate of Universiti Putra Malaysia and was accepted as fulfillment of the requirements of the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Abdul Halim Shaari, Ph.D.
Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Chairman)

Lee Chnoong Kheng, Ph.D.
Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Zainul Abidin Hassan, Ph.D.
Doctor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

AINI IDERIS, Ph.D.
Professor/ Dean,
School of Graduate Studies,
Universiti Putra Malaysia

Date:
I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

IMAD "MOH'D KHAIR" RASHID HAMADNEH

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>x</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>xii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xxix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxx</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Basic Properties Of Superconductors 1

1.1.1 Zero Resistance 2

1.1.2 Meissner Effect 3

1.1.3 Energy Gap 5

1.1.4 Electronic Specific Heat 6

1.1.5 Isotope Effect 7

1.2 A Brief History of Superconductors 8

1.3 Research Objectives 12

2 BACKGROUND OF SUPERCONDUCTIVITY

2.1 Microscopic Theory of Superconductivity 13

2.2 Copper Oxide Superconductors 20

2.2.1 Effect of Substitution Doping in BSCCO Superconductor 24

2.3 Non-Copper Oxide Superconductors 38

2.4 Preparation Methods of Superconducting Ceramics 39

2.4.1 Conventional Method 40

2.4.2 Sol-Gel Methods 40

2.4.3 Co-precipitation Methods 43

3 MATERIALS AND INSTRUMENTATION

3.1 Sample Preparation and Experimental Details 47

3.1.1 $\text{Bi}_{1.6}\text{Pb}_{0.4}\text{Sr}_2\text{Ca}_2\text{O}_{8-x}\text{Sm}_x\text{Cu}_3\text{O}_8$ samples 50

3.1.2 $\text{Bi}_{1.6-x}\text{Sm}_x\text{Pb}_{0.4}\text{Sr}_2\text{Ca}_3\text{O}_{8}$ samples 50

3.1.3 $\text{Bi}_{1.6}\text{Pb}_{0.4}\text{Sr}_2\text{O}_{8-x}\text{Sm}_x\text{Cu}_3\text{O}_8$ samples 51

3.1.4 $\text{Bi}_{1.6}\text{Pb}_{0.4}\text{Sr}_2\text{Ca}_3\text{O}_{8-x}\text{Sm}_x\text{O}_8$ samples 51

3.2 Physical Evaluation 52

3.2.1 Resistance at various temperatures 52
3.2.2 Magnetic susceptibility 53
3.2.3 XRD 56
3.2.4 Morphology 57

4 RESULTS AND DISCUSSION 58
4.1 Resistance at Various Temperatures 58
 4.1.1 Effect of Sm doping in Ca site of Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O₆ 58
 4.1.2 Effect of Sm doping in Bi site of Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O₆ 66
 4.1.3 Effect of Sm doping in Sr site of Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O₆ 73
 4.1.4 Effect of Sm doping in Cu site of Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O₆ 80
4.2 AC Susceptibility Measurements 90
 4.1.1 Effect of Sm in Ca site 91
 4.1.2 Effect of Sm in Bi site 114
 4.1.3 Effect of Sm in Sr site 133
 4.1.4 Effect of Sm in Cu site 153
4.3 X-ray Diffraction Analysis 173
 4.1.1 Effect of Sm in Ca site 174
 4.1.2 Effect of Sm in Bi site 180
 4.1.3 Effect of Sm in Sr site 187
 4.1.4 Effect of Sm in Cu site 194
4.4 Morphological Studies 200
 4.1.1 Effect of Sm in Ca site 200
 4.1.2 Effect of Sm in Bi site 202
 4.1.3 Effect of Sm in Sr site 204
 4.1.4 Effect of Sm in Cu site 206

5 CONCLUSIONS AND FUTURE DIRECTIONS 208
5.1 Conclusion 208
5.2 Future Directions 212

REFERENCES 213

APPENDICES 218
 A Thermo Gravimetric Analysis (TGA) for the pure BSCCO 219
 B SEM micrograph for a metal oxalate mixture of the pure BSCCO 220
 C EDAX Spectrum and Semi Quantitative Analysis of pure Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O₁₀ sintered for 24 hours 221
 D Schematic drawing of the paths of the intragrain current density J_{Cg} and the macroscopic intergrain current density J_{Cm} 222
 E T_{C(R=0)} as a function of Sm concentration at various sites 223
 F % 2223 superconducting phase as a function of Sm fraction at various sites 224
 G Papers Published and Presented Throughout this Thesis 225

BIODATA OF THE AUTHOR 226

xvi
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>High Temperature superconducting compounds</td>
<td>22</td>
</tr>
<tr>
<td>2.2</td>
<td>The lattice parameters in BSCCO superconducting system.</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>The summarized results of the doping elements in Ca and Cu sites</td>
<td>37</td>
</tr>
<tr>
<td>4.1</td>
<td>Summarized $T_{C(R=0)}$ (K) and $T_{C\text{-onset}}$ (K) for samples doped with Sm in Ca site with various concentrations of Sm and sintering time (24, 48 and 100 hours).</td>
<td>64</td>
</tr>
<tr>
<td>4.2</td>
<td>Summarized $T_{C(R=0)}$ (K) and $T_{C\text{-onset}}$ (K) for samples doped with Sm in Bi site with various concentrations of Sm and sintering time (24, 48 and 100 hours).</td>
<td>70</td>
</tr>
<tr>
<td>4.3</td>
<td>Summarized $T_{C(R=0)}$ (K) and $T_{C\text{-onset}}$ (K) for samples doped with Sm in Sr site with various concentrations of Sm and sintering time (24, 48 and 100 hours).</td>
<td>77</td>
</tr>
<tr>
<td>4.4</td>
<td>Summarized $T_{C(R=0)}$ (K) and $T_{C\text{-onset}}$ (K) for samples doped with Sm in Cu site with various concentrations of Sm and sintering time (24, 48 and 100 hours).</td>
<td>85</td>
</tr>
<tr>
<td>4.5</td>
<td>Summarized data of coupling peak temperature, T_p, first onset temperature of diamagnetism, $T_{C\text{-onset}}$, phase lock-in temperature, T_{CJ} and josephson current, I_o for Bi$_{16}$Pb$_0$Sr2Ca${2-x}$Sm$_x$Cu$_3$O$_8$ samples.</td>
<td>111</td>
</tr>
<tr>
<td>4.6</td>
<td>Summarized data of coupling peak temperature, T_p, first onset temperature of diamagnetism, $T_{C\text{-onset}}$, phase lock-in temperature, T_{CJ} and josephson current, I_o for Bi$_{16}$-xPb$_x$Sr$_2$Ca$_2$Cu$_3$O$_6$ samples.</td>
<td>130</td>
</tr>
<tr>
<td>4.7</td>
<td>Summarized data of coupling peak temperature, T_p, first onset temperature of diamagnetism, $T_{C\text{-onset}}$, phase lock-in temperature, T_{CJ} and josephson current, I_o for Bi$_{16}$Pb$_0$Sr2Ca${2-x}$Sm$_x$Cu$_2$O$_6$ samples sintered at 24, 48 and 100 hours.</td>
<td>150</td>
</tr>
</tbody>
</table>
Table 4.8: Summarized data of coupling peak temperature, T_p, first onset temperature of diamagnetism, $T_{C_{onset}}$, phase lock-in temperature, T_C, and Josephson current, I_0 for Bi$_{1.6}$Pb$_0.4$Sr$_2$Ca$_2$Cu$_{3-x}$Sm$_x$O$_y$ samples

Table 4.9: Summarized data of the cell parameters and volume of the unit cell for all samples doped with Sm in Ca site with sintering time (24, 48 and 100 hours).

Table 4.10: Summarized data of the cell parameters and volume of the unit cell for all samples doped with Sm in Bi site with sintering time (24, 48 and 100 hours).

Table 4.11: Summarized data of the cell parameters and volume of the unit cell for all samples doped with Sm in Sr site with sintering time (24, 48 and 100 hours).

Table 4.12: Summarized data of the cell parameters and volume of the unit cell for all samples doped with Sm in Cu site with sintering time (24, 48 and 100 hours).
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>The typical curve of resistivity vs. temperature for a superconducting material.</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Type I superconductor.</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>The magnetic field within the material (B) vs. the external magnetic field (H).</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>The vortices (like little solenoids) shield the penetrating magnetic field through the bulk superconductor</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>Evolution of critical temperature, T_c from 1911 until 2002.</td>
<td>10</td>
</tr>
<tr>
<td>1.6</td>
<td>Crystallographic structure of Bi$_2$Sr2CanCu${n+1}$O${2n+6+δ}$ system with $n = 0, 1, \text{and } 2$.</td>
<td>49</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart of Bi-Sr-Ca-Cu-O doped with Sm prepared by oxalates precursor.</td>
<td>49</td>
</tr>
<tr>
<td>3.2</td>
<td>Dc resistivity measurement (four-point probe methods)</td>
<td>52</td>
</tr>
<tr>
<td>3.3</td>
<td>Cross-section view of the primary and secondary coils</td>
<td>56</td>
</tr>
<tr>
<td>4.1</td>
<td>Normalized resistance ($R/R_{(T=300K)}$) as a function of temperature for samples sintered in air at 850 °C for 24 hours with various concentrations of Sm in Bi1Pb${0.4}$Sr2Ca${2-x}$Sm$_x$Cu$_3$O$_6$.</td>
<td>59</td>
</tr>
<tr>
<td>4.2</td>
<td>Normalized resistance ($R/R_{(T=300K)}$) as a function of temperature for samples annealed in air at 850 °C for 48 hours with various concentrations of Sm in Bi1Pb${0.4}$Sr2Ca${2-x}$Sm$_x$Cu$_3$O$_6$.</td>
<td>61</td>
</tr>
<tr>
<td>4.3</td>
<td>Normalized resistance ($R/R_{(T=300K)}$) as a function of temperature for samples sintered in air at 850 °C for 100 hours with various concentrations of Sm in Bi1Pb${0.4}$Sr2Ca${2-x}$Sm$_x$Cu$_3$O$_6$.</td>
<td>62</td>
</tr>
<tr>
<td>4.4</td>
<td>$T_c(R=0)$ as a function of Sm concentration for Bi1Pb${0.4}$Sr2Ca${2-x}$Sm$_x$Cu$_3$O$_6$ samples sintered at 24, 48 and 100 hours.</td>
<td>63</td>
</tr>
</tbody>
</table>

xix
4.5: Sm concentration dependence of normalized residual resistance for Bi$_{1.6-x}$Sm$_x$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$ samples sintered at 850°C for different sintering time.

4.6: Normalized resistance ($R/R_{(T=300K)}$) as a function of temperature for samples sintered in air at 850°C for 24 hours with various concentrations of Sm in Bi$_{1.6-x}$Sm$_x$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$.

4.7: Normalized resistance ($R/R_{(T=300K)}$) as a function of temperature for samples sintered in air at 850°C for 48 hours with various concentrations of Sm in Bi$_{1.6-x}$Sm$_x$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$.

4.8: Normalized resistance ($R/R_{(T=300K)}$) as a function of temperature for samples sintered in air at 850°C for 100 hours with various concentrations of Sm in Bi$_{1.6-x}$Sm$_x$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$.

4.9: $T_C(R=0)$ as a function of Sm concentration for Bi$_{1.6-x}$Sm$_x$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$ samples sintered at 24, 48 and 100 hours.

4.10: Sm concentration dependence of normalized residual resistance for Bi$_{1.6-x}$Sm$_x$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$ samples sintered at 850°C for different sintering time.

4.11: Normalized resistance ($R/R_{(T=300K)}$) as a function of temperature for samples sintered in air at 850°C for 24 hours with various concentrations of Sm in Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$.

4.12: Normalized resistance ($R/R_{(T=300K)}$) as a function of temperature for samples sintered in air at 850°C for 48 hours with various concentrations of Sm in Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$.

4.13: Normalized resistance ($R/R_{(T=300K)}$) as a function of temperature for samples sintered in air at 850°C for 100 hours with various concentrations of Sm in Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$.

4.14: $T_C(R=0)$ as a function of Sm concentration for Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$ samples sintered at different sintering time.

4.15: Sm concentration dependence of normalized residual resistance for Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$ samples sintered at 850°C for different sintering time.

4.16: Normalized resistance ($R/R_{(T=300K)}$) as a function of temperature for samples sintered in air at 850°C for 24 hours with various concentrations of Sm in Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$.
4.17 Normalized resistance ($R/R_{(T=300K)}$) as a function of temperature for samples sintered in air at 850 °C for 48 hours with various concentrations of Sm in Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_{2-x}$Cu$_{3-x}$Sm$_x$O$_{6}$. 82

4.18 Normalized resistance ($R/R_{(T=300K)}$) as a function of temperature for samples sintered in air at 850 °C for 100 hours with various concentrations of Sm in Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_{2-x}$Cu$_{3-x}$Sm$_x$O$_{6}$. 84

4.19 $T_C(R=0)$ as a function of Sm concentration for Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_6$ samples sintered at different sintering time 86

4.20 Sm concentration dependence of normalized residual resistance for Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_{2-x}$Cu$_{3-x}$Sm$_x$O$_{6}$ samples sintered at 850°C for different sintering time. 87

4.21 AC susceptibility of pure Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_6$ sintered for 24 hours. 90

4.22 AC susceptibility of pure Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_6$ sintered for 48 hours. 90

4.23 AC susceptibility of pure Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_6$ sintered for 100 hours. 91

4.24 Applied field as a function of the coupling peak temperature for pure Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_6$ samples sintered at various temperatures. 91

4.25 AC susceptibility of Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_6$ sintered for 24 hours sample ($x=0.02$) 94

4.26 AC susceptibility of Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_6$ sintered for 24 hours sample ($x=0.06$) 94

4.27 AC susceptibility of Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_6$ sintered for 24 hours sample ($x=0.10$) 95

4.28 AC susceptibility of Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_6$ sintered for 24 hours sample ($x=0.20$) 95

4.29 AC susceptibility as a function of temperature for Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_6$ sintered for 24 hours with applied magnetic field 0.1 Oe. (a) Real part, (b) Imaginary part 96

4.30 AC susceptibility of Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_6$ sample ($x=0.02$) sintered at 850 °C for 48 hour. 99
4.31: AC susceptibility of Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_{2-x}$Sm$_x$Cu$_3$O$_y$ sample (x=0.06) sintered at 850°C for 48 hour.

4.32: AC susceptibility of Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_{2-x}$Sm$_x$Cu$_3$O$_y$ sample (x=0.10) sintered at 850°C for 48 hour.

4.33: AC susceptibility of Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_{2-x}$Sm$_x$Cu$_3$O$_y$ sample (x=0.20) sintered at 850°C for 48 hour.

4.34: AC susceptibility as a function of temperature for Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_{2-x}$Sm$_x$Cu$_3$O$_y$ sintered for 48 hours with applied magnetic field 0.1 Oe. (a) Real part, (b) Imaginary part.

4.35: AC susceptibility of Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_{2-x}$Sm$_x$Cu$_3$O$_y$ sample (x=0.02) sintered at 850°C for 100 hour.

4.36: AC susceptibility of Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_{2-x}$Sm$_x$Cu$_3$O$_y$ sample (x=0.06) sintered at 850°C for 100 hour.

4.37: AC susceptibility of Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_{2-x}$Sm$_x$Cu$_3$O$_y$ sample (x=0.10) sintered at 850°C for 100 hour.

4.38: AC susceptibility of Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_{2-x}$Sm$_x$Cu$_3$O$_y$ sample (x=0.20) sintered at 850°C for 100 hour.

4.39: AC susceptibility as a function of temperature for Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_{2-x}$Sm$_x$Cu$_3$O$_y$ sintered for 100 hours with applied magnetic field 0.1 Oe. (a) Real part, (b) Imaginary part.

4.40: Applied field as a function of the coupling peak temperature for Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_{2-x}$Sm$_x$Cu$_3$O$_y$ samples sintered for 24 hours.

4.41: Applied field as a function of the coupling peak temperature for Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_{2-x}$Sm$_x$Cu$_3$O$_y$ samples sintered for 48 hours.

4.42: Applied field as a function of the coupling peak temperature for Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_{2-x}$Sm$_x$Cu$_3$O$_y$ samples sintered for 100 hours.

4.43: Josephson current vs. Sm concentration temperature for Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_{2-x}$Sm$_x$Cu$_3$O$_y$ samples.

4.44: AC susceptibility of Bi$_{1.6-x}$Sm$_x$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_y$ sintered for 24 hours sample (x=0.02)
AC susceptibility of $\text{Bi}_{1.6-x}\text{Sm}_x\text{Pb}_0.4\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_8$ sintered for 24 hours sample ($x=0.06$)

AC susceptibility of $\text{Bi}_{1.6-x}\text{Sm}_x\text{Pb}_0.4\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_8$ sintered for 24 hours sample ($x=0.10$)

AC susceptibility of $\text{Bi}_{1.6-x}\text{Sm}_x\text{Pb}_0.4\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_8$ sintered for 24 hours sample ($x=0.20$)

AC susceptibility as a function of temperature for $\text{Bi}_{1.6-x}\text{Sm}_x\text{Pb}_0.4\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_8$ sintered for 24 hours and applied magnetic field 0.1 Oe. (a) Real part, (b) Imaginary part

AC susceptibility of $\text{Bi}_{1.6-x}\text{Sm}_x\text{Pb}_0.4\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_8$ sintered for 248 hours sample ($x=0.02$)

AC susceptibility of $\text{Bi}_{1.6-x}\text{Sm}_x\text{Pb}_0.4\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_8$ sintered for 248 hours sample ($x=0.06$)

AC susceptibility of $\text{Bi}_{1.6-x}\text{Sm}_x\text{Pb}_0.4\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_8$ sintered for 248 hours sample ($x=0.10$)

AC susceptibility of $\text{Bi}_{1.6-x}\text{Sm}_x\text{Pb}_0.4\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_8$ sintered for 248 hours sample ($x=0.20$)

AC susceptibility as a function of temperature for $\text{Bi}_{1.6-x}\text{Sm}_x\text{Pb}_0.4\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_8$ sintered for 248 hours and applied magnetic field 0.1 Oe. (a) Real part, (b) Imaginary part

AC susceptibility of $\text{Bi}_{1.6-x}\text{Sm}_x\text{Pb}_0.4\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_8$ sintered for 100 hours sample ($x=0.02$)

AC susceptibility of $\text{Bi}_{1.6-x}\text{Sm}_x\text{Pb}_0.4\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_8$ sintered for 100 hours sample ($x=0.06$)

AC susceptibility of $\text{Bi}_{1.6-x}\text{Sm}_x\text{Pb}_0.4\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_8$ sintered for 100 hours sample ($x=0.10$)

AC susceptibility of $\text{Bi}_{1.6-x}\text{Sm}_x\text{Pb}_0.4\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_8$ sintered for 100 hours sample ($x=0.20$)

AC susceptibility as a function of temperature for $\text{Bi}_{1.6-x}\text{Sm}_x\text{Pb}_0.4\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_8$ sintered for 100 hours and applied magnetic field 0.1 Oe. (a) Real part, (b) Imaginary part